BMS

Institute of Technology and Management
Avalahalli, Doddaballapur Main Road, Bengaluru - 560064

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

ELECTROMAGNETIC WAVES 18EC55

STUDY IMATERIAL

V SEIMESTER

B.M.S INSTITUTE OF TECHNOLOGY \& MANAGEMENT

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

5TH SEM NOTES

SUBJECT: ELECTROMAGNETIC WAVES
 (18EC55)

Content	Page No.
INTRODUCTION TO VECTOR CALCULUS	$1-172$
Module 1: COULOMB'S LAW, ELCTRIC FIELD INTENSITY AND FLUX DENSITY	$173-376$
Module 2: GAUSS'S LAW AND DIVERGENCE THEOREM, ENERGY POTENTIAL AND CONDUCTORS ENERGY POTENTIAL AND CONDUCTORS	$377-566$
Module 3: POISSSONS AND LAPLACE EQUATIONS	$567-662$
Module 3: STEADY MAGNETIC FIELD	$663-818$
Module 4 (Part-A): MAGNETIC FORCES	$819-861$
Module 4 (Part-B): MAGNETIC MATERIALS	$862-904$
Module 5(Part-A): MAXWELL'S EQUATIONS	$905-1040$
Module 5(Part-B): UNIFORM PLANE WAVE	$1041-1190$

Subject: Engineering Electromagnetics

Content :

Dankan V Gowda MTech,(Ph.D) Assistant Professor, Dept. of $E \& C E$
Email:dankan.ece@svcengg.com

* Introduction
* Important Applications of Engineering Electromagnetics
* Comparision between Network analysis and Electromagnetic field theory
* Symbols of scalar Parameters
* Symbols of Vector Parameters
* Small value representation
* Large Value representation
* List of Physical constants

Fundamentals of Vector Algebra

1. Definition of Scalar
2. Definition of vector
a. Representation of vector
b. Position and Distance vector
3. Operation on Vector
a. Addition / Subtraction of Vectors
b. Product of vectors / Multiplication of vectors
i. Scalar or Dot product
ii. Vector or Cross product
4. The Del/Spatial ($\bar{\nabla}$) operator
a. Concept of Gradient
b. Concept of Divergence
c. Concept of Curl

Orthogonal Co-ordinate System
a. Cartesian / Rectangular Co-ordinate system
b. Cylindrical Co-ordinate system
c. Spherical / Rectangular Co-ordinate system

Discussion Topics w.r.t all three Co-ordinate systems

> Variables used
> Variable range
> Vector components and Unit vectors
> General vector
> Differential elements
> Differential length vector
> Differential surface and differential surface vector
> Dot product of unit vectors
> Cross product of unit vectors
> $\$$ Del $/ \nabla$ in all three co-ordinate system
> Point transformation
> Vector transformation
6. ∇, Gradient, Divergence, Curl ,Laplace's and poison's Equation
7. List of mathematical Formulae
8. Important Vector Identities

Dept. of ECE, B.M.S.I.T \& M

* Introduction

Engineering Elctiomagnctics deals with clutixticld, magnetic field and abo clutromagntic fields and phenomena.

- Electromagntics is a branch of physics..(ior) clectrical enginecring in which elutric andingntic phenomena anemistudied.
Electromagnctic theong fibienntial to desgn and Electromagnctic theory all comminhication and radar Sytems.

Dept. of ECE, B.M.S.I.T \& M

* Important Application's of Engineering Eleitromagnitia Electromagnetic principles are used in various disciplines Such as microwaves, antennas, elutric machines, satellite communications, bioclutromagnetics, plasmas, nuclear research, fiber optics, nide dar meteorology and remote sensing
The important application are in "Eatromagntic fiuldin are
\rightarrow Remote Sensing radars
\rightarrow Radio astronomy radars
\rightarrow Elatromagntic interference and compatibility.
$>$ Elatricimiotoro
\rightarrow bernelen and mobile communications.
\rightarrow Rodio broadcast.
\rightarrow all type of antenna analysin and design
\rightarrow all types of transmimion Lines and waveguides.
\rightarrow Fiber optic communications.
Dept. of E\&CE., SVCE
\rightarrow Electric relays. At.
\# Lomparision between Network theory and ELEAH.M.S.IT
-noetic Field theory:
The design and analysin of a system. Device (or) Circuit requires the use of Something (or) the other. Thee analysis of a system in universally de tined as one by which the output in obtained from the given input and System details. On the othertand, the design of a System in one by which the System details are obtained, from The The given input and output. These two importantitask are executed by two most popular) theories, namely network and clutromegnitic theories.

* Dealo with voltege (v) and Current (I).
* V and I are scalar grantitics

Elitromagnitic 'theong

* Dealswith Eluithe (E) and mas nitic filld (F).
* Enind H are , Vutor quantitics.
* V and I are function $* E$ and F are frenction of time (t).
of time (t) and Spatial variables (x, y, z)
(or) $(\rho, \phi, 3)$ (o) (r, θ, ϕ).
* Basic Laun ore ohmishaw, * Basic Lown are trindis Lewo. Coulomblaw, Gausinlaw, Amperin Circuit Low, the.
* Basic theormis are the venin', Nortoni, reciprocily, Superposition, and Maximom Dept of ERCE, SVCE franster theoremo
powr fran
* Basic theoremin are Stokes, Divergence and poynting theorem' 4 4

NT

* Basic equations are * Basic Equations are Mesh/Loop equations.
* at Low frequencies the Length of connuting wires in very much smaller than Laveturgth.
* usefull at Low froprinimi, * unefule at all

$$
\left(\mathrm{KH}_{3} \text { range }\right)
$$

* Cannot be applied in \rightarrow Is applicable in free space.
rechoorg
* Elutromagnatic Fill tho ry cannot be * used to analyse (O) design a complete communication System

$$
\overline{\overline{\text { Dept. of ERCE. SVCE }}}
$$

can be eyed where. Network theory fails to holdigood for the analysis and design of a
se Network theory in Simplified Communication sagetem. cepproximation of fill thong More accurate theory.

Dept. of ECE, B.M.S.I.T \& M

* Symbols of Scalar paramcterio

Unit.
$\frac{\text { parameter }}{\text { - Resistivity }}$
Symbol
Definition \qquad
reciprocal of
$\Omega-m$.

- Londurtivily
- Electric Flux
- Magnetic
- Elatromotive Emf it in the ratio force
of pour to
Current

$$
V_{m}=\int_{A}^{B} \bar{H} \cdot \overline{d l}
$$

$$
C=\frac{Q}{V}
$$

$$
L=\frac{N \phi}{I}
$$

Volt
Water (wb) I Web $=1$ Volf-see
\mid Volt $=|\mathrm{J}| \mathrm{C}$ (a) beat amp.

Amp (A).
Farads (F)

$$
1 F=\mid q_{1 v o l}
$$

finny (H).

$$
1 H=q_{\text {lb }} / \mathrm{amp}
$$

- Mutual Indatance

$$
M=\frac{M_{2} \phi_{12}}{I_{1}}
$$

6

$\begin{aligned} & \text { Parameter Symbol } \\ & \begin{array}{l}\text { Permitfiving of } \\ \text { freespace }\end{array} \\ & G_{0} \\ & 8.854 \times 10^{-12} \mathrm{flm} \\ & \simeq \frac{1}{36 \pi \times 10^{9}}\end{aligned} \quad \mathrm{flm}$.

- permeability of μ_{0}

$$
4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
$$

\qquad fres pace

- Relative permitfivity $G_{r} \quad G_{r}=\frac{\epsilon}{\epsilon_{0}}$ $\left[\begin{array}{c}\text { Dimension } \\ \text { Len }\end{array}\right]$ of a medium
Er tor frespace nounit
- permeabiling of Medium

$$
\mu_{c_{1}} \mu_{r}=\frac{\mu}{\mu_{0}}
$$

No-unit.

Ilectric $x_{e}=E_{r}-1$
Sugceptibitity
$(x-i x p$ pronounced
as chi $)$

- Magnatic

Surceptibiling $x_{m} \quad x_{m}=\mu_{r}-1$ DANKAN V GOWDA, M. Med. (Ph. D) Assisiant Protessor
Dep. of E ECESVCE Bangalore - 562157 Mob: 9844554940
Dept. of E\&CE., SVCE

- Intrinsic impedance of fre space

40

$$
\begin{aligned}
y_{0} & =\sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \\
& =120 \pi \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { parameter } \\
\text { Surface cha } \\
\text { density } \\
\text { Line charge } \\
\text { density }
\end{array} \\
& \begin{array}{l}
\text { volumech } \\
\text { density }
\end{array} \\
& \text { propagation } \% \\
& \text { xiv } \\
& \mathrm{Cl} \\
& \rho_{l} \\
& \theta 1 L \\
& +J \beta) \quad d B / m \\
& \text { - attenuation } \\
& \text { Constant } \\
& \begin{array}{c}
\text { - phase } \\
\text { constant }
\end{array} \\
& \text { - Depth of } \\
& \text { penetration } \\
& \text { (o) Skin depth } \\
& 3 \text { it in a measure of } \\
& \begin{array}{c}
\text { it in a measme of } \\
\text { phase shift of } \\
\text { EM wade }
\end{array} \\
& \begin{array}{c}
\text { it in a measme of } \\
\text { share shift of } \\
\text { EM wade }
\end{array} \\
& \left.d_{B}\right|_{m} \\
& \text { of reduction } f \text { EM } \\
& \text { ware as it proprones } \\
& S \text { it in the depth at } \\
& \text { which on Emwave } \\
& \text { is attenuated to }
\end{aligned}
$$

- pharevelocity up it defines a point
of constant phane defines a point
of constant phanet $\mathrm{m} / \mathrm{sec}$.
* Symbols \& Vector Parameterss

Dept. of EfCh, (B. M. S. I. T \& M
Parameter

Velocity
vetor

\bar{V}

$\frac{\text { Detinition }}{$| rate of |
| :--- |
| displacement |}$\frac{m / \mathrm{sec}}{\text { mes. }}$

vetor
$\begin{aligned} & \begin{array}{l}\text { unituriocing } \\ \text { veitor }\end{array}\end{aligned} \bar{a}_{v e} \quad \bar{a}_{v e}=\frac{\bar{v}}{|\bar{v}|}$

Qd
$A-m^{2}$
4
4
$X_{m} \bar{H}$
$A l_{n}$
$\bar{R} \times \bar{F}$
N-m
Torque

- Nomal compo - nunt of \bar{B}
- Poynting Vector

Detinitionept. of ECEl BiME.S.IT \& M
Nomal compomant of \bar{D}

Normal Component, of \bar{B}

$$
\bar{E} \times \bar{H} \quad \mathrm{klatf} / \mathrm{m}^{2}
$$

Dept. of ECE, B.M.S.I.T \& M

* Smaxe VIalue. Reyproseratation

Dept. of ECE, B.M.S.I.T \& M

* LARGE Value Reporsuntation

Dept. of ECE, B.M.S.I.T \& M

* List of physical [onstanty.

Electron-volt (J)
permittivity of freespace (F/m)
permeability of free space (H / m)

- Intrinsic impedance of tree space (Ω)
- Speed of Light in Vacuum (14"
- Election charge (Coulombs)
- Electron man (kg)

$$
\varepsilon_{0} \quad 8.854 \times 10^{-12}
$$

Quantity $\frac{\text { Symbol }}{\text { Boltzmann }} \frac{\text { Experimintal }}{\text { valua }} 1.38047 \times 10^{-23}$
\quad Constant (J / K)

- plankisconstant h $6.624 \times 10^{-34} \quad 6.62 \times 10^{-34}$
- Accelcration due to gravity
$\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Spic.

* Fundamentals of Vector Algebra

Elentromagnctio engineering is the study of elutric and magnetic files. All field quantities are valor quantities ie direction dependent. Therefore it is neconary to study the concepts of vatorn before actually we start -studying the fired:
I Definition of Scalartwith example.
A physical quantity tiding only magnitude but no direction tin called scalar.
Eg:- Lengthen, charge, the, voltage, current, titre and distance te.
ut ' ϕ - scalar quantity
Scalar $(\phi)=$ Magnitude

I Definition of Vector with example
A physical quantity having both magnitude and diration.
Eg:- Velocity, Displacement, acceleration force, torque, clatricfield Intensity, elton flux density, Magnetic field Intensity, Weight ate.
2a. Representation of vector n (or) \hat{A}, on \vec{A})

$$
\text { Faitor }(\bar{A}) \text { (} W_{1} \text { Magnitude } x \text { diration }
$$

direction un un presented by uni unit veto

$$
\bar{a}_{A}=|\bar{A}| \bar{a}_{A}=A \bar{a}_{A}
$$

Where \bar{a}_{A}-cent vector

$$
\bar{a}_{A}=\frac{\bar{A}}{|\bar{A}|}
$$

Dept. of ECE, B.M.S.I.T \& M
Vector is a directed Line ie a Line having bot magnitude and direction. The vutor has a starting
and Ending point. The direction is Shown by arrow.

The first Letter in $\overline{A B}$ indicates the start and the
Second Letter in the end of the vator.
the arrow or banmover the tread of the Letter is used to indic te vector.
where $|\overrightarrow{A B}|=$ magnitude of vector $\overline{A B}$.
$m_{1,} \bar{a}_{A B}=$ cent vector in direction A to B.
$\bar{a}_{A B}$ in med to indicate unit vector ie a vutor whose magnitude is one, it gives only direction.
Dept. of E\&CE., SVCE
(21) $\overline{a_{A B}}=\frac{\overline{A B}}{|\overline{A B}|}$
ie valor by its magnitude.

start $A\left(x_{1}, y_{1}, z_{1}\right)$ Let $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$
bc two pointen given. Then

$$
\begin{equation*}
\overline{A B}=\left(x_{2}-x_{1}\right) \overline{a_{x}}+\left(y_{2}-y_{1}\right) \overline{a_{y}}+\left(z_{2}-y_{2}\right. \tag{b}
\end{equation*}
$$

where \bar{a}_{x}, \bar{a}_{y} and \bar{a}_{z} are the unitivetors in
Cartesicen Co-ordinate Systity.

$$
\begin{align*}
& |\overrightarrow{A B}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{1}+y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \tag{1b}\\
& \widehat{A B}=\mid \overrightarrow{A B} A_{A B} \\
& \Rightarrow \overrightarrow{a_{A B}} \frac{\overrightarrow{A B}}{|\overrightarrow{A B}|} \\
& \text { wit vutor } \bar{a}_{A B}=\frac{\left(x_{2}-x_{1}\right) \overline{a_{x}}+\left(y_{2}-y_{1}\right) \bar{a}_{y}+\left(z_{2}-z_{1}\right) \bar{a}_{3}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}
\end{align*}
$$

Dept. of ECE, B.M.S.I.T \& M
Examples. Find the viator $P Q$ if $P(2,1,4) m$ and $Q(-2,-4,6) m$ also find unit vector $P Q$.

Sola:-

$$
\begin{aligned}
& \frac{\overline{P Q} \mid \overline{a_{P Q}}}{} \\
& |\overline{P Q}|=\sqrt{(-4)^{2}+(-5)^{2}+2^{2}}=\sqrt{16+25+4}=\sqrt{45} \mathrm{~m}
\end{aligned}
$$

Example-2
Given three point $A(2,-3,1) m, B(-4,-2,6) m$ and $C(0,5,-3) \mathrm{m}$ Find i. the vector from A to B.
ii. the viator from B to C.
iii. the unit valor from B to A.
iv. the valor from A to the mid point of the Straight Line joining B to $\frac{1}{}$. Fin the unit Nato solver i. vector from A to B in $A B$, from A to C. vector from A to B

$$
\begin{aligned}
& A B \\
& A(2,-3,1) \\
& \overline{A B}=\left(-4+2, a_{n}+(-2+3) \overline{a_{y}}+(6-1) \overline{a_{z}}\right. \\
& \overline{A B}-6 \overline{a_{x}}+\overline{a_{y}}+5 \overline{a_{z}}
\end{aligned}
$$

ii. Vector from B to $C \quad \overline{B C}$

$$
\overline{B C}=4 \overline{a_{x}}+7 \overline{a_{y}}-9 \overline{a_{z}}
$$

iii. distance from B to C in $|\overline{B C}|$

$$
\begin{aligned}
& |\overline{B C}|=\sqrt{4^{2}+7^{2}+(-9)^{2}} \\
& |\overrightarrow{B C}|=\sqrt{16+49+81}=\sqrt{146} \\
& |\overrightarrow{B C}|=\sqrt{146 \text { matin }}
\end{aligned}
$$

$i v$.
ut ' M ' be the Mid point of Line joining B and C '

$$
M \Rightarrow\left[\frac{-4+0}{2}, \frac{-2+5}{2}, \frac{6-3}{2}\right]
$$

$$
M(-2,1.5,1.5)
$$

$$
\begin{aligned}
& \overline{A M}=(-2-2) \overline{a_{n}}+(1.5+3) \overline{a_{y}}+(1.5-1) \overline{a_{z}} \\
& \overline{A M}=-4 \overline{a_{x}}+4.5 \overline{a_{y}}+0.5 \overline{a_{z}}
\end{aligned}
$$

Keyvote: Mid point formula

$$
\begin{gathered}
M(x, y, z)=? \\
P\left(x_{1}, y_{1}, z_{1}\right) \\
x=\frac{x_{1}+x_{2}}{2} ; y_{1}, \frac{y_{1}+y_{2}}{2} ; z=\frac{z_{1}+z_{2}}{2} \\
M\left(x, y_{1}, z_{2}, x_{2}, y_{2}, z_{2}\right) \\
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) .
\end{gathered}
$$

V. Unit vector from A to C in Eept. of ECE, B.M.S.I.T \& M

$$
\begin{aligned}
& \widehat{A C} \overline{a_{A C}} \\
& A(2,-3,1) \quad \overline{a_{A C}}=\frac{\overline{A C}}{|\overline{A C}|} \\
& \overline{A C}=(0-2) \overline{a_{x}}+(5+3) \overline{a_{y}}+(+3, \overline{3}) \overline{a_{z}} \\
& \overline{A C}=-2 \overline{a_{x}}+8 \bar{a}_{y}-4 \overline{a_{1}} \\
& |\overrightarrow{A C}|=\sqrt{(-2)^{2}+(8) \sqrt{2}+(-4)^{2}} \\
& =\sqrt{4+64+16}=\sqrt{84} \mathrm{~m} \\
& \bar{a}_{A C}=\frac{\sqrt[A]{A} a^{\prime}}{|\overline{A C}|}=\frac{-2 \overline{a_{x}}+8 \overline{a_{y}}-4 \overline{a_{z}}}{\sqrt{84}} \\
& \overline{a_{A C}}=-2.218 \overline{a_{n}}+0.872 \overline{a_{y}}-0.436 \overline{a_{z}}
\end{aligned}
$$

2b. position and distance Vector
position Vator (or) radius vector $\left(\bar{\gamma}_{p}\right)$:
The position valor (or) radius viator $\bar{\gamma}_{p}$ of a point p in defined as the directed distancurom origin 0 to point p.

distances victor - distance valor in the

3. Dberation on Vectorio

3a. Addition / Subatraction of Vectors:-
While adding the vutors, add the component, in the same diration.

$$
\sum_{0}^{z} \overline{A_{z}}=A_{z} \overline{a_{z}}=\bar{A}
$$

$$
\bar{A}=A_{x} \overline{a_{x}}+A_{y} a_{y} a_{1} A_{z} a_{z} \ldots
$$

Mencual vator in Eartesian Co.rdinate System $A_{1} x_{1} A_{y}, A_{3}-$ Componenti along x, y, and x direr (b) $\overline{a_{y}}, \overline{a_{z}}$ - unit vatorin a along. ut $\bar{A}=A_{x} \overline{a_{n}} A_{y} \bar{a}_{y}+A_{3} \overline{a_{z}}$ and $B_{x} \overline{a_{x}}+B_{y} \overline{a_{y}}+B_{3} \overline{a_{2}}$

$$
\begin{aligned}
\bar{A}+\bar{B}= & A_{x} \overline{a_{x}}
\end{aligned}+A_{y} \overline{a_{y}}+A_{z} \overline{a_{z}} \quad\left\{\begin{array}{l}
B_{x} \overline{a_{x}}+B_{y} \overline{a_{y}}+B_{z} \overline{a_{z}} \\
\\
\\
\bar{A}+\bar{B}=\left(A_{x}+B_{x}\right) \overline{a_{x}}+\left(A_{y}+B_{y}\right) \overline{a_{y}}+\left(A_{z}+B_{z}\right) \bar{a}_{z}
\end{array}\right.
$$

My

$$
\begin{aligned}
& \bar{A}-\bar{B}=A_{x} \bar{a}_{x}+A_{y} \bar{a}_{y}+A_{z} \bar{a}_{z}-B_{x} \overline{a_{x}}-B_{y} \bar{a}_{y}-\bar{B}_{z} \bar{a}_{z} \\
& \overline{\bar{A}}-\bar{B}=\left(A_{x}-B_{x}\right) \overline{a_{x}}+\left(A_{y}-B_{y}\right) \overline{a_{y}}+\left(A_{z}-B_{z}\right) \bar{a}_{z}
\end{aligned}
$$

Ingencial

$$
\bar{A} \pm \bar{B}=\left(A_{x} \pm B_{x}\right) \overline{a_{x}}+\left(A_{y} \pm B_{y}\right)^{\circ} a_{y}+\left(A_{z} \pm B_{z}\right) \bar{a}_{2}
$$

Example problem-3.
Four pointo are $A(2,3,-1), B(1,5,2)$, $G(3,1,-5)$ and $D(1,2,3)$. Find
a) $\overrightarrow{A B}+\overline{C D}$
b) $\overline{A B}-\overline{C D}$
c) $\overline{A B}-\overline{D C}$
d> $|\overrightarrow{A B}+\overline{C D}|$.
Solu'.

$$
\begin{aligned}
& \text { a) } \overline{A B}+\overline{C D}=\text { ? } \\
& \overline{A B}=\text { ? } \\
& A(2,3,-1) \quad B\left(1,5,{ }_{n}\right) \\
& \overrightarrow{C D}=(1-3) \overline{a_{n}}+(2-1) \overline{a_{y}}+(3+5) \overline{a_{z}} \\
& \overline{C D}=-2 \overline{a_{x}}+\bar{a}_{y}+\overline{a_{z}} \\
& \overline{A B}+\overline{C D}=-\overline{a_{x}}+2 \bar{a}_{y}+3 \bar{a}_{z}-2 \bar{a}_{x}+\bar{a}_{y}+8 \bar{a}_{z}
\end{aligned}
$$

$$
\overline{A B}+\overline{C D}=-3 \bar{a}_{x}+3 \bar{a}_{y}+11 \overline{a_{z}}
$$

$$
\begin{aligned}
& \overline{A B}-\overline{C D}=-\overline{a_{x}}+2 \overline{a_{y}}+3 \overline{a_{z}}+2 \overline{a_{x}}-\overline{a_{y}}-8 \overline{a_{z}} \\
& \overline{A B}-\overline{C D}=\overline{a_{x}}+\overline{a_{y}}-5 \overline{a_{z}}
\end{aligned}
$$

$$
\begin{aligned}
c) & \overline{A B}-\overline{D C}
\end{aligned}=?
$$

$$
d\rangle|\overline{A B}+\overrightarrow{C D}|=\text { ? }
$$

nifinm bit@

$$
\begin{gathered}
\overline{A B}+\overline{C D}=-3 \overline{a_{x}}+3 \bar{a}_{y}+11 \overline{a_{z}} \\
|\overline{A B}+\overline{C D}|=\sqrt{9+9+12 \mid}=\sqrt{139} \\
|\overline{A B}+\overline{C D}|=\sqrt{139} \text { meter }
\end{gathered}
$$

Example problem-4.
Given vatorn $\bar{A}=\overline{a_{x}}+3 \overline{a_{z}}$ and $\bar{B}=5 \overline{a_{x}}+2 \overline{a_{y}}-6 \bar{a}_{z}$. determine

$$
\begin{aligned}
& \text { letermine } \\
& i \cdot|\bar{A}+\bar{B}| .|\bar{A}+3 \bar{B}| \\
& i_{i}=5 \bar{A}-\bar{B} .
\end{aligned}
$$

iili. the component of \bar{A} along $\overline{a y}$
iv. the diretion of vutor \bar{A} and \vec{B}.
v : A unit vator parallel to $3 \bar{A}+\frac{B}{B}$

$$
\begin{aligned}
& \text { Solu. } \\
& \text { i. }|\vec{A}+\overrightarrow{3 B}|=\text { ? } \\
& \bar{A}=\overline{a_{x}}+3 \overline{a_{z}} \text { and } \frac{B}{B}=5 \overline{a_{x}}+2 \overline{a_{y}}-6 \overline{a_{z}} \text {. } \\
& \bar{A}+\bar{B}=\overline{a_{x}}+\bar{b}_{\bar{a}}+15 \overline{a_{x}}+6 \overline{a_{y}}-18 \overline{a_{z}} \\
& \bar{A}+\overline{3 B},-4,6 \overline{a_{x}}+6 \overline{a_{y}}-15 \overline{a_{z}} \\
& \left|\frac{A}{A}+3 B\right|=\sqrt{16^{2}+6^{2}+15^{2}}=\sqrt{517} \mathrm{~m} \\
& |\bar{A}+3 \bar{B}|=\sqrt{517} \mathrm{~m}
\end{aligned}
$$

ié.

$$
\begin{gathered}
5 \bar{A}-\bar{B}=5 \overline{a_{x}}+15 \overline{a_{z}}-5 \bar{a}_{x}-2 \overline{a_{y}}+6 \overline{a_{z}} \\
5 \bar{A}-\bar{B}=-2 \overline{a_{y}}+21 \overline{a_{z}}
\end{gathered}
$$

$\dot{i} i \ell$.

$$
\begin{align*}
& \bar{A}=\overline{a_{x}}+0 \overline{a_{y}}+3 \overleftarrow{a_{z}} \tag{1}\\
& \bar{A}=A_{x} \overline{a_{x}}+A_{y} \overline{a_{y}}+3 \bar{a}_{z} \tag{2}
\end{align*}
$$

the component of \bar{A} along \bar{O}_{y} i.e $A y$ is by compooing $e^{x}(1)$ and $c q^{4}(D)$

$$
A_{y}=0
$$

iv. the dirction of vetor \bar{A} is $\bar{A}=$?

$$
\begin{aligned}
& \bar{A}=\overline{a_{x}}+3 \overline{a_{z}}, \quad|\bar{A}| \sqrt{1+9}=\sqrt{10} \mathrm{~m} \\
& \overline{a_{A}}=\frac{\bar{A}}{|\bar{A}|}=\frac{\overline{a_{x}}+3 \overline{a_{2}}}{|\sqrt{1,1}|}
\end{aligned}
$$

the dirction in vector \bar{B} in $\overline{a_{B}}=2$

$$
\begin{array}{ll}
\bar{B}=\frac{\bar{B}}{B} & \bar{B}=5 \overline{a_{x}}+2 \overline{a_{y}}-6 \overline{a_{z}} \\
& |\bar{B}|=\sqrt{25+4+36}=\sqrt{65} \mathrm{~m} \\
& 5 \overline{a_{x}}+2 \overline{a_{y}}-6 \overline{a_{2}}
\end{array}
$$

$$
\overline{B_{B}}=\frac{5 \bar{a}_{x}+2 \overline{a_{y}}-6 \overline{a_{z}}}{\sqrt{65}}
$$

V. A unit vector parallel to $3 \bar{A}+\bar{B}$ is

$$
\pm \bar{a}_{3 \bar{A}+\bar{B}}
$$

$$
\begin{aligned}
& \pm \bar{a}_{3 \bar{A}+\bar{B}}= \pm\left[\frac{3 \bar{A}+\bar{B}}{|3 \bar{A}+\bar{B}|}\right] \\
& 3 \bar{A}+\bar{B}=3 \overline{a_{x}}+9 \bar{a}_{z}+5 \bar{a}_{x}+2 \bar{a}_{y}-6 \overline{a_{z}} \\
& =8 \overline{a_{x}}+2 \overline{a_{y}}+3 \overline{a_{z}} \text {. } \\
& |3 \bar{A}+\bar{B}|=\sqrt{64+4+9}=\sqrt{77} \mathrm{~m} \\
& \pm \bar{a}_{3 \bar{A}+\bar{B}}= \pm \frac{\left[8 \overline{a_{x}}+2 \overline{a_{y}}+3 \overline{a_{z}}\right]}{\sqrt{4} \sqrt{77}} \\
& \left.= \pm 0.9 \sqrt{9}+0.2279 \overline{a_{y}}+0.3418 \bar{a}_{z}\right]
\end{aligned}
$$

the uprt vetor parallel to $3 \bar{A}+\bar{B}$ is

$$
\pm\left[0.9117 \bar{a}_{x}+0.2279 \bar{a}_{y}+0.3618 \bar{a}_{z}\right]
$$

Example problem -5
if $\bar{A}=10 \overline{a_{x}}-4 \bar{a}_{y}+6 \bar{a}_{z}$ and $\bar{B}=2 \bar{a}_{x}+\overline{a_{y}}$, find a) the component of \bar{A} along \bar{a}_{y}.
b) the magnitede of $3 \bar{A}-\bar{B}$.
c) a unit vutor along $\bar{A}+2 \bar{B}$.

Solu':
a) Given

$$
\bar{A}=10 \overline{a_{x}}-4 \overline{a_{y}}+6 \overline{a_{y}}
$$

the componert of \bar{A} alorg a_{y} is $A y$

$$
\therefore \quad A y=-4
$$

b) the magnitide of $3 \bar{A}-\bar{B}$.

$$
\begin{aligned}
& 3 \bar{A}-\bar{B}=30 \overline{a_{x}}-12 \overline{a_{y}}+18 \bar{a}_{z}-2 \overline{a_{x}}-\overline{a_{y}} \\
& 3 \bar{A}-\bar{B}=28 \overline{a_{x}}-13 \bar{a}_{y}+18 \bar{a}_{z} \\
& |3 \bar{A}-\bar{B}|=\sqrt{28^{2}+13^{2}+18^{2}}=\sqrt{1277} \mathrm{~m} . \\
& |3 \bar{A}-\bar{B}|=\sqrt{1277} \quad \text { nuter. }
\end{aligned}
$$

c) a unit vutor along $\bar{A}+2 \bar{B}$. iD

$$
\begin{aligned}
& \vec{a}_{\bar{A}+2 \bar{B}}=\frac{\bar{A}+2 \bar{B}}{|\bar{A}+2 \bar{B}| .} \\
& \bar{A}+2 \bar{B}=10 \overline{a_{x}}-4 \bar{a}_{y}+6 \bar{a}_{z}+4 \overline{a_{x}}+2 \bar{a}_{y} \\
& \bar{A}+2 \bar{B}=14 \overline{a_{x}}-2 \bar{a}_{y}+\frac{\sigma^{\prime}}{a_{2}} \\
& |\bar{A}+2 \bar{B}|=\sqrt{14^{2}+Q^{2}+6^{2}} \leq \sqrt{236} \mathrm{~m} . \\
& \bar{a}_{\bar{A}+2 \bar{B}}=0.9113 \overline{a_{x}}-0.1302 \overline{a_{y}}+0.3906 \overline{a_{z}}
\end{aligned}
$$

Example problem,-6.
point P and Q are Located at $(0,2,4)$ and $(-3,1,5)$. Calculate
a. the position of valor $\overline{\gamma_{p}}$.
b. the distance viator from P to Q.
c. the distance bturen P and Q,
d. A viator parallel to $P Q$ with magnitude of 10 .
sole:-
a) the position of vector $\overline{\gamma_{p}}$
if is pirated line from origin to point

$$
O(0,0,0) \quad \overline{o p}=\overline{\gamma_{p}}=2 \overline{a_{y}}+4 \overline{a_{z}}
$$

b) the distance valor from p to Q.

$$
\overline{P Q}=-3 \overline{a_{x}}-\overline{a_{y}}+\overline{a_{z}}
$$

c). the distance beturen P and Q.

$$
\begin{aligned}
& |\overline{P Q}|=? \\
& \overline{P Q}=-3 \overline{a_{x}}-\overline{a_{y}}+\overline{a_{z}} \\
& |\overline{P Q}|=\sqrt{9+1+1}=\sqrt{11} \\
& \quad|\overline{P Q}|=\sqrt{4} \text { meter }
\end{aligned}
$$

d). A vator poralillil to $P Q$ with ragnitude

$$
\begin{aligned}
& \text { of } 10 \\
&= \pm 10 \frac{\left[-3 \overline{a_{\bar{P}}}\right.}{\left.\sqrt{a_{x}}-\bar{a}_{y}+\overline{a_{z}}\right]} \\
& \sqrt{11} \\
&= \pm 10 \overline{a_{\overline{P Q}}} \\
&|\overline{P Q}| \\
&\left.-9.04 \overline{a_{x}}-3.015 \overline{a_{y}}+3.015 \overline{a_{z}}\right]
\end{aligned}
$$

Example problem -7
Dept. of ECE, B.M.S.I.T \& M Given pointy $P(1,-3,5), Q(2,4,6)$ and $R(0,3,8)$ Find.
a. the position vectors of P and R.
b. The distance vector $\overline{\gamma_{Q B}}$.
c. the distance beturen Q and R.
Sole, a. the position vector of P and R are

b) ${ }^{1} 1, n i=$ the distance vutor $\bar{\gamma}_{Q_{R}}$

$$
\begin{aligned}
& \overline{\gamma_{Q R}}=\overline{\gamma_{B}}-\overline{\gamma_{Q}}=3 \overline{a_{y}}+8 \overline{a_{z}}-2 \overline{a_{a}}-4 \overline{a_{y}}-\overline{\sigma_{z}} \\
& \overline{\gamma_{Q R}}=-2 \overline{a_{x}}-\overline{a_{y}}+2 \overline{a_{z}}
\end{aligned}
$$

c) the distance beturen Q and R is.

$$
\begin{aligned}
& |\overline{Q R}|=2 \\
& \overline{Q R}=\overline{r_{Q R}}=-2 \overline{a_{x}}-\overline{a_{y}}+2 \overline{a_{z}} \\
& |\overline{Q B}|=\sqrt{4+4+4}=\sqrt{9} m \\
& |\overline{Q B}|=3 m
\end{aligned}
$$

3b. Product of Vutors (V) Vector Multi fleptaof)EFF., B.M.S.I.T \& M Like addition and subtraction one more operation: can be performed on vatoro, if in multiplication Vators can be multiplied by two ways:
i. Scalar (or) dot product.
ii:. Viator (or) Eromprodut.
i. Scalar (or) dot product.

Let $\bar{A}=A \bar{a}_{A}$ and $\bar{B}_{B_{1}}=B \bar{a}_{B}$, be two vatoro Shown in figure \quad, w

, then

$$
\begin{equation*}
\bar{A} \cdot \bar{B}=A B \cos \theta \tag{1}
\end{equation*}
$$

in called the dot prodert of vutorn \bar{A} and \bar{B}, where
θ is the angle between them.

In cquation (1).

$$
\begin{aligned}
& A=\text { magnitude of } \bar{A} \\
& B=\text { magnitude of } \bar{B}
\end{aligned}
$$

$\theta=$ angle bturen \bar{A} and \bar{B}.
Kay pointss.
i. dot prodert beturen any two vectorn muelth in Scalar.
ii. $\quad \bar{A} \cdot \bar{B}=\bar{B} \cdot \bar{A}$.
isi. \bar{A} and \bar{B} anepoollel

$$
\longrightarrow \bar{A} \text { thing } \theta=0
$$

iv, \bar{A} and B are perpendicular, ic $\theta=90^{\circ}$

$$
\left.\begin{array}{ll}
\uparrow \bar{A} & \bar{A} \cdot \bar{B}=A B \cos \left(90^{\circ}\right.
\end{array}\right)
$$

if two vutors are 1ε (oingt anglen to sach otherthen their dot product in zero.
V. \bar{A} and \bar{B} are opposite.

Dept. of ECE, B.M.S.I.T \& M

$$
\begin{gathered}
\rightarrow \bar{A} \quad \theta=\pi \text { (B) } 180^{\circ} \\
\vec{B} \cdot \bar{B}=A B \operatorname{cop}\left(180^{\circ}\right) \\
\bar{A} \cdot \bar{B}=-A B
\end{gathered}
$$

Vi. Dot produt of unit vectors

vir. Lounder a vator $\bar{A}=A_{x} \bar{a}_{x}+A_{y} \bar{a}_{y}+A_{z} \overline{a_{z}}$
,hend $\bar{B}=B_{x} \bar{a}_{x}+B_{y} \bar{a}_{y}+B_{z} \overline{a_{z}}$.
then

$$
\bar{A} \cdot \bar{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

Viii. Application of dot product.

Dept. of ECE, B.M.S.I.T \& M
The definition of dot product can be used to find Length of projation of one vector on Other. let \bar{F} and \bar{G} are the vatorn making angle θ as Shown in figure.

projection of G on \bar{F} is

$$
G \cos \theta=|\overline{P Q}| .
$$

the length $P Q \cdot G \cos \theta=\bar{G} \cdot \overline{a_{F}}$.
ix. Vectorpprofution of $\bar{G} \frac{\text { on } \bar{F} \text { is }}{\overline{P Q}}=$ mag x deration.

$$
\overline{P Q}=|\overline{P Q}| \overline{A_{P Q}}=(G \cos \theta) \cdot \overline{A_{P}}
$$

i.e $\quad \overline{P Q}=$ Length of projution x unit viator \bar{F}.

$$
\overline{P Q}=\left(\bar{G} \cdot \bar{a}_{F}\right) \overline{a_{F}}=(G \cos \theta) \cdot \bar{a}_{F}
$$

4s. Hy the Longth $\bar{F} \bar{G}$ - $\bar{G} \theta$ - Dept. of ECE, B.M.S.I.T \& M Mly. the Longth F on $\bar{G}=F \cos \theta=\bar{F} \cdot \bar{a}_{G}$. and vector projution of \bar{F} on \bar{G} is

$$
=(F \cos \theta) \overline{a_{G}}=\left(\bar{F} \cdot \overline{a_{G}}\right) \bar{a}_{G} .
$$

$$
x \cdot \bar{A} \cdot(\bar{B}+\bar{C})=\bar{A} \cdot \bar{B}+\bar{A} \cdot \bar{C} .
$$

xi. $\bar{A} \cdot \bar{A}=|\bar{A}|^{2}=A^{2}$.

Example problem. -8
Given vector $\bar{A}=5 \overline{a_{x}}+4 \bar{a} y+3 \overline{a_{z}}$ and

$$
\bar{B}=2 \overline{a_{n}}+3 \overline{a_{y}}+4 \overline{a_{z}} \text {. Find }
$$

$i)$ Dot product $\bar{A} \cdot \bar{B}$.
ii) angle between vatorn \bar{A} and \bar{B}.

Sole:-

$$
\text { i) } \begin{aligned}
\bar{A} \cdot \widehat{B}= & \left(5 \overline{a_{x}}+4 \overline{a_{y}}+3 \bar{a}_{z}\right) \cdot\left(2 \overline{a_{x}}+3 \bar{a}_{y}+4 \overline{a_{z}}\right) \\
\bar{A} \cdot \bar{B}= & 5(2)+4(3)+3(4) \\
& =10+12+12=34 \\
& \bar{A} \cdot \bar{B}=3 y_{y}
\end{aligned}
$$

ii. angle beturenimivern \bar{A} and \bar{B}

$$
\bar{A} \cdot \bar{B}=A-B \cos \theta
$$

$$
\begin{gathered}
A=|\bar{A}|=\sqrt{25+16+9}=\sqrt{50} \mathrm{~m} . \\
B=|\bar{B}|=\sqrt{4+9+16}=\sqrt{29} \mathrm{~m} . \\
\cos \theta=\frac{\bar{A} \cdot \vec{B}}{A B}=\frac{34}{\sqrt{50 \times \sqrt{29}}=0.8928} \\
\theta=\cos ^{-1}(0.8928)=26.7621^{\circ} \text { Page } 49 \\
\theta=26.7621^{\circ}
\end{gathered}
$$

$$
\overline{\overline{\text { Dept. of E\&CE., SVCE }}}
$$

Example problem -9
Dept. of ECE, B.M.S.I.T \& M
Given viator $\bar{A}=5 \overline{a_{x}}+4 \overline{a_{y}}+3 \bar{a}_{z}$ and
$\bar{B}=k \overline{a_{x}}+3 \overline{a_{y}}+4 \overline{a_{z}}$. Find the value of ' k '
Suchthat both the vators are right angles to
Each other.
Sole:-

$$
\begin{gathered}
\bar{A} 1^{\varepsilon} \bar{B} \Rightarrow(\bar{A} \cdot \bar{B}=0 \\
\left(5 \overline{a x}+4 \bar{a}+3 \overline{a_{z}}\right) \cdot\left(k \overline{a n}+3 a_{y}+4 \overline{a_{z}}\right)=0 \\
5 k+12+12=0 \\
k=-\frac{24}{5}=-4 \cdot 8 \\
K=-4 \cdot 8
\end{gathered}
$$

Example problem-10
Dept. of ECE, B.M.S.I.T \& M
Given vectorn $\bar{A}=3 \overline{a_{x}}+4 \overline{a_{y}}+\overline{a_{z}}$ and $\bar{B}=2 \overline{a_{y}}-5 \bar{a}_{z}$.

Solu':

$$
\begin{gathered}
\bar{A} \cdot \bar{B}=A B \cos \theta \\
\theta=\cos ^{-1}\left[\frac{\bar{A} \cdot \bar{B}}{A B}\right] \\
\bar{A} \cdot \bar{B}=\left[3 \overline{a_{n}}+4 \bar{a}_{y}+\bar{a}_{z}\right] \cdot\left[2 \bar{a}_{y}+\bar{c}_{3}\right] \\
=0+8-5=3 \\
\\
\bar{A} \cdot \bar{B}=3
\end{gathered}
$$

$$
\begin{aligned}
& |\bar{A}|=A=\sqrt{9+16+1}=\sqrt{26} \mathrm{~m} . \\
& |\bar{B}|=B \sqrt{4+25}=\sqrt{29} \mathrm{~m} . \\
& \theta=\cos ^{-1}\left[\frac{3}{\sqrt{26} \sqrt{29}}\right]=83.727^{\circ} \\
& \theta=83.73^{\circ}
\end{aligned}
$$

Example problem .-11
Dept. of ECE, B.M.S.I.T \& M
Given points $A(2,5,-1), B(3,-2,4)$ and

$$
G(-2,3.1) \text { find. }
$$

i. $\bar{R}_{A B} \cdot \bar{R}_{A C}$
ii. angle bitumen $\bar{R}_{A B} \notin \overline{R_{A C}}$.
iii. Length of projection of $\overline{R_{A B}}$ on $\overline{R_{A C}}$
iv. Vutor projution of $\overline{R_{A B}}$ on $\overline{R_{A C}}$:

Solve:-
i) dot product $\bar{R}_{A B^{C}} \bar{R}_{n}+C^{\prime \prime}$

$$
\overline{R_{A B}} \cdot \bar{R}_{A G}=20
$$

ied. "ingle blefuren $\overline{R_{A B}}$ and $\overline{R_{A C}}$ in

$$
\begin{aligned}
& \theta=\operatorname{Can}^{-1}\left[\frac{\overrightarrow{R_{A B}} \cdot \overline{R_{A C}}}{\left|\bar{R}_{A B}\right|\left|\overline{R_{A C}}\right|}\right] \\
& \left|\overrightarrow{R_{A B}}\right|=\sqrt{1+49+25}=\sqrt{75} \mathrm{~m}
\end{aligned}
$$

Dept. of E\&CE., SVCE

$$
\left|\overrightarrow{R_{A C}}\right|=\sqrt{16+4+4}=\sqrt{24} \mathrm{~m} .
$$

$$
\theta=\cos ^{-1}\left[\frac{20}{\sqrt{75} \sqrt{26}}\right]=\underline{61-874^{\rho}}
$$

$$
\theta=61.8744^{\circ}
$$

iii. Lungth of projution of $\overline{P_{A B}}$ on $\overline{F_{A C}}$ iD
iv. Vutor projutiontity $\bar{f}_{A B}$ on $\bar{R}_{A C}$ is

$$
\left|\widehat{F A B}_{A B}\right| \cos \theta \widehat{a}_{A C}
$$

$$
\frac{-4 \bar{a}_{x}-2 \bar{a}_{y}+2 \bar{a}_{z}}{\sqrt{24}}
$$

$$
=-\underline{\text {-3.33 } \overline{a_{x}}-1.667 \bar{a}_{y}+1.667 \overline{a_{z}}}
$$

$$
\begin{aligned}
& =\left|\bar{R}_{A B}\right| \operatorname{Cos} \theta \\
& =\sqrt{75} \cos \left(61.874^{\circ}\right)
\end{aligned}
$$

iii. Vector product (or) Iron product.

Dept. of ECE , B.M.S.I.T \& M

The tromp product between vatorn \bar{A} and \bar{B} is given by

$$
\begin{equation*}
\bar{A} \text { cion } \bar{B}=\bar{A} \times \bar{B}=A B \sin \theta \bar{a}_{n} \tag{1}
\end{equation*}
$$

The x sign doesnot mean simple multiplication, it is a cromproduct of two vectors. The term $a n$ indicates a unit vutor, thus A crone B mouitits in a vector.
$\left(+a_{n}\right)$

The magnitude of $\bar{A} \times \bar{B}$ is (un) $A \sin \theta$ and the diration Wi. is perpendicular to the plane Containing \bar{A} and \bar{B} and is in the sense of advance. of right handed screw rotated from the first vector (ie \bar{A}) to the Second veter (i.e \bar{B}) "then the smaller angle blefureen their positive diration.

When the order of Erom product in chant. OfECE, B.M.S.IT \& M instead of $\bar{A} \times \bar{B}$ if it is $\bar{B} \times \bar{A}$, then right handed screw will advance in downward direction that is $-\overline{a_{n}}$.

$$
\therefore \bar{A} \times \bar{B}=-\bar{B} \times \bar{A} .
$$

Application of Eromproduct:.
The Evemforodert of two vutorn \vec{A} and \vec{B}, written an $\bar{A} \times \bar{B}$ is a valor quantify where magnitude is the area of the parallel of form form by A and B and is in the dircition of advance of a right-handed Screw as A is turned into B.
 h-height (m)

Area of parallelgram in $|\bar{A} \times \bar{B}|=A B \sin \theta$ and area of triangle ingivenby
$\begin{aligned} & \text { Areoot } \\ & \text { triangle }\end{aligned}=\frac{1}{2}|\bar{A} \times \bar{B}|$.

$$
\begin{equation*}
=\frac{1}{2} \times \text { breadth } \times \text { height }= \tag{2}
\end{equation*}
$$

Cquating q^{e} (2) and φ^{4} (3)

$$
\frac{1}{2}|\bar{A} \times \bar{B}|=\frac{1}{2} \cdot|\bar{A}| \times h
$$

but in fig.

$$
\Rightarrow h=|\overline{3}| \sin \theta
$$

Qe (a) becomps

$$
\begin{aligned}
& \frac{1}{P}|\bar{A} \times \bar{B}|,|\overrightarrow{2}| \times|\bar{B}| \sin \theta \\
& \Rightarrow|\bar{A} \times \bar{B}|=|\bar{A}| \cdot|\bar{B}| \sin \theta
\end{aligned}
$$

and

$$
\bar{A} \times \bar{B}=|\bar{A}| \cdot|\bar{B}| \sin \theta \bar{a}_{n}
$$

Keyrote pointsi-

$$
\begin{aligned}
& i, \bar{A} \times \bar{B}=\bar{B} \sin \theta \cdot \bar{a}_{n} \\
& \text { ii. } \bar{A} \times \bar{B}=-\bar{B} \times \bar{A} . \\
& \text { any fwo }
\end{aligned}
$$

iii. Trom product of any fwo vatom rosulth in Scalar.
iv, of \widehat{A} and \bar{B} are parallel.
i.e $\theta=0 . \quad \sin (0)=0$.

$$
\therefore \bar{A} \times \bar{B}=0 \text {. }
$$

m $\bar{A} \times \bar{A}=0$.
v. Eram produt of unit mitors.

and

$$
\bar{a}_{x} \times \bar{a}_{x}=\bar{a}_{y} \times \bar{a}_{y}=\bar{a}_{z} \times \bar{a}_{z}=0 .
$$

bexaure $\theta=0$. Ne rotational field Exists.
vi. if given vatorn $\bar{A}=A_{x} \bar{a}_{x}+A_{y} \overline{a_{y}}+A_{z} \overline{a_{z}}$

$$
\text { and } \bar{B}=B_{x} \bar{a}_{x}+B_{y} \bar{a}_{y}+B_{z} \overline{a_{z}} \text {. }
$$

then
vii. when two vaterim $\overline{A B}$ and $\overline{A C}$ are given then area of painallilogram formed by two vatorn is

$$
\begin{gathered}
\rightarrow \text { Area of parallelogram }=\mid \overline{A B} \times \bar{A} \\
=\frac{1}{2}|\overrightarrow{A B} \times \overline{A C}| .
\end{gathered}
$$

viii. Basic proputics.

$$
\begin{aligned}
& \bar{A} \times \bar{B} \neq \bar{B} \times \bar{A} \\
& \bar{A} \times \bar{B}=-\bar{B} \times \bar{A} \\
& \bar{A} \times(\bar{B}+\bar{C})=\bar{A} \times \bar{B}+\bar{A} \times \bar{C} \\
& \bar{A} \times \bar{A}=0
\end{aligned}
$$

$$
\bar{A} \times \bar{A}=0
$$

Example Problem $\rightarrow 12$
Two Vectors are represented by

$$
\bar{A}=2 \bar{a}_{x}+2 \bar{a}_{y}+\widehat{o a_{z}} \text {. and }
$$

$$
\bar{B}=3 \overline{a_{x}}+4 \bar{a}_{y}-2 \bar{a}_{z} \quad \text { Find } \bar{A} \times \bar{B} \text {. }
$$

Show that $\bar{A} \times \bar{B}$ is at right angle to \bar{A}.
Sola: Given $\bar{A}=2 \overline{a_{x}}+2 \overline{a_{y}}+\theta \overline{a_{y}}$

$$
\begin{aligned}
& \bar{B}=3 \overline{a_{x}}+4 \overline{a_{y}}-2 \bar{a} \\
& \vec{A} \times \bar{B}=\left|\begin{array}{ccc}
\overline{a_{n}} & \widehat{a_{y}} & a_{z} \\
2 & a_{m} & 0 \\
3 & 4 & -2
\end{array}\right| \\
& =(-4-0) \bar{a}_{x}-(-4-0) \bar{a}_{y}+(8-6) \bar{a}_{z} \\
& \bar{A} \times \bar{B}=-4 \bar{a}_{x}+4 \overline{a_{y}}+2 \bar{a}_{z}
\end{aligned}
$$

To show $(\bar{A} \times \bar{B}) \perp^{\text {\& }} \bar{A}$
when

$$
\begin{aligned}
& \text { when }(\bar{A} \times \bar{B}) \cdot \bar{A}=0 . \\
& =\left[-4 \bar{a}_{x}+4 \bar{a}_{y}+2 \bar{a}_{z}\right] \cdot\left[2 \bar{a}_{x}+2 \bar{a}_{y}+0 \bar{a}_{z}\right]
\end{aligned}
$$

$$
=-8+8+0=0
$$

Example problem -13
Given vators $\vec{A}=3 \overline{a_{x}}+4 a^{2}+a_{3}$ and $\vec{B}=2 \overline{a_{y}}-5 \bar{a}_{z}$. Find the angle between \bar{A} and \bar{B}.
Sola:-

Dept. of E\&CE., SVCE

$$
\begin{align*}
& \theta=\operatorname{Sin}^{\sin }\left\{\frac{|\bar{A} \times \bar{B}|}{|\bar{A}||\bar{B}|}\right\}: \bar{A}=3 \overline{\sigma_{x}}+\mu \overline{a_{y}}+\overline{a_{z}} \\
& |\bar{A}|=\sqrt{9+16+1}=\sqrt{26} \mathrm{~m} \text {. } \\
& |\vec{B}|=\sqrt{4+25}=\sqrt{29} \mathrm{~m} . \\
& \bar{A} \times \bar{B}=\left|\begin{array}{ccc}
\overline{a_{n}} & \overline{a_{y}} & \overline{a_{z}} \\
3 & 4 & 1 \\
0 & 2 & -5
\end{array}\right|=-22 \overline{a_{x}}+15 \overline{a_{y}}+6 \overline{a_{z}} \\
& |\bar{A} \times \bar{B}|=\sqrt{22^{2}+15^{2}+6^{2}}=\sqrt{745} \tag{6}
\end{align*}
$$

Erample problem-14
if $\bar{A}=\overline{a_{n}}+3 \overline{a_{z}}$ and $\bar{B}=5 \bar{a}_{x}+2 \overline{a_{y}}-6 \overline{a_{3}}$.
Find $\theta_{A B}$. using i. dot frodut $i i$. cromprodut.
ien using dof protuet.
Solvi:

$$
\begin{array}{ll}
\frac{1}{A}=\overline{a_{x}}+3 \bar{a}_{2} ; & \bar{B}=5 \bar{a}_{x}+2 \bar{a}_{y}+6 \bar{a}_{z} \\
|\bar{A}|=\sqrt{1+9}=\sqrt{10} \mathrm{~m}: & |\bar{B}|=\sqrt{25+4+36} \\
\bar{A} \cdot \bar{B}=5-18=-13 & \mid \vec{B} \sqrt{65} \mathrm{~m} .
\end{array}
$$

$$
\bar{A} \cdot \bar{B}=A B \cos \theta_{A B}
$$

$$
\left.\theta_{A B}=C_{0} \hat{S}^{\prime \prime} \cdot \frac{\bar{A}}{|\vec{B}||\bar{B}|}\right]
$$

$$
\cos ^{-1}\left[\frac{-13}{\sqrt{10} \sqrt{65}}\right]=120.657^{\circ}
$$

$$
Q_{A B}=120.657^{\circ}
$$

ii. using Evonprotert

$$
\begin{aligned}
\theta_{A B} & =\sin ^{-1}\left[\frac{|\bar{A} \times \bar{B}|}{|\bar{A}| \cdot|\bar{B}|}\right] \\
(\bar{A} \times \bar{B}) & =\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
1 & 0 & 3 \\
5 & 2 & -6
\end{array}\right| \\
\bar{A} \times \bar{B} & =-6 \overline{a_{x}}-(-6-5) \overline{a_{y}}+2 \overline{a_{z}} \\
\bar{A} \times \bar{B} & =-6 \overline{a_{x}}+2\left(\overline{a_{y}}+2 \bar{a}_{3}\right. \\
|\bar{A} \times \bar{B}| & =\sqrt{6^{2}+1^{2}+2^{2}}=\sqrt{48}{ }^{4}
\end{aligned}
$$

$|\bar{A}|=\sqrt{10} \mathrm{~m}$ and $|\bar{B}| \sqrt{65} \mathrm{~m}$.

$$
\theta_{A B}=\sin ^{-1}\left[\frac{\left|\bar{A} \times B^{\prime}\right|}{|\bar{A}||\bar{B}|}\right]=\sin ^{-1}\left[\frac{\sqrt{481}}{\sqrt{10} \sqrt{65}}\right]
$$

$$
\begin{array}{r}
\theta_{A B}=120.657^{\circ}+\bar{A} \\
\theta_{A B}=59.342^{\circ}(\text { acute angle })<90^{\circ}
\end{array}
$$

Example froblem－ 15
three field quantitios are given by

$$
\begin{aligned}
& \text { hree ficld q} \\
& \bar{P}=2 \bar{a}_{x}-\overline{a_{z}}, \bar{Q}=2 \bar{a}_{x}-\frac{\overline{a_{y}}}{}+2 \overline{a_{z}} \text { and } \\
& \bar{R}=2 \bar{a}_{x}-3 \overline{a_{y}}+\bar{a}_{z} \text {. Dctermine }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{R}=2 \overline{a_{x}}-3 a_{y} 2 \\
& i \cdot(\bar{P}+\bar{B}) \times(\bar{P}-\bar{B}) .\left\{\begin{array}{ll}
\text { V. } & \bar{P} \times(\bar{Q} \times \bar{R}) . \\
\text { vi, a unit vath }
\end{array} .\right.
\end{aligned}
$$

$$
i ; \cdot \bar{Q} \cdot \bar{R}+\bar{P}
$$

iv． $\sin \theta_{Q R}$
V． $\bar{P} \times(\bar{Q} \times \bar{R})$ ．
Vi．a unit vater + to both \bar{M} and \bar{R} ．

$$
\because i, \bar{P} \cdot \bar{Q} \times \bar{R}
$$

Vii．为 416 m ponent of \bar{p} along θ

Solu：－

$$
\begin{aligned}
& \overline{\text { Dept. of E\&CE., SVCE }}=\left[2 \overline{a_{x}}-(-u-8) \overline{a_{y}}+4 \overline{a_{z}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { 禹 }(\bar{P}+\bar{\theta}) \times(\hat{P}-\bar{\theta}) \\
& =\bar{P} \times \vec{A}{ }^{2} \\
& =\bar{Q} \times \bar{P}+\bar{Q} \times \bar{P} \\
& =2 \bar{\phi} \times \bar{P} \text {. } \\
& 2 \bar{\theta} \times \bar{p}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
4 & -2 & 4 \\
2 & 0 & -1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& 2 \bar{B} \times \bar{P}=2 \overline{a_{x}}+12 \overline{a_{y}}+4 \overline{a_{z}} \\
& \therefore(\bar{P}+\bar{\phi}) \times(\bar{p}-\bar{Q})=2 \overline{a_{x}}+12 \overline{a_{y}}+4 \overline{a_{z}} \\
& \text { ii: } \bar{Q} \cdot \bar{R} \times \bar{P}=\text { ? } \\
& \bar{R} \times \bar{P}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
2 & -3 & 1 \\
2 & 0 & -1
\end{array}\right| \\
& =[+3-0] \overline{a_{x}}-\left[\bar{m}^{2}-2\right] \bar{a}_{y}+[0+6] \bar{a}_{z} \\
& \bar{R} \times \vec{p}=3 \overline{a_{n}}+4 \overline{a_{y}}+6 \overline{a_{z}} \\
& \bar{Q} \cdot(\bar{R}, \bar{P})^{\prime \prime}=\left(2 \overline{a_{x}}-\overline{a_{y}}+2 \bar{a}_{z}\right) \cdot\left(3 \bar{a}_{x}+4 \overline{a_{y}}+6 \overline{a_{z}}\right) \\
& =6-4+12=14 \\
& \bar{Q} \cdot(\bar{R} \times \bar{P})=14
\end{aligned}
$$

iii. $\bar{P} \cdot \bar{B} \times \bar{B}$

$$
\begin{aligned}
& \bar{B} \times \bar{B}=\left|\begin{array}{ccc}
\overline{a_{x}} & \bar{a}_{y} & \overline{a_{z}} \\
2 & -1 & 2 \\
2 & -3 & 1
\end{array}\right| \\
& =[-1+6] \overline{a_{x}}-[2-4] \overline{a_{y}}+[-6+2] \overline{a_{0}} \\
& \bar{B} \times \bar{B}=5 \overline{a_{x}}+2 \overline{a_{y}}-4 \overline{a_{z}} \\
& \bar{P} \circ(\bar{Q} \times \bar{B})=\left(2 \bar{a}_{x}-\bar{a}_{z}\right)\left(5 \bar{a}_{x}+2 \bar{a}_{y}-6 \bar{a}_{z}\right) \\
& =10+0+14=14 . \\
& \text {, } \\
& 4 \\
& \text { iV. }
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta_{\theta, h}=\frac{|\bar{\phi} \times \bar{R}|}{|\bar{\phi}||\bar{R}| .} \\
& \bar{Q} \times \bar{R}=5 \bar{a}_{x}+2 \bar{a}_{y}-4 \overline{a_{z}} \\
& |\bar{Q} \times \bar{B}|=\sqrt{25+4+16}=\sqrt{45} \text {. } \\
& |\bar{Q}|=\sqrt{4+1+4}=\sqrt{9}=3 \mathrm{~m} \\
& |\bar{B}|=\sqrt{4+9+1}=\sqrt{16} \mathrm{~m} \\
& \sin \theta_{Q_{R}}=\frac{\sqrt{45},}{3 \times 14}=0.59761
\end{aligned}
$$

$$
\begin{aligned}
& \text { V. } \quad M_{1} P \times(\bar{Q} \times \bar{B})=\text { ? } \\
& \bar{p}=2 \overline{a_{n}}-\overline{a_{z}} \text {, } \\
& \bar{Q} \times \bar{R}=5 \overline{a_{x}}+2 \overline{a_{y}}-4 \overline{a_{z}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{P} \times\left(\overline{Q_{0}} \times \bar{B}\right)=\left|\begin{array}{ccc}
\overline{a_{n}} & \overline{a_{y}} & \overline{a_{z}} \\
2 & 0 & -1 \\
5 & 2 & -4
\end{array}\right| \\
& =[+2] \overline{a_{x}}-[-8+5] \overline{a_{y}}+[4-0] \overline{a_{3}} \\
& \bar{P} \times(\bar{Q} \times \bar{R})=2 \overline{a_{x}}+3 \overline{a_{y}}+4 \overline{a_{z}} \overline{a_{2}}
\end{aligned}
$$

Vi. a unit vutor perpendiculanity both $\bar{\theta}$ and \bar{B} is

$$
\begin{aligned}
& \bar{Q} \times \bar{B}=\hat{\sin \theta} \overline{a_{n}}=|\overline{\operatorname{A}} \times \bar{R}| \overline{a_{n}} \\
& \bar{a}_{n} \uparrow \underset{\rightarrow}{\bar{\theta} \times \bar{R}} \bar{R} \\
& \bar{a}_{n}= \pm \frac{\left[5 \bar{a}_{n}+2 \bar{a}_{y}-4 \bar{a}_{z}\right]}{\sqrt{25+4+16}} \\
& \overline{a_{n}}= \pm\left[0.745 \bar{a}_{x}+0.298 \bar{a}_{y}-0.596 \bar{a}_{z}\right]
\end{aligned}
$$

vii. The component of \bar{P} along \bar{Q} is

$$
\begin{aligned}
& =p \cos \theta_{P Q} \overline{A_{Q}} \\
& =\left(\bar{P} \cdot \overline{a_{\theta}}\right) \overline{a_{B}}=\bar{P} \cdot \frac{\bar{Q}}{|\bar{B}|}\left(\frac{\bar{Q}}{\left|\overline{Q_{A}}\right|}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{9}\left[2 \overline{a_{x}}+a_{y} y+2 \bar{a}_{z}\right] \\
& p \cos \theta_{p B} \bar{a}_{a_{n}}, \frac{1}{2}
\end{aligned}
$$

Example problem - 16
Dept. of ECE, B.M.S.I.T \& M
Let $\bar{E}=3 \overline{a_{y}}+4 \overline{a_{z}}$ and $\bar{F}=4 \overline{a_{x}}-10 \bar{a}_{y}+5 \overline{a_{z}}$.
a. Find the Component of \bar{E} along \bar{P}.
b. Deternine a cenit vator perpindiculan to both \bar{F} and \bar{F}.

Solvi:-
a) component of \bar{E} along \bar{R}, $I_{i} \operatorname{con} \theta_{E F} \overline{a_{F}}$.

$$
\begin{aligned}
& F \cos \theta_{E F} \overline{a_{R}}=\frac{(E \circ \bar{F}) \sqrt{4}}{(\bar{T})^{2}} \\
& =\frac{[30+20]\left[4 \overline{a_{x}}-10 \overline{a_{y}}+5 \bar{a}_{3}\right]}{[16+100+25]} \\
& =\frac{-10}{141}\left[4 \bar{a}_{x}-10 \bar{a}_{y}+5 \bar{a}_{z}\right] \\
& E \cos \theta_{E_{F}} \bar{a}_{F}=-0.283 \bar{a}_{x}+0.70 \overline{a_{y}}-0.354 \bar{a}_{z}
\end{aligned}
$$

b. a unit vator parpendiculan to both E and \bar{F} is $\pm \overline{a_{n}}$

$$
\begin{aligned}
& \bar{E} \times \bar{F}=F F \sin \theta \overline{a_{n}} \\
& \bar{E} \times \bar{F}=|\bar{E} \times \bar{F}| \overline{a_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& E \times \bar{F}=\left|\begin{array}{ccc}
\overline{a_{n}} & \overline{a_{y}} & \overline{a_{1}} \\
0 & 3 & 4 \\
4 & -\overline{0} & 5
\end{array}\right| \\
& {[15+40] \bar{a}_{x}-[0-16] \overline{a_{y}}+[0-12] \overline{a_{z}}} \\
& \bar{E} \times \bar{F}=55 \overline{a_{n}}+16 \overline{a_{y}}-12 \overline{a_{z}} \\
& |E \times \bar{F}|=\sqrt{3425} . \\
& \bar{a}_{n}= \pm \frac{55 \overline{a_{n}}+16 \overline{a_{y}}-12 \overline{a_{z}}}{\sqrt{34 a_{5}}} \\
& = \pm\left[0.9398 \bar{a}_{x}+0.2734 \bar{a}_{y}-0.205 \bar{a}_{z}\right]
\end{aligned}
$$

Example problem - 17
if $\bar{A}=4 \overline{a_{x}}-2 \bar{a}_{y}+6 \bar{a}_{z}$ and $\bar{B}=12 \bar{a}_{x}+18 \bar{a}_{y}-8 \bar{a}_{z}$. determine.
a. $\bar{A}-3 \bar{B}$.
b. $(2 \bar{A}+5 \bar{B}) /|\bar{B}|$.
c. $\bar{a}_{x} \times \bar{A}$.
d. $\left(\bar{B} \times \bar{a}_{x}\right) \cdot \bar{a}_{y}$

Solu:- a. $\bar{A}=4 \overline{a_{n}}-2 \overline{a_{y}}+6 \overline{a_{1}} \bar{a}_{\text {m }}$

$$
\begin{aligned}
& \bar{B}=12 \bar{a}_{x}+18 \overline{a_{y}}+8 \overline{a_{3}} . \\
& \bar{A}-3 \bar{B}=4 \bar{a}_{x}-2 \bar{a}_{1}+6 \overline{a_{z}}-36 \overline{a_{x}}-54 \overline{a_{y}}+24 \overline{a_{z}} \\
& \text { 解 } \\
& \bar{A}-3 \bar{B}=-32 \bar{a}_{x}-56 \bar{a}_{y}+30 \overline{a_{y}} \\
& b \cdot 2 \bar{a}+5 \bar{B}=8 \overline{a_{x}}-4 \overline{a_{y}}+12 \overline{a_{z}}+60 \overline{a_{x}}+90 \overline{a_{y}}-40 \bar{a} \\
& 2 \bar{A}+5 \bar{B}=68 \overline{a_{x}}+86 \overline{a_{y}}-28 \overline{a_{z}} \\
& |\bar{B}|=\sqrt{12^{2}+18^{2}+8^{2}}=\sqrt{532} \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 \bar{A}+5 \bar{B}}{|\bar{B}|} & =\frac{68 \overline{a_{x}}+86 \overline{a_{y}}-28 \overline{a_{z}}}{\sqrt{532}} \\
& =2.948 \bar{a}_{x}+3.728 \overline{a_{y}}-1.214 \overline{a_{z}}
\end{aligned}
$$

$$
\text { c) } \left.\begin{array}{rl}
\overline{a_{x}} & \times \bar{A}=\overline{a_{x}} \times\left(u \overline{a_{x}}-2 \overline{a_{y}}+66^{0} \bar{a}^{3}\right.
\end{array}\right)
$$

$$
x=-6 \overline{a_{y}}-2 \overline{a_{z}}
$$

$$
\begin{aligned}
&d)\left(\bar{B} \times \bar{a}_{x}\right) \cdot \bar{a}_{y} \\
&= 12\left(\bar{a}_{x} \times \overline{a_{x}}\right)+18\left(\overline{a_{y}} \times \overline{a_{x}}\right)-8\left(\overline{a_{z}} \times \overline{a_{x}}\right) \\
&=18\left(-\overline{a_{z}}\right)-8\left(+\overline{a_{y}}\right) \\
&=-8 \overline{a_{y}}-18 \overline{a_{z}}
\end{aligned}
$$

Dept. of E\&CE., SVCE

$$
\begin{aligned}
& \left.\overline{\mathrm{BCE}, \mathrm{SVCE}} \times \overline{a_{x}}\right) \cdot \overline{a_{y}}=\left(-8 \bar{a}_{y}+8 \overline{a_{z}}\right) \cdot \overline{a_{y}}=-8 \\
& \left(\bar{B} \times \overline{a_{x}}\right) \cdot \overline{a_{y}}=-8
\end{aligned}
$$

Eximple problem - 18
Dept. of ECE, B.M.S.I.T \& M
Determine the dot produt, Eromprodut and angle between $\bar{p}=2 \bar{a}_{x}-6 \bar{a}_{y}+5 \overline{a_{z}}$ and

$$
\bar{\phi}=3 \overline{a_{y}}+\overline{a_{z}}
$$

Solni: i. $\bar{P} \cdot \bar{Q}=\left(2 \bar{a}_{x}-6 \overline{a_{y}}+5 \bar{a}_{z}\right) \cdot\left(3 \bar{a}_{y}+\bar{a}_{z}\right)$

$$
=0-18+5=-13
$$

dotprodut

$$
\begin{array}{ll}
\bar{P} \cdot \bar{\theta}=-13
\end{array} ; \quad|\bar{P}|=\sqrt{6,36+25}=\sqrt{65} \mathrm{~m} .
$$

Q

$$
\begin{aligned}
& \text { iei. Eromprodurt } \\
& \bar{P} \times \bar{Q}=\left|\begin{array}{cc}
\overline{a_{x}} \sqrt{a_{y}} & \overline{a_{3}} \\
\theta_{1}-6 & 5 \\
a_{1} & 3 \\
0 & 1
\end{array}\right| \\
& =[-6-15] \bar{a}_{x}-[2-0] \bar{a}_{y}+[6-0] \bar{a}_{z} \\
& \bar{P} \times \bar{Q}=-21 \bar{a}_{x}-2 \bar{a}_{y}+6 \bar{a}_{z} \\
& \theta_{P Q}=\cos ^{-1}\left[\frac{\bar{P} \cdot \bar{\theta}}{|\bar{P}||\bar{\theta}|}\right]=\cos ^{-1}\left[\frac{-13}{\sqrt{65 \sqrt{10}}}\right]=120.65^{\circ} \\
& \overline{\text { Dept. of E\&CE, SVCE }} \theta_{P Q}=120.65^{\circ}
\end{aligned}
$$

Example problem-19
Find the area of the parallelogram formed by the vators $\bar{D}=4 \overline{a_{x}}-\overline{a_{y}}+5 \overline{a_{z}}$ and

$$
\bar{E}=-\overline{a_{x}}+2 \overline{a_{y}}+3 \overline{a_{z}}
$$

Solu: Areaf parallelogram ingiven by

$$
\begin{aligned}
& |\bar{D} \times \bar{E}| \\
& \overline{\text { D }} \times \bar{E}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{2}} & a_{3} \\
4 & 4 a_{n} & 5 \\
a_{1} & 2 & 3
\end{array}\right| \\
& \text { wiln }[-3-10] \bar{a}_{x}-[12+5] \bar{a}_{y}+[8-1] \overline{a_{z}} \\
& \frac{a_{0}}{D} \times \bar{E}=-13 \overline{a_{x}}-17 \overline{a_{y}}+7 \overline{a_{z}} \text {. } \\
& |\bar{D} X E|=\sqrt{13^{2}+17^{2}+7^{2}} \\
& |\bar{D} \times E|=\sqrt{507} \mathrm{~m}^{2}
\end{aligned}
$$

Example problem -20
if $\bar{A}=4 \overline{a_{x}}-6 \bar{a}_{y}+\bar{a}_{z}$ and $\bar{B}=2 \overline{a_{x}}+5 \overline{a_{z}}$ find
a) $\bar{A} \cdot \bar{B}+2|\bar{B}|^{2}$
b) Aunit valor $1=$ to both \bar{A} and \bar{B}.

Solus.'.

$$
\begin{aligned}
& \text { a) } \bar{A} \cdot \bar{B}+2|\bar{B}|^{2}=\text { ? } \\
& \bar{A} \cdot \bar{B}=\left[4 \bar{a}_{n}-6 \bar{a}_{y}+\bar{a}_{z}\right] \cdot\left[2 \bar{a}_{1}+5 \bar{a}_{z}\right] \\
& =8+0+5=13 \\
& \bar{A} \cdot \bar{B}=13 \\
& \bar{B}=2 \bar{a}_{x}+5, \\
& \text { " }|\bar{B}|^{2}=4+25=99 \text {. } \\
& \bar{A} \cdot \bar{B}+2(\bar{B})^{2}=13+2(29)=71 \text {. } \\
& \bar{A} \cdot \bar{B}+2|\bar{B}|^{2}=71
\end{aligned}
$$

b) A unit vutor \perp^{ε} to both \bar{A} and \bar{B}.

$$
\begin{aligned}
& \bar{a}_{n}= \pm \frac{\bar{A} \times \bar{B}}{|\bar{A} \times \bar{B}|} \\
& \bar{A} \times \bar{B}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
4 & -6 & 1 \\
2 & 0 & 5
\end{array}\right| \\
& =[-30-0] \bar{a}_{x}-\left[2 a^{2}+\overline{a_{2}} \cdot \overline{a_{y}}+[0+12] \overline{a_{z}}\right. \\
& \bar{A} \times \bar{B}=-30 \bar{a}_{x} \pi_{1} \bar{a}_{y}+12 \bar{a}_{z} \\
& |\bar{A} \times \bar{B}| \sqrt[2]{30^{2}+18^{2}+12^{2}}=\sqrt{1368} \\
& a_{n}= \pm \frac{\left[-30 \bar{a}_{x}-18 \overline{a_{y}}+12 \bar{a}_{z}\right]}{\sqrt{1368}} \\
& \bar{a}_{n}= \pm\left[-0.8111 \bar{a}_{x}-0.4867 \bar{a}_{y}+0.3244 \bar{a}_{z}\right]
\end{aligned}
$$

Example problem -21
Given $\bar{A}=-6 \overline{a_{x}}+3 \overline{a_{y}}+2 \overline{a_{z}}$. the pirojution of \bar{A} along \bar{a}_{y} is $?$
Sols::

$$
\bar{A} \cdot \overline{a_{y}}=A y=3
$$

$$
o p=A \cos \theta=\bar{A} \cdot \overline{a_{1}}{ }_{0}=A_{y}=3
$$

Example problem -22
The component of $\sigma_{i}+2 a_{y}-3 \overline{a_{z}}$ along

$$
3 \bar{a}-4 a_{n} \text { ? }
$$

solus

$$
\text { let } y=6 \overline{a_{x}}+2 \overline{a_{y}}-3 \overline{a_{z}}
$$

$$
\underbrace{a_{0}+\bar{B}, \bar{B}=3 \overline{a_{x}}-4 a_{y}}_{0}
$$

the component of \bar{A} along \bar{B} in $=A \cos \theta$

$$
=\bar{A} \cdot \overline{a_{B}}
$$

$$
\begin{gathered}
\bar{A} \cdot \bar{a}_{B}=\frac{\bar{A} \cdot \bar{B}}{|\bar{B}|}=\frac{\left[6 \bar{a}_{x}+2 \bar{a}_{y}-3 \overline{a_{2}}\right] \cdot\left[3 \bar{a}_{n}-4 \bar{a}_{y}\right]}{\sqrt{9+16}} \\
=\frac{18-8}{\sqrt{25}}=\frac{10}{5}=2 \\
A \cos \theta=\bar{A} \cdot \bar{a}_{B}=2
\end{gathered}
$$

Example problem -23
Given that $\bar{A}=\overline{a_{x}}+2, \overline{a_{y}}+\overline{a_{z}}$ and

$$
\bar{B}=\alpha \overline{a_{n}}+a_{1}+\overline{a_{2}} \text {. if } \bar{A} \text { and } \bar{B} \text { are }
$$

normal to coth other, α is ?
Solve. $\quad \bar{A} \cdot \bar{B}=0 \quad$ when. $\bar{A} \perp^{r} \bar{B}$.

$$
\begin{aligned}
{ }^{2} \bar{A} \cdot \bar{B}= & \left(\bar{a}_{x}+\alpha \overline{a_{y}}+\bar{a}_{z}\right) \cdot\left(\alpha \bar{a}_{x}+\bar{a}_{y}+\bar{a}_{z}\right) \\
\bar{A} \cdot \bar{B}= & {[\alpha+\alpha+1]=0 } \\
& 2 \alpha+1=0 \\
& \alpha=-1 / 2
\end{aligned}
$$

Example problem -24
let $\bar{F}=2 \overline{a_{x}}-6 \overline{a_{y}}+10 \bar{a}_{z}$ and
$\bar{G}=\overline{a_{x}}+G_{y} \bar{a}_{y}+5 \bar{a}_{z}$. if \bar{F} and \bar{G} frave same unit vector then Gy is?
solu:- given $\bar{a}_{F}=\bar{a}_{G}$

$$
\frac{2 \overline{a_{x}}-6 \overline{a_{y}}+10 \overline{a_{z}}}{\sqrt{4+36+100}}=\frac{\overline{a_{x}}+\bar{c}_{y} \bar{a}_{y}+5 \bar{a}_{z}}{\sqrt{a_{y}} G_{y}^{2}+25}
$$

Equating \bar{a}_{y} cotriponton on bothside.

Squere on bothside

$$
\begin{aligned}
& \frac{36}{140}=\frac{G_{y}^{2}}{G_{y}^{2}+26} \\
& 36 G_{y}^{2}+936=140 G_{y}^{2}
\end{aligned}
$$

$$
\overline{\text { Dept of Fick. SCCE }} \quad 104 G y^{2}=936
$$

$$
\begin{aligned}
& G_{y}^{2}=\frac{936}{104} \\
& G_{y}^{2}=9 \\
& G_{y}= \pm \sqrt{9}= \pm 3 \\
& G_{y}= \pm 3
\end{aligned}
$$

but
\Rightarrow the value G_{y}, for a wind $\bar{\sigma}$ have same vator in
i.e $x_{y} y=-3$

Exampleproblem 25
A triangle in defined by the three points
$A(2,-5,1), B(-3,2,4)$ and $C(0,3,1)$ Find.

$$
i, \bar{R}_{B C} \times{\overline{R_{B A}}}
$$

ii. the Area of the triangle.
iii. a unit valor 1^{2} to the plane which the triangle in Located.
Solve-

$$
\begin{aligned}
& =i=\overline{R_{B C}} \times \overline{R_{B A}}=2 \overline{a_{n}} \\
& \overline{R_{B C}}=3 \overline{a_{x}}+\overline{a_{y}}+3 \overline{a_{z}} \\
& \overline{R_{B A}}=5 \overline{a_{x}}, \overline{a_{y}}-3 \overline{a_{z}} \\
& =\left[\left.\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
3 & 1 & -3 \\
5 & -7 & -3
\end{array} \right\rvert\,\right. \\
& \overline{R_{B C}} \times \overline{R_{B A}}=-24 \overline{a_{x}}-6 \overline{a_{y}}-26 \overline{a_{z}}
\end{aligned}
$$

ii. Area of the triangle $=\frac{1}{2}\left|\overrightarrow{R_{B C}} \times \overrightarrow{R_{B A}}\right|$

$$
\begin{aligned}
& \overline{R_{B C}} \times \overline{R_{B A}}=-24 \overline{a_{x}}-6 \overline{a_{y}}-26 \overline{a_{z}} \\
& \left|\overline{R_{B C}} \times \overline{R_{B A}}\right|=\sqrt{24^{2}+6^{2}+26^{2}}=\sqrt{1248}
\end{aligned}
$$

Area of $\Delta^{L}=\frac{1}{2} \sqrt{1288}=17444 \mathrm{~m}^{2}$
iii. A unit viator 11^{2} tote plane in which the triangle is Located frothing but a unit valor in the direction if Cram product.

$$
\begin{aligned}
& \frac{\bar{a}_{n} \times \bar{R}_{A C}}{\bar{a}_{n}}= \pm \frac{\left[-24 \bar{a}_{x}-6 \bar{a}_{y}-2 \overline{5}\right]}{\sqrt{24^{2}+6^{2}+26^{2}}} \times \\
& = \pm \frac{\left(-24 \bar{R}_{x}-6 \bar{R}_{A C}\right)}{\sqrt{\left.2 a_{y}-26 \bar{a}_{3}\right]}} \\
& \bar{a}_{n}= \pm\left[0.669 \bar{a}_{x}+0.1672 \overline{a_{y}}+0.7265 \overline{a_{z}}\right]
\end{aligned}
$$

Example problem -26
Showthat $\bar{A}=4 \overline{a_{x}}-2 \overline{a_{y}}-\overline{a_{z}}$ and $\bar{B}=\overline{a_{x}}+4 \overline{a_{y}}-4 \overline{a_{2}}$ are perpindiculan by Eonsidering their dot product.

$$
(4 m) \cdot \operatorname{Jan} 2014\left(\operatorname{te}^{t} E\right)
$$

Solvi- If \bar{A} and \bar{B} cone pupurdiulan fo reuch othen then $\bar{A} \cdot \bar{B}=0$

$$
\begin{aligned}
& \bar{A} \cdot \bar{B}=\left[4 \overline{a_{n}},-2 a_{y}-\overline{a_{z}}\right] \cdot\left[\overline{a_{x}}+4 \overline{a_{y}}-4 \overline{a_{z}}\right] \\
& \frac{4-8+4=-0}{\bar{A} \cdot \bar{B}=0}
\end{aligned}
$$

$$
\therefore \quad \bar{A} \perp^{2} \bar{B}
$$

Kuynote points

1. Scalar Tripple produt? -

$$
\begin{aligned}
& \bar{A} \cdot(\bar{B} \times \bar{C})=\bar{B} \cdot(\bar{C} \times \bar{A})=\bar{C} \cdot(\bar{A} \times \bar{B}) \\
& =\left|\begin{array}{ccc}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
\end{aligned}
$$

ii. Vutor tripple prodert:.

$$
\begin{aligned}
& \bar{A} \times(\bar{B} \times \bar{C})=(\bar{B} \cdot \bar{C})-\bar{C}(\bar{A} \cdot \bar{B}) \\
& {[B A C-C A B \text { rule }]}
\end{aligned}
$$

4: The DEL OPERATDR (V) Spatial OpRe日teffece, B.M.S.I.T \& M
The $\nabla(\mathrm{del})$ opcrator in Cartesion Cordinate Sytem in defined as

$$
\nabla=\frac{\partial}{\partial x} \overline{a_{n}}+\frac{\partial}{\partial y} \overline{a_{y}}+\frac{\partial}{\partial z} \overline{a_{z}} ; m^{-1}(\theta) / m \text {. }
$$

* it in a vector differential operator.
* del can oparateon a Scalar an weltity vator.
* when delopercter on a Scalcop taperation is called gradicnt.
* when it operates on vutor, it can operate two ways, ather "dot produt (or) crom produt. the operationsine called as divergence and Eurl respectively.

Del opirator (V)
雨 $\operatorname{cotar}(\phi)$
$\operatorname{vector}(\bar{A})$
i. $\quad \nabla \phi$ (Gradient)
[it in a vitor]
dotprout
Cromprodut
ii. $\bar{\nabla} \cdot \bar{A}$ (Divugnal) [it inascalar] [itisa vator]

* Divergence of a gradient $\nabla \cdot(\sigma \phi)=\sigma^{2} \phi$ called Laplacian of a Scalar ϕ.

Has; Concept of Gradient
Dept. of ECE, B.M.S.I.T \& M
$*$ The gradient of a scalar field ϕ in a vector that. reprusintn both the magnitude and the direction of the maximum space rate of increase of ϕ. * wetien G operates on a scalar the operation called os Gradient.

* Gradient result's in vator.
* if ϕ is a scalar quantify union

$$
\nabla \phi=\text { gradient of } \phi
$$

thus

$$
\left.\nabla \phi=\frac{\partial \phi}{\partial x_{n}} \overline{\omega_{x}}+\frac{\partial \phi}{\partial y} \bar{a}_{y}+\frac{\partial \phi}{\partial z} \bar{a}_{z}\right]=\text { vector }
$$

grad operation routs in valor.

Example problem -27
Find the gradient of funtion ϕ

$$
\begin{aligned}
& i>\phi=\operatorname{conth} x y \\
& \text { ii } \phi=x^{2}+y^{2}+z^{2}
\end{aligned}
$$

Solu:-
$\xrightarrow[i]{ }$

$$
\begin{aligned}
& \text { Solu:- } \nabla \phi=\frac{\partial \phi}{\partial x} \overline{a_{x}}+\frac{\partial \phi}{\partial y} \bar{a}_{y}+\frac{\partial \phi}{\partial z} \overline{a_{z}} \\
& \nabla \phi=\frac{\partial}{\partial x}[\operatorname{conh} x y z] \overline{a_{2}}+\frac{\partial}{\partial y}\left[\cosh x, \bar{a}_{1}\right]+\frac{\partial}{\partial z}[\operatorname{conh} x y z] \overline{a_{z}}
\end{aligned}
$$

$$
\sigma \phi=y z \sinh x_{y} z \bar{a}_{n}+x z \operatorname{Sinh} x z \overline{a_{y}}
$$

(1) $+x_{y} \sinh x y z \bar{a}_{z}$

$$
\nabla \phi=\sin _{\sin ^{2}} \nabla z z\left[y z \overline{a_{x}}+x z \overline{a_{y}}+x y \bar{a}_{z}\right]
$$

pé.

$$
\begin{aligned}
& \nabla x^{2}=\frac{\partial}{\partial x}\left[x^{2}+y^{2}+z^{2}\right] \overline{a_{x}}+\frac{\partial}{\partial y}\left[x^{2}+y^{2}+z^{2}\right] \overline{a_{y}} \\
& \quad+\frac{\partial}{\partial z}\left[x^{2}+y^{2}+z^{2}\right] \overline{a_{z}} \\
& \nabla \phi=2 x \overline{a_{x}}+2 y \overline{a_{y}}+2 z \overline{a_{z}} \\
& \overline{\text { Dept. of ELCE. SVCE }} \\
& \square \phi=2\left[x \overline{a_{x}}+y \bar{a}_{y}+3 \bar{a}_{z}\right]
\end{aligned}
$$

Solved Exedomple - 28
if $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$. Find
$\nabla \phi$ at the point $(1,-3,-1)$.

$$
\begin{aligned}
\nabla \phi= & \frac{\partial \phi}{\partial x} \overline{a_{x}}+\frac{\partial \phi}{\partial y} \overline{a_{y}}+\frac{\partial \phi}{\partial z} \overline{a_{z}} \\
\nabla \phi= & \frac{\partial}{\partial x}\left[3 x^{2} y-y^{3} z^{2}\right] \overline{a_{x}}+\frac{\partial}{\partial y}\left[3 x^{2} y-y^{3} z^{2}\right] \bar{a}_{y} \\
& +\frac{\partial}{\partial z}\left[3 x^{2} y-y^{3} z^{2}\right] \overline{a_{y}} \\
\nabla \phi= & 6 x y \overline{a_{x}}+\left(3 x^{2} z^{2} z^{2}\right) \overline{a_{y}}-2 y^{3} z \overline{a_{z}}
\end{aligned}
$$

$\boxtimes \phi$ at point $p((1,-2,-1)$

$$
\begin{aligned}
& \nabla \phi \\
& \nabla \phi_{p_{1}}=\hat{a}_{1}(1)^{(}(-2) \overline{a_{x}}+\left[3(1)^{2}-3(-2)^{2}(-1)^{2}\right] \bar{a}_{y} \\
& \square \nabla \phi_{p}=-12 \overline{a_{x}}-12 \bar{a}_{y}-16 \bar{a}_{z} \\
& a_{3}
\end{aligned}
$$

Solved example - 29
of following scalar ficlds.
$i \cdot V=e^{-2} \sin (2 x) \cosh y$.
iii. $\quad U=x^{2} y+x y z$.
iiii: $\omega=x^{2} y^{2}+x y z$.
Solv:- $i^{i} \cdot \bar{G}=\frac{\partial v}{\partial x} \overline{a_{x}}+\frac{\partial v}{\partial y} \bar{a}_{y}+\frac{\partial y}{\partial z} z_{z}$.

$$
\begin{aligned}
& \nabla v=\frac{\partial}{\partial x}\left[e^{-2} \sin (2 x) \text { avithty }\right] \overline{a_{x}}+\frac{\partial}{\partial y}\left[e^{-2} \sin (2 x) \operatorname{con} y\right] \bar{a} y \\
& +\frac{\partial}{\partial \dot{j}}[-2 \sin (2 x) \cosh y] a_{2} \\
& \nabla V=2 e^{-z} \operatorname{con}^{2}(2 x) \cosh \overline{a_{x}}+e^{-z} \sin (2 x) \operatorname{sinhy} \bar{a}_{y} \\
& -e^{-2} \sin (2 x) \cosh y \vec{a}_{g}
\end{aligned}
$$

efe.

$$
\begin{aligned}
& \text { uis }=x^{2} y+x y z \\
& \nabla u=\frac{\partial U}{\partial x} \overline{a_{x}}+\frac{\partial u}{\partial y} \overline{a_{y}}+\frac{\partial U}{\partial z} \overline{a_{z}} \\
& =\frac{\partial}{\partial x}\left[x^{2} y+x y z\right] \overline{a_{x}}+\frac{\partial}{\partial y}\left[x^{2} y+x y z\right] \overline{a_{y}}
\end{aligned}
$$

Dept. of E\&CE., SVCE

$$
+\frac{\partial}{\partial z}\left[x^{2} y+x y \sqrt{2}\right] \overline{a_{3}}{ }^{\text {mem }} 90
$$

$$
\begin{aligned}
& =[2 x y+y 3] \overline{a_{x}}+\left[x^{2}+x z\right] \overline{a_{y}}+\left[(x y) \overline{a_{z}}\right. \\
& \left.\nabla U=y(2 x+z) \overline{a_{x}}+x(x+z) \overline{a_{y}}+x y \overline{a_{z}}\right]
\end{aligned}
$$

iie. \quad al $=x^{2} y^{2}+x y z$.

$$
\begin{aligned}
& \nabla \omega=\frac{\partial \omega}{\partial x} \overline{a_{x}}+\frac{\partial \omega}{\partial y} \overline{a_{y}}+\frac{\partial u}{a_{z}} \\
& \nabla \omega=\frac{\partial}{\partial x}\left[x^{2} y^{2}+x y z\right], \frac{\partial}{\partial y}\left[x^{2} y^{2}+x y z\right] a_{y} \\
& +\frac{a}{4}\left[x^{2} y^{2}+x y z\right] \overline{a_{z}} \\
& \nabla \omega=\min ^{2}+y z \overline{a_{x}}+\left(2 x^{2} y+x z\right) \overline{a_{y}} \\
& +x y \overline{a_{z}}
\end{aligned}
$$

Fundamental propatios of Gradient ut U and V are the Scalar fields.

$$
\text { i. } \nabla(v+u)=\nabla v+\nabla u \text {. }
$$

is: $\nabla(u v)=u \nabla v+v \nabla u$.
ii ii: $\nabla\left(\frac{v}{u}\right)=\frac{u \nabla v-v \nabla u}{u^{2}}$
iv. $\quad \nabla v^{n}=n v^{n-1} \nabla v$
v. The magnitude of $\nabla \vee$ en equals the maximum rate of change per unit distance.
vi. ∇V points intine direction of the maximum rate of charge in V.
nb. Divergence $(\nabla \cdot \bar{A})$
when ∇ operates on a valor \bar{A}, then $\nabla \cdot \bar{A}$ is called as divergence of \bar{A}.

$$
\begin{aligned}
& \text { if } \bar{A}=A_{x} \overline{a_{x}}+A_{y} \vec{a}_{y}+A_{z} \overline{a_{z}} \text {, then } \\
& \text { divergence of } \bar{A}=\operatorname{div} \bar{A}=\nabla \cdot \overline{\text { a. }} \\
& =\left[\frac{\partial}{\partial x} \bar{a}_{x}+\frac{\partial}{\partial y} \bar{a}_{y}+\frac{\partial \hat{a} \bar{a}_{a}}{\bar{\partial}} \cdot\left[A_{a} \overline{a_{x}}+A_{y} \bar{a}_{y}+A_{z} \bar{a}_{z}\right]\right.
\end{aligned}
$$

thus

$$
\begin{aligned}
& \text { hus } \\
& \nabla \cdot \bar{A}=\frac{\partial A_{x_{1}}}{\partial x}+\frac{\partial A_{1}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
& =\text { scalar. } \\
& \text { ration moults in a scalar }
\end{aligned}
$$

The divergence operation routs in a Scalar quantity.
Furdarmertal proportion of divergence
i. if produces a scalar field. (because Scalar product in involved).

Dept. of ECE, B.M.S.I.T \& M
ii. $\bar{\nabla} \cdot(\bar{A}+\bar{B})=\bar{\nabla} \cdot \bar{A}+\bar{Q} \cdot \bar{B}$.
iii. $\nabla \cdot(V \bar{A})=V \nabla \cdot \bar{A}+\bar{A} \cdot \nabla V$
where V-scalar.
iv. if $\nabla \cdot \bar{A}>0$ affoint $p(x, y, z)$ ie $\bar{\nabla} \cdot \bar{A}=+v e$

if $<r a \bar{A}-\Delta$ at a particular point "p in knothing but there is an Source at point 11py which generates the tied. $\nabla \cdot \overline{A_{1}}>0$.

if the $\bar{V}_{1} \cdot \bar{A}$ is -re at a particular point $p(x, y, z)$ inkrothing but there in an Sink at that point which absorbs the field.
Vi. if $\nabla \cdot \bar{A}=0$ at point $p(x, y, z)$ in knothing but whatever ficld in Eionverging, same is diverging then $\nabla \cdot \bar{A}=0$ at point P.

$$
\begin{aligned}
& \rightarrow \rightarrow \rightarrow \rightarrow \\
& \rightarrow \rightarrow \rightarrow \rightarrow \\
& \rightarrow \rightarrow \bullet \rightarrow \\
& \rightarrow \rightarrow P(x, y, z)
\end{aligned} \quad \text { atp }(x, y, z) .
$$

Notes -
Vii. If $A=\bar{A}=D$ Dhach in, mothing "Sotcroidoct frute if \bar{A} in said tompisonoidal ficld only when $<\vec{A}=0$ 。

Solved Examples $=30$
if $\bar{A}=x^{2} z \overline{a_{x}}-2 y^{2} z^{2} \overline{a_{y}}+x y^{2} z \overline{a_{z}}$. Find
$\bar{\sigma} \cdot \bar{A}$ at the point $p(1,-1,1)$
Sol':

$$
\begin{aligned}
& \nabla \cdot \bar{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z^{\prime}} \\
& \bar{A}=x^{2} z \overline{a_{x}}-2 y^{2} z^{2} \overline{a_{y}}+x^{2} z \overline{a_{z}} \\
& A_{x}=x^{2} z ; \quad A_{y}=-2 y^{2} A_{z}^{2}=x y^{2} z . \\
& \nabla \cdot \bar{A}=\frac{\partial}{\partial x}\left(x^{2} z\right), \frac{\partial y}{\partial y}\left(-2 y^{2} z^{2}\right)+\frac{\partial}{\partial z}\left(x y^{2} z\right) \\
& \triangle \cap \bar{A}=2 x z-4 y z+x y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{4}{\square} \cdot \widehat{A}_{p}=2(1)(1)-4(-1)(1)+(1)(-1)^{2} \\
& \nabla \cdot \bar{A}_{p}=2+4+1=7 \\
& \nabla \cdot \overline{A_{p}}=7
\end{aligned}
$$

Solved Erample-31
Dept. of ECE, B.M.S.I.T \& M
Determine the Divergence of the following vatorficld, and Evaluate them at the Specified points.

$$
\text { e. } \bar{p}=x^{2} y z \overline{a_{x}}+x_{z} \overline{a_{z}}
$$

ii: $\bar{A}=x_{z} \overline{a_{x}}+4 x y \overline{a_{y}}+y \overline{a_{z}}$ at $p(1,-2,3)$.
Sold':

$$
\begin{aligned}
& \text { i. } \sigma \cdot \bar{p}=\frac{\partial p_{x}}{\partial x}+\frac{\partial p_{y}}{\partial y}+\frac{\partial p_{z}}{\partial z} \\
& P_{x}=x^{2} y z, \quad p_{y}=0, \text { and } \quad p_{z}=x_{z} \\
& \nabla \cdot \bar{p}=\frac{\partial}{\partial x}\left(x^{2} y z\right)+\frac{\partial}{\partial z}(x z) \\
& \nabla \cdot \bar{\nabla} \cdot \bar{p} \text { at } p(1,-2,3) \\
& \nabla 2(1)(-2)(3)+1=-12+1=-11 \\
& \nabla \nabla \bar{p}=2 x y z+11
\end{aligned}
$$

ii. $\bar{A}=y z \overline{a_{x}}+4 x y \overline{a_{y}}+y \overline{a_{z}}$

$$
\begin{aligned}
& \nabla \cdot \bar{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
& p(1,-2,3) \\
& A_{x}=y_{z} ; \quad A_{y}=4 x y ; A_{z}=y \cdot \\
& \nabla \cdot \bar{A}=\frac{\partial}{\partial x y}\left(y_{z}\right)+\frac{\partial}{\partial y}(i x y)+\frac{\partial}{\partial z}(y) \\
& \nabla \cdot \bar{A}=\frac{1}{0}=4 x
\end{aligned}
$$

when ∇ operates on a vector \bar{A} as a Cross /produt i.e $\nabla \times \bar{A}$ is called twil of \bar{A}.

$$
\begin{aligned}
& \text { if } \bar{A}=A_{x} \bar{a}_{x}+A_{y} \bar{a}_{y}+A_{z} \bar{a}_{z} \text {, tha } \text { and } \\
& \nabla=\frac{\partial}{\partial x} \bar{a}_{x}+\frac{\partial}{\partial y} \bar{a}_{y}+\frac{\partial}{\partial z_{1}} \overline{a_{z}}
\end{aligned}
$$

then

$$
+\left[\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right] \overline{a_{z}}=\text { vetor }
$$

* thecurl results in a vector which in perpendic -ular to \bar{V} as will as \bar{A}.
* A vector \bar{A} is said to be irrotational field only when $\nabla \times \bar{A}=0$.
$\therefore \quad \nabla \times \bar{A}=$ vector $=(\operatorname{mag}) \bar{a}_{n}$.
where $\overline{a_{r}}$ is unit normal viator white is I^{ε} to both ∇ and \bar{A}.

Fundamental properties of Curl

$$
\begin{aligned}
& \text { i. } \quad \nabla \times(\bar{A}+\bar{B})=\nabla \times \bar{A}+\nabla \times \bar{B} . \\
& i i . \quad \nabla \times(\vee \times \bar{A}-V \nabla \times \bar{A}+\nabla \vee \times \bar{A} \\
&
\end{aligned}
$$

iii. The PAHvirgence of the curl of a vector field Variste. ie $\nabla \cdot(\nabla \times \bar{A})=0$.
iv. The Curl of the gradient of a scalar field. vanishes. ie $\nabla \times \sigma v=0$.

I-xample problem -32
Determine the curl of a vator fields

$$
\begin{gathered}
\therefore \bar{P}=x^{2} y z \overline{a_{x}}+x_{z} \overline{a_{z}} \\
\therefore \bar{A}=y_{z} \overline{a_{x}}+4 x y \overline{a_{y}}+y \overline{a_{z}} \text { at point } \\
P(1,-2,3)
\end{gathered}
$$

Solu:- i. $\bar{p}=x^{2} y z \overline{a_{x}}+x z_{\bar{a}} \overline{a_{z}}$

$$
\begin{aligned}
& P_{x}=x^{2} y z, \quad P_{y}=0, \quad \text { and } \quad P_{z}=x_{2} . \\
& \nabla \times \bar{p}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a y} & \overline{a_{z}} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
\partial_{1}, \partial_{x} & P_{y} & P_{z}
\end{array}\right| \\
& \text { 位 } \\
& \left.\nabla \times \bar{p}=-\frac{\partial\left(x^{2} y z\right)}{\partial y} \overline{a_{x}}-\left[\frac{\partial\left(x_{z}\right)}{\partial x}-\frac{\partial}{\partial z}\left(x^{2} y z\right)\right] \overline{a_{z}}\right] \\
& +\left[0-\frac{\partial\left(x^{2} y z\right)}{\partial y}\right] \overline{a_{z}}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times \bar{p}=-x^{2} \bar{a}_{x}-\left(3-x^{2} y\right) \overline{a_{y}}-x^{2} z \overline{a_{z}} \\
& \nabla \times \bar{p}=-x^{2} \overline{a_{x}}+\left(x^{2} y-z\right) \overline{a_{y}}-x^{2} z \overline{a_{z}} . \\
& \nabla \times \bar{p} \text { at } p(1,-2,3) \\
& \nabla \times \bar{p}=-(1)^{2}(3) \overline{a_{x}}+\left[(1)^{2}(-2)-3\right] \overline{a_{y}} \\
& -(1)^{2}(3) \overline{a_{z}} \\
& \nabla, ~
\end{aligned}
$$

ii. $\quad \bar{A}=y z \overline{a_{x}}+4 x a_{y}+y \overline{a_{z}}$

$$
\begin{aligned}
\nabla \times \bar{A}= & \left.\begin{array}{ccc}
\frac{\bar{a}}{x} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
y z & u x y & y
\end{array} \right\rvert\, \\
\nabla \times \bar{A}= & {\left[\frac{\partial y}{\partial y}-\frac{\partial}{\partial z}(u x y)\right] \overline{a_{x}}-\left[\frac{\partial y}{\partial x}-\frac{\partial}{\partial z}(y z)\right] \bar{g} } \\
& +\left[\frac{\partial}{\partial x}(u x y)-\frac{\partial}{\partial y}(y z)\right] \overline{a_{z}}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times \bar{A}=\overline{a_{x}}+y \overline{a_{y}}+(4 y-z) \bar{a}_{z} \\
& \nabla \times \bar{A} \text { at } p(1,-2,+3) \text { is } \\
& \bar{\nabla} \times \bar{A}=\overline{a_{x}}+(-2) \overline{a_{y}}+\left[4(-2)-(\overline{3}) \overline{a_{z}}\right. \\
& \nabla \times \bar{A}=\bar{a}_{x}-2 \bar{a}_{y}-11 \overline{a_{z}} \\
& \text { (}
\end{aligned}
$$

Solved coample-33
Dept. of ECE, B.M.S.I.T \& M
Find the gradient of function $\phi:$
${ }_{i}>\phi=\operatorname{costh} x y z$
iii) $\phi=x^{2}+y^{2}+z^{2}$.
solu:- $\phi=\operatorname{conts} x y z$

$$
\begin{aligned}
\nabla \phi= & \frac{\partial \phi}{\partial x} \overline{a_{x}}+\frac{\partial \phi}{\partial y} \overline{a_{y}}+\frac{\partial \phi}{\partial \theta_{1}} a_{1} \\
\nabla \phi= & \frac{\partial}{\partial x}[\operatorname{coshry3}] \overline{a_{x}}+\frac{\partial}{\partial y}[\operatorname{coshxyz}] \overline{a_{y}} \\
& +\frac{\partial}{\partial z+}[\operatorname{conhryz}] \overline{a_{z}}
\end{aligned}
$$

$$
\nabla \phi=y_{z} \sinh \left(\ln ^{\prime} z\right) \overline{a_{x}}+x_{z} \sinh \left(x_{2}\right) \sqrt{a_{y}}
$$

$$
\text { t } x y \text { sinh }(x y z) \overline{a_{z}}
$$

$$
\left.\sqrt{n} \phi=\sinh (x y 3)\left[y z \overline{a_{x}}+x z \bar{a}_{y}+x y \bar{a}_{z}\right]\right]
$$

$$
\begin{aligned}
& \because \phi=x^{2}+y^{2}+z^{2} \\
& \nabla \phi=\frac{\partial \phi}{\partial x} \overline{a_{x}}+\frac{\partial \phi}{\partial y} \overline{a_{y}}+\frac{\partial \phi}{\partial z} \overline{a_{z}} \\
& \nabla \phi= \\
& =\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right) \overline{a_{x}}+\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right) \overline{a_{y}} \\
& \\
& \quad+\frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right) \overline{a_{3}} \\
& \nabla \phi= \\
& 2 x \overline{a_{x}}+2 y \overline{a_{y}}+2 z \overline{a_{z}} \\
& \nabla \phi=2\left[x \overline{a_{a}} y \overline{a_{y}}+z \overline{a_{z}}\right]
\end{aligned}
$$

Example problemen m34
if $\phi\left(x, y y^{2}=3 x^{2} y-y^{3} z^{2}\right.$, find $\nabla \phi$ at "the point $p(1,-2,-1)$.
Solu!", "m $\nabla=\frac{\partial \phi}{\partial x} \overline{a_{x}}+\frac{\partial \phi}{\partial y} \overline{a_{y}}+\frac{\partial \phi}{\partial z} \overline{a_{z}}$

$$
\begin{gathered}
\frac{\partial \phi}{\partial x}=6 x y \cdot \frac{\partial \phi}{\partial y}=3 x^{2}-3 y^{2} z^{2} . \\
\frac{\partial \phi}{\partial z}=-2 y^{3} z \\
\nabla \phi=6 x y \overline{a_{x}}+\left(3 x^{2}-3 y^{2} z^{2}\right) \overline{a_{y}}-2 y^{3} z a^{2} \\
\nabla \phi \text { at } p(1,-2,-1) \\
\nabla \phi=6(1)(-2) \overline{a_{x}}+\left[3(1)^{2}\right. \\
\left.-2(-2) a^{2}(-2)^{2}(-1)^{2}\right] \overline{a_{y}}
\end{gathered}
$$

Example problem -35
if $\nabla \times \bar{V}=0$, find constants a, b and c sothat

$$
\bar{V}=(x+2 y+a z) \overline{a_{x}}+(b x-3 y-z) \overline{a_{y}}+
$$ $(4 x+c y+2 z) \bar{a}_{z}$ is irrotational.

Soly

$$
\begin{aligned}
& \nabla \times \bar{v}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & \partial / \partial y & \\
\left(x+2 y+a_{z}\right) & (b x-3 y-z) \\
(4 x+c y+2 z)
\end{array}\right|=0 \\
& =[c+1] \overline{a_{x}}-[4-a] \overline{a_{y}}+[b-2] \overline{a_{z}}=0 \\
& \Rightarrow(c+4)=0 \\
& \Rightarrow(m b)=0 \\
& \Rightarrow a=4-b=2 \text { and } c=-1
\end{aligned}
$$

Example problem -36
Determine thicurl' of there vator field.

$$
i>\bar{A}=\left(2 x^{2}+y^{2}\right) \overline{a_{x}}+\left(x y-y^{2}\right) \bar{a}_{y} .
$$

ii) $\bar{A}=y_{z} \overline{a_{x}}+4 x y \overline{a_{y}}+y \overline{a_{z}}$.

Solui- i>

$$
\begin{aligned}
& \nabla \times \bar{A}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\ddots / \partial x & \partial / \partial y & \partial / \partial z \\
\left(2 x^{2}+y^{2}\right) & \left(x y-y^{2}\right) & 0
\end{array}\right| \\
& =\left[0-\frac{\partial}{\partial z}\left(x y-y^{2}\right)\right] \operatorname{con}^{0} a_{0}-\left[0-\frac{\partial}{\partial z}\left(2 x^{2}+y^{2}\right)\right] a_{y} \\
& \text { (ivi }+\left[\frac{\partial}{\partial x}\left(x y-y^{2}\right)-\frac{\partial}{\partial y}\left(2 x^{2}+y^{2}\right)\right] \overline{a_{z}} \\
& {[y-2 y] \overline{a_{z}}=-y \overline{a_{z}}} \\
& \bar{\nabla} \bar{A}=-y \overline{a_{z}}
\end{aligned}
$$

ii.

$$
\begin{gathered}
\nabla \times \bar{A}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y_{z} & 4 x y & y
\end{array}\right|=(1-0) \overline{a_{x}}-(0-y) \overline{a_{y}}+(4 y-z) \overline{a_{z}} \\
\nabla \times \bar{A}=\overline{a_{x}}+y \overline{a_{y}}+(4 y-z) \overline{a_{z}}
\end{gathered}
$$

Solved cxample -37
provethat $\bar{A}=y z \bar{a}_{x}+z x \bar{a}_{y}+x y \overline{a_{z}}$ is both irrotational and solenoidal.
Solvi- i. \bar{A} is said to be irrotational when

$$
\begin{aligned}
& \nabla \times \bar{A}=0 \text {. } \\
& \nabla \times \bar{A}=\left|\begin{array}{lll}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
y z & \partial a & x y
\end{array}\right| \\
& =\left[\frac{\partial}{\partial y}(x y)-\frac{\partial}{\partial z}(z x)\right] \overline{a_{x}}-\left[\frac{\partial}{\partial x}(x y)-\frac{\partial}{\partial z}(y z) \overline{a_{y}}\right] \\
& +\left[\frac{\partial}{\partial x}(z)-\frac{\partial}{\partial y}(z y)\right] \overline{a_{z}} \\
& =(x-x) \overline{a_{x}}-(y-y) \overline{a_{y}}+(z-z) \overline{a_{y}} \\
& \square \times \bar{A}=0
\end{aligned}
$$

trence vector \bar{A} is irrotational.
if. Vator \bar{A} in Said to be Sol Dept. of ECE, B.M.S.I.T \& M koten $\sigma \cdot \bar{A}=0$.

$$
\begin{aligned}
& \nabla \cdot \bar{A}=\frac{\partial A x}{\partial x}+\frac{\partial A y}{\partial y}+\frac{\partial A z}{\partial z} \\
& =\frac{\partial}{\partial x}(y z)+\frac{\partial}{\partial y}(z x)+\frac{\partial}{\partial z}(x y) \\
& =0+0+0 \\
& \nabla \cdot \bar{A}=0
\end{aligned}
$$

hane vator \bar{A} end solmonial fild.
5. [o-ordinate Sytems

An orthogonal systern in one in which the Co-ordinates are mutually perpendicular to Each other.
Types
i. Eartesian / Rutangular Coordinate syittom.
ii. Cylindrical Coordinate Systern.
ieii Spherical (or) polas ior ordinate System.
finit

$$
x^{n^{m}}
$$

Rutangular Coordinate System
Tole Eartesion

\rightarrow Variable used x, y, z and point $p(x, y, z)$
\rightarrow three axes x, y, z are perpindiuelar to each other.

\rightarrow Variables range $-\infty<x, y, z<+$
\rightarrow unit vutors $\overline{a_{x}}, \overline{a_{y}}, \overline{a_{2}}$
\rightarrow General vector $\bar{A}=A_{x} \overline{a_{x}}+A_{y} \overline{a_{y}}+A_{z} \overline{a_{2}}$ where A_{x}, A_{y}, A_{z} anewonponerts along x, y and 2 direction.
$\overline{a_{x}}, \bar{a}_{y}, \bar{a}_{z_{1}}$, along x, y and z direction

$$
\Rightarrow \text { diftimentical Elements } p(x, y, z)
$$

$$
\Rightarrow d x, d y, d z \cdots \text {-diferentialelement. }
$$

\rightarrow differential Length vector

$$
\overline{d l}=d x \overline{a_{x}}+d y \overline{a_{y}}+d_{z} \overline{a_{z}}
$$

(ds) and dilferential Surtace veforA
\rightarrow differential Serface and differential Sustace vectord
$\overline{d s}=d s \bar{a}_{n} \ldots$...for $[$ loned Surtan
$\overline{d s}=d s\left(\pm \bar{a}_{n}\right) \ldots$ for open surtace.
$d s=d x d y ; z=k$ surface.

$$
\overline{d s}=d x d y\left(+\bar{a}_{z}\right)
$$

$d s=d y d z ; \quad x=k$ surfacer.

$$
\begin{aligned}
& \overline{d s}=d y d z \overline{a_{x}} . \\
& d s=d x d z ; y \text {. } \quad \text { Surface. }
\end{aligned}
$$

$$
\overline{d s}=d x d z \frac{1}{2}
$$

\rightarrow differential volume

$$
d v=d x d y d z
$$

\rightarrow dot produt of unit vators

$$
\begin{aligned}
& \overline{a_{x}} \cdot \overline{a_{y}}=\overline{a_{y}} \cdot \overline{a_{z}}=\overline{a_{z}} \cdot \overline{a_{x}}=0 . \\
& \overline{a_{x}} \cdot \overline{a_{x}}=\overline{a_{y}} \cdot \overline{a_{y}}=\overline{a_{z}} \cdot \overline{a_{z}}=1
\end{aligned}
$$

\rightarrow Erom frodut of unit vutors.

$$
\begin{aligned}
& \bar{a}_{x} \times \overline{a_{y}}=\overline{a_{z}} \\
& \bar{a}_{y} \times \overline{a_{z}}=\overline{a_{x}} \\
& \overline{a_{z}} \times \overline{a_{x}}=\overline{a_{y}}
\end{aligned}
$$

Rotating ontilocbuise diration. roultos tre.

Rosating
clockwige divection roultin -ve.
.. No rotationalp field Exinf.

Solved problem－ 38
Find the area of rectangle in $z=5$ plane with

$$
A \leq x \leq 3 .: \text { and } 0 \leq y \leq 5
$$

Solus：

differential arad
x

$$
d s=d x d y
$$

$$
\begin{aligned}
& d S=d x d y \\
& S=\int_{\langle S\rangle} d S=\int_{x=-1} d x d y=\int_{y=0}^{5} d x
\end{aligned}
$$

$$
[5-(-1)][5-0]
$$

$$
=4 \times 5=20 \mathrm{~m}^{2}
$$

Anti $S=20 \mathrm{~m}^{2}$
Find the wolverine of a chased surface bounded．by

$$
\begin{aligned}
& \text { the volume of a clesed }, 0 \leq y \leq 1,0 \leq 3 \leq 05 \\
& 0 \leq x \leq 2, \quad 0 \leq y=d x d y d
\end{aligned}
$$

略 deferential volume $d v=d x d y d z$

$$
v=\int_{v>} d v=\left.\int_{0}^{2} d x \int_{0}^{1} d y\right|_{z=0} ^{5} d z
$$

Dept．of E\＆CE．，SVCE

$$
=2 \times 1 \times 5=10 \mathrm{~m}^{3}
$$

Page 116
volume．

$$
V=10 m^{3}=10 \mathrm{~m}^{3}
$$

5.6. Cylindrical coordinate syftem

Dept. of ECE, B.M.S.I.T \& M

\rightarrow variableo uned

$$
\rho, \phi, z
$$

\rightarrow variable range

$$
\begin{aligned}
& 0<\rho<\infty \\
& 0<\phi<2 \| \\
& -\infty, 2<+\infty
\end{aligned}
$$

$\rightarrow \quad \rho$-radius, ϕ-angle from aris.
z-height.
\rightarrow the axes ρ, ϕ, z queporpundiular to cach other.
\rightarrow unit vatoris $a_{j}, \overline{a_{p}}, \overline{a_{z}}$.
\rightarrow General vinor $\bar{A}=A_{\rho} \overline{a_{\rho}}+A \phi \overline{a_{\phi}}+A_{z} \overline{a_{z}}$.
\rightarrow inferntial elements $p(\rho, \phi, 2)$
 aric Length $=\rho d \phi$.

Eircenfernce $=2 \pi \rho=\phi \rho$.

Dept. of E\&CE., SVCE
\rightarrow differential Length veetor

$$
\overline{d l}=d \rho \overline{a_{\rho}}+\rho d \phi \overline{a_{\phi}}+d z \overline{a_{z}} .
$$

\rightarrow differential surtace (ds) and differntial surface

$$
\begin{aligned}
& \text { Vator (ds). } p(1, \phi, 2) \\
& \overline{d s}=d s \bar{a}_{n} . \quad d \rho \quad \rho d \phi \quad \phi^{\ell} \\
& d s=d \rho d z \quad \therefore \quad \phi=k \text { suffine. } \\
& \overline{d s}=d_{j} d_{z} \overline{a_{\phi}} \text {; } \\
& d s=\rho d \rho d \phi ;-z=k \text { surface. } \\
& \overline{d s}=\rho d \rho d \phi \bar{a} \\
& d s=\rho d \phi d_{z} \ldots \ldots \rho=k \text { sustace. } \\
& d s=\rho d \phi d z \bar{a}_{\rho}=\rho d \phi d z \overline{a_{\rho}}
\end{aligned}
$$

\rightarrow differntial volume

$$
d v=\rho d \rho d \phi d z
$$

\rightarrow point transformation

In f g

$$
\cos \phi=\frac{x}{\rho}
$$

$$
x=\rho \cos \phi
$$

(or)
using oot product nondet

$$
\begin{aligned}
& x=\rho \cos \phi \\
& y=\rho \sin \phi \\
& z=2
\end{aligned}
$$

$$
x=\rho \cos \phi, \quad y=\rho \sin \phi, z=z
$$

Dept. of ECE, B.M.S.I.T \& M
My if given $p(x, y, z) \Rightarrow p(\jmath, \phi, z)=$?
Square and
addeg(1) $x^{2}+y^{2}=\rho^{2} \Rightarrow \rho=\sqrt{x^{2}+y^{2}}$. 2 (2).

$$
\begin{aligned}
& \frac{q^{\prime \prime}(1)}{q_{q^{4}(2)}} \frac{\cos \phi}{\sin \phi}=y / x \\
& y / x=\tan \phi \Rightarrow \phi=\tan ^{-1}(y / x
\end{aligned}
$$

and $2=2$
given

$$
\begin{aligned}
& p(x, y, z) \Rightarrow p\left(f_{2} \phi y^{\prime 2}\right)=2 \\
& \rho=\sqrt{x^{2}+y^{2}}, \quad z=z
\end{aligned}
$$

\rightarrow dot prodert of unit vators.

$$
\begin{aligned}
& \overline{a_{\rho}} \cdot \overline{a_{\rho}}=\overline{a_{\phi}} \cdot \overline{a_{\phi}}=\overline{a_{2}} \cdot \overline{a_{2}}=1 \\
& \overline{a_{\rho}} \cdot \overline{a_{\phi}}=\overline{a_{\phi}} \cdot \overline{a_{2}}=\overline{a_{2}} \cdot \overline{a_{\rho}}=0
\end{aligned}
$$

Erom prodert of unit vators.
 anticlacle wire dirati

$$
\begin{aligned}
& \overline{a_{\rho}} \times \overline{a_{\phi}}=+\overline{a_{z}} \\
& \overline{a_{\phi}} \times \overline{a_{2}}=+\overline{a_{\rho}} \\
& \overline{a_{z}} \times \overline{a_{\rho}}=+\overline{a_{\phi}}
\end{aligned}
$$

$$
\overline{a_{\rho}} \times \overline{a_{\rho}}=0
$$

$\bar{a}_{\phi} \times \bar{a}_{\phi}=0 \quad \bar{a}_{2} \times \bar{a}_{z}=0$ $\rho-\operatorname{radiua}(m)$.
\rightarrow Surtace Arca of cylinder $=2 \pi j h ; \mathrm{m}^{2}$

\Rightarrow (Circumfernce) heigft

$$
\begin{aligned}
& =2 \pi \times 6+m^{2} \\
& =2 \pi h^{2} \mathrm{~m}^{2} \\
& =1
\end{aligned}
$$

\rightarrow volume of cylinder $=\pi \rho^{2} h^{2}, m^{3}$
\rightarrow Total arca of cylindiem $=2 \pi \rho^{2}+2 \pi \rho h$.

$$
\begin{aligned}
& p(\rho, \phi, 8)
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } d \rho^{2} \rho d \phi d z \quad . \rho=k \text { Surface. } \\
& S=\rho \cdot \int_{0}^{2 \pi} d \phi \int_{0}^{h} d z=\rho \times 2 \pi \times h \\
& \delta=2 \pi \rho h ; m^{2}
\end{aligned}
$$

* $d s=d \rho d z ; \cdots=k$ Suntace.

$$
S=\int_{0}^{\rho} d \rho \int_{0}^{h} d z=\rho h ; m^{2}
$$

* ds $=\rho d \rho d \phi \ldots z=k$ Surtace.

$$
\begin{aligned}
S=\int_{0}^{\rho} \rho \cdot d \rho \int_{0}^{2 \pi} d \phi & =\left.\frac{\rho^{2}}{2}\right|_{0} ^{\rho}(2 \pi) \\
& =2 \pi \cdot \frac{\rho^{2}}{2}=\frac{\pi}{S}=\pi \rho^{2} ; m^{2}
\end{aligned}
$$

* differntial volume

$$
d v=x^{4} \rho d \phi d z
$$

toital volume

$$
\begin{aligned}
& v=\int_{0}^{\rho} \rho d \rho \int_{0}^{2 \pi} d \phi \int_{0}^{h} d z \\
& =\left.\frac{\rho^{2}}{2}\right|_{0} ^{\rho} \times 2 \pi \times h=\frac{\rho^{2}}{26} \cdot 7 \pi \times h \\
& v=\pi \rho^{2} h \mathrm{~m}^{3}
\end{aligned}
$$

Viector transformation
Castesian \Leftrightarrow Cylindrical

$$
\bar{A}=A_{x} \overline{a_{x}}+A_{y} \bar{a}_{y}+A_{z} \bar{a}_{z} \Leftrightarrow \bar{A}=A_{\rho} \bar{a}_{y}+A_{\phi} \overline{a_{q}}+A_{z} \bar{a}_{z}
$$

if $\bar{A}=A_{x} \bar{a}_{x}+A_{y} \overline{a_{y}}+A_{z} \bar{a}_{z}$ is given in Cartesion
Co-ordinate system. the equivalint vetortinn
Cylindrical Co-ordinate System $\bar{A}=A_{m}$ i.e find A_{ρ}, A_{ϕ} and A_{z} comptirnto. fromç (0)

$$
A_{3}=A_{2}
$$

i.e ' z ' componinin' of both the vatornane equal.

$A_{\rho}=$ projution of given vator \bar{A} in $\overline{a_{\rho}}$ diration.

$$
\begin{aligned}
& \begin{array}{l}
\text { Unknown } \\
\text { component }
\end{array}=\left[\begin{array}{l}
\text { known } \\
\text { vector }
\end{array}\right] \cdot\left[\begin{array}{c}
\text { unit vector } \\
\text { of unknown } \\
\text { Component }
\end{array}\right] \\
& \text { i.e } A_{\rho}=\bar{A} \cdot \bar{a}_{\rho} ; A_{\phi}=\bar{A} \cdot \bar{a}_{\phi} ; A_{3} \cdot \bar{A} \cdot \bar{a}_{z}
\end{aligned}
$$

$$
A_{y}=\left(A_{x} \bar{a}_{x}+A_{y} \bar{a}_{y}+A_{z} \bar{a}_{z}\right) \cdot \bar{a}_{\rho}
$$

dot produt table, didet prodertotunit vators

My $\quad A_{\phi}=\bar{A} \cdot \overline{a_{\phi}}$

$$
A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi
$$

and

$$
\begin{array}{ll}
& A_{3}=\bar{A} \cdot \overline{a_{3}} \\
\Rightarrow & A_{3}=A_{3}
\end{array}
$$

$$
\begin{aligned}
\bar{A}=\left[A_{x} \cos \phi\right. & \left.+A_{y} \sin \phi\right] \overline{a_{y}}+\left[A_{x} \sin \phi+A_{y} \cos \phi\right] \overline{a_{\phi}} \\
& +A_{z} \overline{a_{z}}
\end{aligned}
$$

Note? (shortunt)

$$
\left[\begin{array}{c}
A_{\rho} \\
A_{\phi} \\
A_{3}
\end{array}\right]\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

if Given $\bar{A}=A_{\rho} \overline{a_{y}}+A_{\phi} \bar{a}_{\phi}+A_{z} \overline{a_{z}}$.
Find its equivalest vator in Castesian Coordin - ate System.
(Shotut) i.e $\bar{A}=A_{x} \bar{a}_{x}+A_{y} \overline{a_{y}}+A_{z} \bar{a}_{z}=$?
 $\left[\begin{array}{c}A_{x} \\ A_{y} \\ A_{z}\end{array}\right]=\left[\begin{array}{ccc}\cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right]^{-1}\left[\begin{array}{l}A_{s} \\ A_{\phi} \\ A_{z}\end{array}\right]$

$$
\left[\begin{array}{l}
A_{x} \\
A_{y} h_{1} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A_{s} \\
A_{\phi} \\
A_{2}
\end{array}\right]
$$

$$
\bar{A}=A_{x} \overline{a_{x}}+A_{y} \bar{a}_{y}+A_{z} \bar{a}_{z}
$$

$$
\begin{gathered}
A=A_{x} \\
\bar{A}=\left[A_{9} \cos \phi-A_{\phi} \sin \bar{\phi}\right] \bar{a}_{x}+\left[A_{\rho} \sin \phi+A_{\phi} \cos \phi\right] \overline{a_{y}} \\
+A_{z} \overline{a_{z}}
\end{gathered}
$$

\rightarrow The ∇ operator in cylindrical Pept. of ECE, B.M.M.I.I.T \& M System.

$$
\nabla=\frac{\partial}{\partial \rho} \bar{a}_{\rho}+\frac{1}{\rho} \frac{\partial}{\partial \phi} \bar{a}_{\phi}+\frac{\partial}{\partial z_{,}} \bar{a}_{3} m^{-1}
$$

Gradient. ut $V=f\left(\frac{n}{}, \phi, z\right)$ in a sualar fundion

$\angle D i v e r g e n t(\nabla \cdot \bar{A})$

$$
P_{1}(\phi(\phi, z) \Rightarrow d v=\rho d \rho d \phi d z
$$

and $\bar{A}=A_{s} \overline{a_{y}}+A_{\phi} \bar{a}_{\phi}+A_{2} \overline{a_{2}}$

$$
\nabla \cdot \bar{A}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho A_{\rho}\right]+\frac{1}{\rho} \frac{\partial \phi \phi}{\partial \phi}+\frac{\partial A_{z}}{\partial z}
$$

$\operatorname{Lus} \mid(\nabla \times \bar{A})=?_{0}$
in cylindrical Co-ordinate System.

$$
\begin{aligned}
& \underset{d \rho}{P(\rho, \phi, z)} \underset{\rho d \phi}{\longrightarrow} d_{z} \Rightarrow d v=\rho d \rho d \phi d_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\nabla} \times \bar{A}=\left[\frac{1}{\rho} \frac{\partial A_{2}}{\partial_{\phi}} \frac{\partial A_{\phi}}{\partial z}\right] \overline{a_{p}} \\
& +\left[\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{2}}{\partial \rho}\right] \overline{a_{\phi}} \\
& +\frac{1}{\rho}\left[\frac{\partial}{\partial \rho}(\rho A \phi)-\frac{\partial A \rho}{\partial \phi}\right] \bar{a}_{3}
\end{aligned}
$$

Example problem -39
Find area of the Cylindrical Surface
with hight $h=2 \mathrm{~m}$ and radius

$$
\begin{aligned}
& d s=\rho d \phi d_{z} \ldots \rho=i_{m}(\text { corrtant }) \\
& \text { Sustace } \\
& S=\int_{<S\rangle} d s=\left.\int_{<s\rangle} \rho d \phi d \dot{ }\right|_{\rho=1 m}
\end{aligned}
$$

$$
S=1 \times \int_{0}^{2 \pi} d \phi \times \int_{0}^{2} d m^{2} 2 \pi(2)
$$

NH$S=6 \pi \mathrm{~m}^{2}$
(or)

$$
\begin{aligned}
& S=2 \pi \rho h=2 \pi(1)(2) \\
& S=4 \pi \mathrm{~m}^{2}
\end{aligned}
$$

Example problem: -40
Find the volume of the cylinder with height 3 m and radius 2 m .

Sole:-

$$
\begin{aligned}
& d v=\rho d \rho d \phi d z \\
& v=\int_{\left\langle v_{0}\right\rangle} d v=\int_{0}^{2} \rho d \rho \int_{0}^{2 \pi} d \phi \int_{0}^{3} d z \\
& v=\left.\frac{\rho^{2}}{2}\right|_{0} ^{2} \times 2 \pi \times 3 \\
& v=\frac{4 x^{2}}{2} \times 2 \pi \times 3
\end{aligned}
$$

Example problem 4,4
Eonvent the following points Specified in Cartesian into M, Cylindrical coordinates.
i. $\quad P^{\prime}(0,-2,2)$ ii.. $Q(\sqrt{3}, 1,-1)$ iii. $R(-\sqrt{2}, \sqrt{2}, 3)$.

Solvi: $P(x, y, z) \Leftrightarrow P(f, \phi, z)$

$$
\rho=\sqrt{x^{2}+y^{2}} ; m ; \phi=\tan ^{-1}(y / x) ; \quad 2=z
$$

Dept. of ECE, B.M.S.I.T \& M

$$
\begin{array}{ll}
\text { i. } & p(0,-2,2) \\
x=0, y=-2,3=2 . \\
\rho & =\sqrt{x^{2}+y^{2}}=\sqrt{0+(-2)^{2}}=\sqrt{4}=2 . \Rightarrow=2 m \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{-2}{0}\right)=-\pi / 2
\end{array}
$$

$$
\phi=\frac{3 \pi}{2}
$$

$$
\begin{equation*}
\phi=-\pi / 2+2 \pi=3 \pi / 2 \tag{o}
\end{equation*}
$$

$$
\left.p(0,-2,2) \Longleftrightarrow p\left(2, \frac{\pi}{2}\right) 2\right)
$$

Note! ' ϕ ' should be in itue.
if. $Q(\sqrt{3}, 1,-1), Q(s, \phi, z)=(2, \pi / 6,-1)$.
ièe. $\quad R(-\sqrt{2}, 4,3) \Rightarrow R(3, \phi, 2)=(2,3 \pi / 4,3)$.
Example problem: 42
Eonvort thellowing points Specificd in cylindrical into Cantetian Co-ordinater.
i. $P(2,5 i / 3,-2)$ ì. $Q(4, \pi / 6,1)$ ieì. $R(2,-\pi / 4,3)$.

Solu:- use $x=\rho \cos \phi, y=\rho \sin \phi . f(z=2$

$$
\begin{aligned}
& \text { i. } P(2,5 \pi / 3,-2) \Rightarrow P(1,-1.73,-2) \\
& \text { ii.. } Q(4, \pi / 6,1) \Rightarrow Q(3.46,2,1) . \\
& \text { iii. } R(2,-\pi / 4,3) \Rightarrow R(-\sqrt{2}, \sqrt{2}, 3) .
\end{aligned}
$$

Spherical/polar Coordinate Sypte Dept. of ECE, B.M.S.IT \& M
The point on Spherical Co-ordinate System is repronted as $p(r, \theta, \phi)$.

\rightarrow variables ched r
\rightarrow Variables range
γ-distance from origir.
θ - angle from tio "oxis.
ϕ-angle from x axis.

$\overline{a_{r}}, \overline{a_{\theta}}, \overline{a_{\phi}}$.
unit vators $\overline{a_{r}}, \overline{a_{\theta}}, \overline{a_{\phi}}$ are perpendicular to each other.
\rightarrow Genual Gector $\bar{A}=\operatorname{Ar} \overline{a_{r}}+A_{\theta} \overline{a_{\theta}}+A_{\phi} \overline{a_{\phi}}$.
$A_{r}, A_{\theta}, A_{\phi}$ ane Componentis alongeg $\overline{a_{r}}, \bar{a}_{\theta}$ and 'a' diration rosputivly.
Dept. of E\&CE., SVCE

(2) ine arclength
$r \sin \theta d p$
point transformation.

$$
p(x, y, z) \Longleftrightarrow p(r, \theta, \phi
$$

\&g. point $p(r, \theta, \phi)$ on spherical co-rdinate syitem.
fromfig.

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

differential Lagth vator
$P(r$,

$$
\overline{d l}=d r \overline{a_{r}}+r d \theta \overline{a_{\theta}}+r \sin \theta d \phi \overline{a_{\phi}}
$$

\rightarrow differntial surftew (ds) and differential surtan vatol "(ds).

$$
\begin{aligned}
& P(r, \theta, \phi) \\
& d r \\
& \underset{r d \theta}{d}
\end{aligned} \zeta_{r \sin \theta d \phi}
$$

$d S=r^{2} \sin \theta d \theta d \phi ; \quad r=k$ surface.

$$
\overline{d s}=r^{2} \sin \theta d \theta d \phi \overline{a_{r}} .
$$

$$
d s=r \sin \theta d r d \phi ; \quad \theta=k \operatorname{surfan}
$$

$$
\overline{d s}=r \sin \theta d \gamma d \phi \bar{a}_{\theta}
$$

$$
d s=r d r d \theta ; \phi=k \text { surface. }
$$

$$
\overline{d s}=r d r d \theta \overline{a_{\phi}} .
$$

differential volume

$$
d v=r^{2} \sin \theta d r d \theta d \phi \text {. } d r \text { rental volume } r d \theta \sin \theta d \phi
$$

dot product of unit vators.

Surface Area of the sphere

$$
A=4 \pi r^{2} \mathrm{~m}^{2}
$$

Volume of the sphere

$$
v=\frac{4}{3} \pi r^{3} m^{3}
$$

\rightarrow Erom product of unit vators Dept. of ECE,B.M.S.I.T \& M

rotating clakwine diration roulth -ve.

$$
\begin{aligned}
& \bar{a}_{r} \times \bar{a}_{r}=0 \\
& \bar{a}_{\theta} \times \bar{a}_{\theta}=0 \\
& \bar{a}_{\phi} \times \bar{a}_{\phi}=0
\end{aligned} \quad \begin{aligned}
& \text { ronotational } \\
& \text { fild } \\
& \text { Erist }
\end{aligned}
$$

\rightarrow Vector transformation

$$
\bar{A}=\frac{p(x, y, z) \Leftrightarrow p(r, \theta, \phi)}{A_{x} \bar{a}_{x}+A_{y} \bar{a}_{y}+A_{z} \bar{a}_{z}} \underset{\text { ratarguler }}{\text { Coordirate }} \Leftrightarrow \bar{A}=\frac{A_{1} \bar{a}_{6}+A_{0} \bar{a}_{0}+A_{\phi} \overline{a_{\phi}}}{\text { Spherial coordirate }} \text { System. }
$$

system. vator Given $\bar{A}=A \bar{a}_{1}+A_{\theta} \overline{a_{0}}+A_{\phi} \overline{a_{\phi}}$ in Sphentical coordinate
 syitem.

dotpmodurt of unit vators

dotprodur	$\frac{a_{\theta}}{a_{\theta}}$		
$\overline{a_{x}}$	$\sin \theta \cos \phi$	$\cos \theta \cos \phi$	$-\sin \phi$
$\overrightarrow{a_{y}}$	$\sin \theta \sin \phi$	$\cos \theta \sin \phi$	$\cos \phi$
\vec{a}_{z}	$\cos \theta$	$-\sin \theta$	0

$$
\begin{gathered}
A_{x}=\left[A_{r} \overline{a_{r}}+A_{\theta} \bar{a}_{\theta}+A_{\phi} \overline{a_{\phi}}\right] \cdot{ }^{\text {Dept. }} \overline{a_{n}} \mathrm{ECE}, \text { B.M.S.I.T } \& M \\
A_{x}=\left[A_{r} \sin \theta \cos \phi+A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi\right]
\end{gathered}
$$

$M_{y} \quad A_{y}=\bar{A} \cdot \bar{a}_{y}$

$$
A_{y}=\sin \theta \sin \phi A_{r}+\cos \theta \sin \phi A_{\theta}+\cos \phi A_{\phi}
$$

$$
\begin{aligned}
& \text { and } \\
& A_{3}=\bar{A} \cdot \overline{a_{3}} \\
& A_{2}=\cos \theta A_{\gamma}-\sin \theta A_{\theta} \\
& \therefore \bar{A}=A_{x} \overline{a_{x}}+A_{y} \bar{a}_{y}+A_{z} \overline{a_{z}} \\
& \bar{A}=\left[\sin \theta \cos \phi \text { Ar } A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi\right] \bar{a}_{x} \\
& \left.\tan ^{\sin \theta} \theta \sin \phi A_{r}+\cos \theta \sin \phi A_{\theta}+\cos \phi A_{\phi}\right] \overrightarrow{a_{y}} \\
& +\left[\cos \theta A_{r}-\sin \theta A_{\theta}\right] \bar{a}_{2}
\end{aligned}
$$

Notes (shortcut)

$$
-\frac{\left(\begin{array}{c}
\text { Short cut) } \\
A_{x} \\
A_{z}
\end{array}\right]}{\frac{\left[\begin{array}{ccc}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{l}
A_{\gamma} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]}{139} \text { Page ce. SVCE }}
$$

My if given vector $\bar{A}=A_{x} \overline{a_{x}}+A_{y} \bar{a}_{y}+A_{2} \bar{a}_{z}$ in Cartesion Co-ordinate System, To comvest it into Spherical Corrdinatesystem une.

$$
\left[\begin{array}{l}
A_{\gamma} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & A_{x} \\
A_{y} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

$$
\bar{A}=\left[\sin \theta \cos \phi A_{x}+\sin \theta \sin \phi A_{y}+\cos \theta A_{z}\right] \bar{a}_{\gamma}
$$

$$
+\left[\cos \theta \cos \phi A_{x}+\cos \theta \sin \phi A_{y}-\sin \theta A_{z}\right] \overline{a_{\theta}}
$$

$$
+\left[-\sin \phi A x+\cos \phi A_{y}\right] \bar{a}_{\phi}
$$ System.

Gradient: ∇v (大) Grived (v)
let $V=s$ suhar $=f^{h}(r, \theta, \phi)$

Divergence $(\nabla \cdot \bar{A})$:-
ut $\bar{A}=A_{r} \overline{a_{r}}+A_{\theta} \overline{a_{\theta}}+A_{\phi} \overline{a_{\phi}}$

$$
d x=\gamma^{2} \sin \theta d \gamma d \theta d \phi
$$

Ewil $\nabla \times \bar{A}$ (or) $\operatorname{Cun}(\bar{A})$ in $\begin{aligned} & \text { Dept. of ECE; B.M.S.I.T \& } M\end{aligned}$ Co-ordinate system.

$d v=r^{2} \sin \theta d r d \theta d \phi$

Laplace's and poimon's Equation in alterin peECEO ENAtsinates M Systemsi-
\rightarrow Eartesian Coordinate System:- $p(x, y, z)$
Laplacir equation $\nabla^{2} V=0$.

$$
\begin{aligned}
& \text { Laplacie cquation } \\
& \nabla^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0 \\
& \sigma^{2} v=-S v \mid \epsilon
\end{aligned}
$$

poinoris equation $\sigma^{2} v=-\delta v / \epsilon v / m$

$$
\nabla^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=\frac{1}{p}, q(m, \varnothing, z)
$$

Cylindrical Coordinate Sytermi $p(\rho, \phi, z)$
Laplace in cquation $\nabla^{2} v=o^{11} \mathrm{~N}_{m^{2}} d v=\rho d \rho d \phi d z$.

$$
\begin{aligned}
& \pi^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial v}{\partial \rho}\right]+\frac{1}{\rho^{2}} \frac{\partial^{2} v}{\partial \phi^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0
\end{aligned} \quad v / m^{2}
$$

poimorin equation $\nabla^{2} V=-\rho_{V} / \epsilon v / \mathrm{m}^{2}$

$$
\left.\nabla^{2} V=\frac{\partial}{\rho \rho} \frac{\partial v}{\partial \rho}\right]+\frac{1}{\rho^{2}} \frac{\gamma^{2} v}{\partial \phi^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=-\delta v / \epsilon V_{m^{2}}
$$

Spherical cordinate System: $p(r, \theta, \phi)$ $d x=r^{2} \sin \theta d r d \theta d \phi$
Laplacen equ $\nabla^{2} V=0 \mathrm{~V} / \mathrm{m}^{2}$

$$
\begin{align*}
& \text { aplace.n"eq } \nabla^{2} V=0 v / m^{2} \tag{144}\\
& \nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial v}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial v}{\partial \theta}\right]+\frac{1}{\gamma^{2} \sin ^{2} \theta^{\prime}} \frac{\partial^{2} v}{\partial \phi^{2}}=0 \\
& \text { botmorinequ } \nabla^{2} V=-s v / \epsilon-v / m^{2}
\end{align*}
$$

potmorinequ $\nabla^{2} V=-s_{v} / \mathcal{L}^{v} / \mathrm{m}^{2}$

Dept. of E\&CE., SVCE

$$
\begin{aligned}
& \nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial V}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial V}{\partial \theta}\right]+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}} \\
&=-\rho V / \epsilon-v / m^{2}
\end{aligned}
$$

6. i.
i. V-operator $P(x, y, z)$.

$$
\nabla=\frac{\partial}{\partial x} \overline{a_{x}}+\frac{\partial}{\partial y} \bar{a}_{y}+\frac{\partial}{\partial z} \overline{a_{z}} n^{-1} \text {. }
$$

ii. Gradient $V=f^{\prime \prime}(x, y, z) \Rightarrow$ scalarg4. potential.
; Resulth

$$
\bar{C} \nabla V=\frac{\partial v}{\partial x} \overline{a_{x}}+\frac{\partial v}{\partial y} \bar{a}_{y}+\frac{\partial v}{\partial z} \bar{a}_{z}, v / m \text {. quantily. }
$$

iiii. Divergence $(\nabla \cdot \overrightarrow{0})$. \bar{D}-Elutricedensing cm^{2}.
let $\bar{D}=A_{x} \overline{a_{x}}+D_{y} \bar{a}_{y}+D_{z}{\overline{a_{z}}}_{z} \cdot \mathrm{~cm}^{2}$

$$
\begin{array}{r}
\text { let } \bar{D}=\Delta x a_{x}+\frac{\partial D}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial D_{z}}{\partial z} \Rightarrow m_{m^{3}} \text { scalar. } \\
\nabla \cdot \bar{D}=\frac{\text { Rulkh }}{} .
\end{array}
$$

iV. Curl $(\nabla \times \bar{D})$

$$
\nabla \times \bar{D}=\left|\begin{array}{lll}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
D_{x} & D_{y} & D_{z}
\end{array}\right| \Rightarrow \text { frimith } \quad \begin{aligned}
& \text { fict }
\end{aligned}
$$

V. Lapaces. equation.

$$
\begin{aligned}
& \text { Lapaces. equation. } \\
& \square^{2} v=0
\end{aligned}: \frac{\partial^{2} v}{\partial a^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0 \Rightarrow \text { Scalar }
$$

V. poimorin Equation.

$$
\begin{aligned}
& \text { poimoris Equation. } \\
& \nabla^{2} v=-\left.\rho v\right|_{E}
\end{aligned} v / m^{2} \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=-\xi v / E ; / m^{2}
$$

B. Eylindrical Co-ordinate System

$$
d v=\rho d \rho d \rho d_{2}
$$

$$
\begin{aligned}
& p(s, \phi, z) \\
& \left.d s{ }_{\rho d \phi}\right) d z
\end{aligned}
$$

i. ∇ operator

$$
\nabla=\frac{\partial}{\partial s} \bar{a}_{\rho}+\frac{1}{j} \frac{\partial}{\partial \phi} \bar{a}_{\phi}+\frac{\partial}{\partial z} \bar{a}_{z} ; m^{-1} \quad \text { vator } \quad \text { oprator. }
$$

ii. Gradient: $\nabla V \rightarrow V / m$

$$
\sigma v=\frac{\partial v}{\partial \rho} \bar{a}_{\rho}+\frac{1}{\rho} \frac{\partial v}{\partial \phi} \bar{a}_{\phi}+\frac{\partial v}{\partial z} \bar{a}_{3}, v / m
$$

iii. Divergenceof $\bar{D} \theta \cdot \bar{D}<_{\operatorname{cm}^{3}}$
ut Elutricflux dinsity $\bar{D}=D_{1} \bar{a}_{9}+D_{\phi} \overline{a_{\varphi}}+D_{3} \bar{a}_{2} \mathrm{~cm}^{2}$

$$
\left.\nabla \cdot \bar{p}=\frac{1}{\rho} \frac{\partial}{\partial s}\left[\rho_{\rho} \cdot D_{\rho}\right]+\frac{1}{\rho} \cdot \frac{\partial p_{\phi}}{\partial \phi}+\frac{\partial D_{z}}{\partial z}\right] \ln ^{3}{ }^{\text {Renulth }} \text { Scalar }
$$

iv. Lul $\triangle \times \cdot \bar{H}$
ut $\bar{H}=H_{\rho} \overline{a_{9}}+H_{\phi} \overline{a_{\varphi}}+H_{z} \bar{a}_{z} A A_{m}$

$$
\nabla \times \bar{H}=\left.\frac{1}{\rho}\left|\begin{array}{lll}
\text { ut } \\
H & =H_{\rho} \bar{a}_{\rho}+H_{\phi} & a_{\phi}+a_{z} \\
\bar{a}_{\rho} & \rho a_{\phi} & \bar{a}_{z} \\
\partial / \gamma & \partial / \partial \phi & \rho_{\partial \alpha} \\
H_{\rho} & \rho H_{\phi} & H_{z}
\end{array}\right| A\right|_{m} ^{2}
$$

V.. pormorin and Laplacin equation

Laplary" $\nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial v}{\partial \rho}\right]+\frac{1}{\rho^{2}} \frac{\partial^{2} v}{\partial \phi^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0 \mathrm{v} / \mathrm{m}^{2}$
C. Spherical Co.ordinate syttem

$$
\begin{aligned}
& p(r, \theta, \phi) \\
& d \gamma \frac{1}{\gamma d \theta}
\end{aligned} \psi_{r \sin \theta d \phi}
$$

$$
d v=r^{2} \sin \theta d r d \theta d \phi .
$$

i. ∇ operator

$$
\nabla=\frac{\partial}{\partial r} \overline{a_{r}}+\frac{1}{r} \frac{\partial}{\partial \theta} \overline{a_{\theta}}+\frac{1}{r \sin \theta} \overline{a_{\phi}} ; n^{-1} \text { Vperator }
$$

ii. Gradient $\nabla V \rightarrow V_{m}$.

$$
\nabla v=\frac{\partial v}{\partial r} \overline{a_{r}}+\frac{1}{r} \frac{\partial v}{\partial \theta} \overline{a_{\theta}}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \overline{a_{\phi}} \text { v/m in mator. }
$$

iie:. Divergence $\bar{\square} \bar{D} \mathrm{~cm}^{3}$
iv. Lurl $\nabla \times \bar{H} \quad A_{m}{ }^{2}$. let $\bar{H}=H_{r} \overline{a r}+H_{Q} \overline{a_{\phi}}+H_{\phi} \overline{a_{\varphi}}$

$$
\left.\begin{array}{|l|lll|}
\hline \sum \times H=\frac{1}{r \sin \theta}\left|\begin{array}{lll}
\text { ar } & r \bar{a}_{\theta} & r \sin \theta a_{\phi} \\
\gamma / \partial r & r / r \theta & \partial / \partial \phi \\
H_{r} & \left(r H_{\theta}\right) & \left(r \sin t t_{\phi}\right)
\end{array}\right|
\end{array} \right\rvert\,
$$

T. Poimorin and Laplaisin cq:

$$
\nabla^{2} v=-f_{v} / G \mathrm{~m}^{2}+\overline{\mathrm{v}}^{2} v_{2} \quad v / m^{2}
$$

Lapare eq"

$$
\frac{\text { Dept. of EECE, SVCE }}{\left.\frac{\nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial V}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial V}{\partial \theta}\right]+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}}{}=0\right]} 147 / m^{2}
$$

Algebra

Factoring Formulas

Real numbers: $\mathrm{a}, \mathrm{b}, \mathrm{c}$
Natural number: n

$$
\begin{aligned}
& a^{2}-b^{2}=(a+b)(a-b) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{4}-b^{4}=\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)=(a-b)(a+b)\left(a^{2}+b^{2}\right) \\
& a^{5}-b^{5}=(a-b)\left(a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}\right) \\
& a^{5}+b^{5}=(a+b)\left(a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4}\right)
\end{aligned}
$$

If n is odd, then
$a^{n}+b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}-\ldots-a b^{n-2}+b^{n-1}\right)$.
If n is even, then
$a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+a b^{n-2}+b^{n-1}\right)$,

$$
a^{n}+b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}-\ldots+a b^{n-2}-b^{n-1}\right)
$$

Product Formulas

Real numbers: $\mathrm{a}, \mathrm{b}, \mathrm{c}$ Whole numbers: n, k

$$
\begin{aligned}
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

Binomial Formula

$(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$, where ${ }^{n} C_{k}=\frac{n!}{k!(n-k)!}$ are the binomial coefficients.

$$
\begin{aligned}
& (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c \\
& (a+b+c+\ldots+u+v)^{2}=a^{2}+b^{2}+c^{2}+\ldots+u^{2}+v^{2}+ \\
& \quad+2(a b+a c+\ldots+a u+a v+b c+\ldots+b u+b v+\ldots+u v)
\end{aligned}
$$

Square

Side of a square: a
Diagonal: d
Radius of circumscribed circle: \mathbf{R}
Radius of inscribed circle: r
Perimeter: L

Area: S

Figure

. $\mathrm{d}=\mathrm{a} \sqrt{2}$
$\because R=\frac{\mathrm{d}}{2}=\frac{\mathrm{a} \sqrt{2}}{2}$
$\therefore r=\frac{a}{2}$
? $\mathrm{L}=4 \mathrm{a}$

$$
\mathrm{S}=\mathrm{a}^{2}
$$

Rectangle

Sides of a rectangle: a, b
Diagonal: d
Radius of circumscribed circle: \mathbf{R}
Perimeter: L
Area: S

$$
\mathrm{d}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}
$$

15)

$$
\begin{aligned}
R & =\frac{d}{2} \\
L & =2(a+b) \\
S & =a b
\end{aligned}
$$

Parallelogram

Sides of a parallelogram: a, b
Diagonals: $\mathrm{d}_{1}, \mathrm{~d}_{2}$
Consecutive angles: α, β
Angle between the diagonals: φ
Altitude: h
Perimeter: L
Area: S

Figure 18.

- $\alpha+\beta=180^{\circ}$
- $\mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}=2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$

$$
\begin{aligned}
& h=b \sin \alpha=b \sin \beta \\
& L=2(a+b) \\
& S=a h=a b \sin (\alpha) \\
& S=\frac{1}{2} d_{1} d_{2} \sin \phi .
\end{aligned}
$$

Regular Hexagon

Side: a
Internal angle: α
Slant height: m
Radius of inscribed circle: r
Radius of circumscribed circle: R
Perimeter: L
Semiperimeter: p
Area: S

Figure
$\alpha=120^{\circ}$
$r=m=\frac{a \sqrt{3}}{2}$

$$
\mathrm{R}=\mathrm{a}
$$

$$
\mathrm{L}=6 \mathrm{a}
$$

$$
\mathrm{S}=\mathrm{pr}=\frac{\mathrm{a}^{2} 3 \sqrt{3}}{2}
$$

$$
\text { where } \mathrm{p}=\frac{\mathrm{L}}{2} \text {. }
$$

Regular Polygon

Side: a
Number of sides: n

Internal angle: α
Slant height: m
Radius of inscribed circle: r
Radius of circumscribed circle: R
Perimeter: L
Semiperimeter: p
Area: S
GEOMETRY

Figure

$$
\begin{aligned}
& \alpha=\frac{n-2}{2} \cdot 180^{\circ} \\
& \alpha=\frac{n-2}{2} \cdot 180^{\circ} \\
& R=\frac{a}{2 \sin \frac{\pi}{n}}
\end{aligned}
$$

$$
\mathrm{r}=\mathrm{m}=\frac{\mathrm{a}}{2 \tan \frac{\pi}{\mathrm{n}}}=\sqrt{\mathrm{R}^{2}-\frac{\mathrm{a}^{2}}{4}}
$$

$$
\mathrm{L}=\mathrm{na} \mathbf{a}
$$

$$
\mathrm{S}=\frac{\mathrm{nR}}{2} \frac{2}{2} \sin \frac{2 \pi}{\mathrm{n}},
$$

$$
S=\mathrm{pr}=\mathrm{p} \sqrt{\mathrm{R}^{2}-\frac{\mathrm{a}^{2}}{4}}
$$

where $P=\frac{1}{2}$

Cube

Edge: a
Diagonal: d
Radius of inscribed sphere: r
Radius of circumscribed sphere: r
Surface area: S
Volume: V

Figure 37.
275. $\mathrm{d}=\mathrm{a} \sqrt{3}$

$$
R=\frac{a \sqrt{3}}{2}
$$

276. $\mathrm{r}=\frac{\mathrm{a}}{2}$

$$
S=6 a^{2}
$$

$$
V=a^{3}
$$

.)

Circle

Radius: \mathbf{R}
Diameter: d
Chord: a
Secant segments: e, f
Tangent segment: g
Central angle: α
Inscribed angle: β
Perimeter: L
Area: S
$a=2 R \sin \frac{\alpha}{2}$

perimeter $\alpha=2 \pi h=\pi d$
Figure

$$
\begin{aligned}
\text { Area } S & =\pi R^{2}=\frac{\pi d^{2}}{4} \\
& =\frac{L B_{2}}{2}=m^{2}
\end{aligned}
$$

$15 x$

Sphere

Radius: R
Diameter: d
Surface area: S
Volume: V

Figure : .
$S=4 \pi R^{2}$
$\mathrm{V}=\frac{4}{3} \pi \mathrm{R}^{3} \mathrm{H}=\frac{1}{6} \pi \mathrm{~d}^{3}=\frac{1}{3} \mathrm{SR}$

Spherical Cap

Radius of sphere: R
Radius of base: r
Height: h
Area of plane face: S_{B}
Area of spherical cap: S_{C}
Total surface area: S
Volume: V

158

Figure .

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{r}^{2}+\mathrm{h}^{2}}{2 h} \\
& \mathrm{~S}_{\mathrm{B}}=\pi \mathrm{r}^{2} \\
& \mathrm{~S}_{\mathrm{C}}=\pi\left(\mathrm{h}^{2}+\mathrm{r}^{2}\right) \\
& \mathrm{S}=\mathrm{S}_{\mathrm{B}}+\mathrm{S}_{\mathrm{C}}=\pi\left(\mathrm{h}^{2}+2 \mathrm{r}^{2}\right)=\pi\left(2 \mathrm{Rh}+\mathrm{r}^{2}\right) \\
& \mathrm{V}=\frac{\pi}{6} h^{2}(3 \mathrm{R}-\mathrm{h})=\frac{\pi}{6} \mathrm{~h}\left(3 \mathrm{r}^{2}+\mathrm{h}^{2}\right)
\end{aligned}
$$

Radius of base of spherical cap: r Height:h
Total/surface area: S
Volume: V

Right Circular Cylinder:.

. GEOMETRY

Height: H
Lateral surface area: S_{L}
Area of base: S_{B}
Total surface area: S
Volume: V

$$
\begin{aligned}
& \text { Radius of bone: } R \\
& \text { Diameter of bare: } d
\end{aligned}
$$

Figure .
$S_{\mathrm{L}}=2 \pi \mathrm{RH}$
$S=S_{i}+2 S_{B}=2 \pi R(H+R)=\pi d\left(H+\frac{d}{2}\right)$
$V=S_{B} H=\pi R^{2} H$

Trigonometric Functions of Common

 Angles| α° | $\alpha \mathrm{rad}$ | $\sin \alpha$ | $\cos \alpha$ | $\tan \alpha$ | $\cot \alpha$ | $\sec \alpha$ | $\operatorname{cosec} \alpha$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | ∞ | 1 | ∞ |
| 30 | $\frac{\pi}{6}$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}}$ | $\sqrt{3}$ | $\frac{2}{\sqrt{3}}$ | 2 |
| 45 | $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1 | 1 | $\sqrt{2}$ | $\sqrt{2}$ |
| 60 | $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\sqrt{3}$ | $\frac{1}{\sqrt{3}}$ | 2 | $\frac{2}{\sqrt{3}}$ |
| 90 | $\frac{\pi}{2}$ | 1 | 0 | ∞ | 0 | ∞ | 1 |
| 120 | $\frac{2 \pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $-\frac{1}{2}$ | $-\sqrt{3}$ | $-\frac{1}{\sqrt{3}}$ | -2 | $\frac{2}{\sqrt{3}}$ |
| 180 | π | 0 | -1 | 0 | ∞ | -1 | ∞ |
| 270 | $\frac{3 \pi}{2}$ | -1 | 0 | ∞ | 0 | ∞ | -1 |
| 360 | $\frac{2 \pi}{2 \pi}$ | 0 | 1 | 0 | ∞ | 1 | ∞ |

$$
\begin{array}{lll}
\cos ^{2} A+\sin ^{2} A=1 & \sec ^{2} A-\tan ^{2} A=1 & \operatorname{cosec}^{2} A-\cot ^{2} A=1 \\
\sin 2 A=2 \sin A \cos A & \cos 2 A=\cos ^{2} A-\sin ^{2} A & \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{array}
$$

$$
\begin{array}{ll}
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B & \cos A \cos B=\frac{\cos (A+B)+\cos (A-B)}{2} \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B & \sin A \sin B=\frac{\cos (A-B)-\cos (A+B)}{2} \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} & \sin A \cos B=\frac{\sin (A+B)+\sin (A-B)}{2}
\end{array}
$$

$$
\begin{array}{ll}
\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} & \cos ^{2} A=\frac{1+\cos 2 A}{2} \\
\sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} & \sin ^{2} A=\frac{1-\cos 2 A}{2} \\
\cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} & \cos ^{3} A=\frac{3 \cos A+\cos 3 A}{4} \\
\cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} & \sin ^{3} A=\frac{3 \sin A-\sin 3 A}{4}
\end{array}
$$

Relations between sides and angles of any plane triangle

In a plane triangle with angles A, B, and C and sides opposite a, b, and c respectively,

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\text { diameter of circumscribed circle. } \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& a=b \cos C+c \cos B \\
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2} \\
& \text { area }=\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} c a \sin B=\sqrt{s(s-a)(s-b)(s-c)}, \quad \text { where } s=\frac{1}{2}(a+b+c)
\end{aligned}
$$

Relations between sides and angles of any spherical triangle

In a spherical triangle with angles A, B, and C and sides opposite a, b, and c respectively,

$$
\begin{aligned}
& \frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C} \\
& \cos a=\cos b \cos c+\sin b \sin c \cos A \\
& \cos A=-\cos B \cos C+\sin B \sin C \cos a
\end{aligned}
$$

162
$\cosh x=\frac{1}{2}\left(e^{x}+\mathrm{e}^{-x}\right)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots$
$\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots$
$\cosh \mathrm{i} x=\cos x$
$\sinh \mathrm{i} x=\mathrm{i} \sin x$
$\tanh x=\frac{\sinh x}{\cosh x}$
$\operatorname{coth} x=\frac{\cosh x}{\sinh x}$
$\cos \mathrm{i} x=\cosh x$
$\sin \mathrm{i} x=\mathrm{i} \sinh x$
$\operatorname{sech} x=\frac{1}{\cosh x}$
$\operatorname{cosech} x=\frac{1}{\sinh x}$

For large positive x :

$$
\begin{aligned}
& \cosh x \approx \sinh x \rightarrow \frac{\mathrm{e}^{x}}{2} \\
& \tanh x \rightarrow 1
\end{aligned}
$$

For large negative x :

$$
\begin{aligned}
& \cosh x \approx-\sinh x \rightarrow \frac{\mathrm{e}^{-x}}{2} \\
& \tanh x \rightarrow-1
\end{aligned}
$$

Relations of the functions

$$
\begin{array}{ll}
\sinh x=-\sinh (-x) & \operatorname{sech} x=\operatorname{sech}(-x) \\
\cosh x=\cosh (-x) & \operatorname{cosech} x=-\operatorname{cosech}(-x) \\
\tanh x=-\tanh (-x) & \operatorname{coth} x=-\operatorname{coth}(-x) \\
\sinh x=\frac{2 \tanh (x / 2)}{1-\tanh ^{2}(x / 2)}=\frac{\tanh x}{\sqrt{1-\tanh ^{2} x}} & \cosh x=\frac{1+\tanh ^{2}(x / 2)}{1-\tanh ^{2}(x / 2)}=\frac{1}{\sqrt{1-\tanh ^{2} x}} \\
\tanh x=\sqrt{1-\operatorname{sech}^{2} x} & \operatorname{sech} x=\sqrt{1-\tanh ^{2} x} \\
\operatorname{coth} x=\sqrt{\operatorname{cosech}^{2} x+1} & \operatorname{cosech} x=\sqrt{\operatorname{coth}^{2} x-1} \\
\sinh (x / 2)=\sqrt{\frac{\cosh ^{2}-1}{2}} & \cosh (x / 2)=\sqrt{\frac{\cosh ^{2} x+1}{2}} \\
\tanh (x / 2)=\frac{\cosh x-1}{\sinh x}=\frac{\sinh x}{\cosh x+1} & \tanh \left(2=\frac{2 \tanh ^{1+\tanh ^{2} x}}{}\right. \\
\sinh (2 x)=2 \sinh x \cosh ^{2} & \cosh 3 x=4 \cosh ^{3} x-3 \cosh x \\
\cosh (2 x)=\cosh ^{2} x-\sinh ^{2} x=2 \cosh ^{2} x-1=1+2 \sinh x \\
\sinh (3 x)=3 \sinh x+4 \sinh ^{3} x &
\end{array}
$$

$\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$
$\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$
$\tanh (x \pm y)=\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$
$\sinh x+\sinh y=2 \sinh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y) \quad \cosh x+\cosh y=2 \cosh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$
$\sinh x-\sinh y=2 \cosh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y) \quad \cosh x-\cosh y=2 \sinh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$
$\sinh x \pm \cosh x=\frac{1 \pm \tanh (x / 2)}{1 \mp \tanh (x / 2)}=\mathrm{e}^{ \pm x}$
$\tanh x \pm \tanh y=\frac{\sinh (x \pm y)}{\cosh x \cosh y}$
$\operatorname{coth} x \pm \operatorname{coth} y= \pm \frac{\sinh (x \pm y)}{\sinh x \sinh y}$

Inverse functions

$\begin{array}{lr}\sinh ^{-1} \frac{x}{a}=\ln \left(\frac{x+\sqrt{x^{2}+a^{2}}}{a}\right) & \text { for }-\infty<x<\infty \\ \cosh ^{-1} \frac{x}{a}=\ln \left(\frac{x+\sqrt{x^{2}-a^{2}}}{a}\right) & \text { for } x \geq a \\ \tanh ^{-1} \frac{x}{a}=\frac{1}{2} \ln \left(\frac{a+x}{a-x}\right) & \text { for } x^{2}<a^{2} \\ \operatorname{coth}^{-1} \frac{x}{a}=\frac{1}{2} \ln \left(\frac{x+a}{x-a}\right) & \text { for } x^{2}>a^{2} \\ \operatorname{sech}^{-1} \frac{x}{a}=\ln \left(\frac{a}{x}+\sqrt{\frac{a^{2}}{x^{2}}-1}\right) & \text { for } 0<x \leq a \\ \operatorname{cosech}^{-1} \frac{x}{a}=\ln \left(\frac{a}{x}+\sqrt{\frac{a^{2}}{x^{2}}+1}\right) & \text { for } x \neq 0\end{array}$

8. Limits

$n^{c} x^{n} \rightarrow 0$ as $n \rightarrow \infty$ if $|x|<1$ (any fixed c)
$x^{n} / n!\rightarrow 0$ as $n \rightarrow \infty$ (any fixed x)
$(1+x / n)^{n} \rightarrow \mathrm{e}^{x}$ as $n \rightarrow \infty, x \ln x \rightarrow 0$ as $x \rightarrow 0$
If $f(a)=g(a)=0 \quad$ then $\quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)} \quad$ (l'Hôpital's rule)

Differentiation

$$
\begin{array}{rlrl}
(u v)^{\prime}=u^{\prime} v+u v^{\prime}, \quad\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
(u v)^{(n)}=u^{(n)} v+n u^{(n-1)} v^{(1)}+\cdots+{ }^{n} C_{r} u^{(n-r)} v^{(r)}+\cdots+u v^{(n)} \\
\text { where }{ }^{n} C_{r} \equiv\binom{n}{r}=\frac{n!}{r!(n-r)!} & & \\
& \frac{\mathrm{d}}{\frac{\mathrm{~d} x}{}(\sin x)}=\cos x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\sinh x) & =\cosh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x) & =-\sin x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\cosh x) & =\sinh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\tan x) & =\sec ^{2} x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\tanh x) & =\operatorname{sech}^{2} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\sec x) & =\sec x \tan x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{sech} x) & =-\operatorname{sech}^{2} x \tanh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\cot x) & =-\operatorname{cosec}{ }^{2} x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{coth} x) & =-\operatorname{cosech}{ }^{2} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{cosec} x) & =-\operatorname{cosec} x \cot x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{cosech} x) & =-\operatorname{cosech} x \operatorname{coth} x
\end{array}
$$

10. Integration

Standard forms

$$
\begin{aligned}
& \int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c \\
& \int \frac{1}{x} \mathrm{~d} x=\ln x+c \quad \int \ln x \mathrm{~d} x=x(\ln x-1)+c \\
& \int \mathrm{e}^{a x} \mathrm{~d} x=\frac{1}{a} \mathrm{e}^{a x}+c \quad \int x \mathrm{e}^{a x} \mathrm{~d} x=\mathrm{e}^{a x}\left(\frac{x}{a}-\frac{1}{a^{2}}\right)+c \\
& \int x \ln x \mathrm{~d} x=\frac{x^{2}}{2}\left(\ln x-\frac{1}{2}\right)+c \\
& \int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\
& \int \frac{1}{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{a} \tanh ^{-1}\left(\frac{x}{a}\right)+c=\frac{1}{2 a} \ln \left(\frac{a+x}{a-x}\right)+c \quad \text { for } x^{2}<a^{2} \\
& \int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x=-\frac{1}{a} \operatorname{coth}^{-1}\left(\frac{x}{a}\right)+c=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right)+c \\
& \int \frac{x}{\left(x^{2} \pm a^{2}\right)^{n}} \mathrm{~d} x=\frac{-1}{2(n-1)} \frac{1}{\left(x^{2} \pm a^{2}\right)^{n-1}}+c \\
& \int \frac{x}{x^{2} \pm ?^{2}} \mathrm{~d} x=\frac{1}{2} \ln \left(x^{2} \pm a^{2}\right)+c \\
& \int \frac{i}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x=\sin ^{-1}\left(\frac{x}{a}\right)+c \\
& \int \frac{1}{\sqrt{x^{2} \pm a^{2}}} \mathrm{~d} x=\ln \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c \\
& \int \frac{x}{\sqrt{x^{2} \pm a^{2}}} \mathrm{~d} x=\sqrt{x^{2} \pm a^{2}}+c \\
& \int \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{2}\left[x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]+c \\
& \text { for } n \neq-1 \\
& \text { dor } x^{2}>a \\
& \text { for } n \neq 1
\end{aligned}
$$

```
\(\int_{0}^{\infty} \frac{1}{(1+x) x^{\mu}} \mathrm{d} x=\pi \operatorname{cosec} p \pi\)
                                    for \(p<1\)
\(\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) \mathrm{d} x=\frac{1}{2} \sqrt{\frac{\pi}{2}}\)
\(\int_{-\infty}^{\infty} \exp \left(-x^{2} / 2 \sigma^{2}\right) \mathrm{d} x=\sigma \sqrt{2 \pi}\)
\(\int^{\infty} x^{n} \exp \left(-x^{2} / 2 \sigma^{2}\right) \mathrm{d} x= \begin{cases}1 \times 3 \times 5 \times \cdots(n-1) \sigma^{n+1} \sqrt{2 \pi} & \text { for } n \geq 2 \text { and even }\end{cases}\)
\(\int_{-\infty}^{\infty} x^{n} \exp \left(-x^{2} / 2 \sigma^{2}\right) \mathrm{d} x= \begin{cases}1 \times 3 \times 5 \times \\ 0 & \text { for } n \geq 1 \text { and odd }\end{cases}\)
\(\int \sin x \mathrm{~d} x=-\cos x+c \quad \int \sinh x \mathrm{~d} x=\cosh x+c\)
\(\int \cos x \mathrm{~d} x=\sin x+c \quad \int \cosh x \mathrm{~d} x=\sinh x+c\)
\(\int \tan x \mathrm{~d} x=-\ln (\cos x)+c \quad \int \tanh x \mathrm{~d} x=\ln (\cosh x)+c\)
\(\int \operatorname{cosec} x \mathrm{~d} x=\ln (\operatorname{cosec} x-\cot x)+c \quad \int \operatorname{cosech} x \mathrm{~d} x=\ln [\tanh (x / 2)]+c\)
\(\int \sec x \mathrm{~d} x=\ln (\sec x+\tan x)+c \quad \int \operatorname{sech} x \mathrm{~d} x=2 \tan ^{-1}\left(\mathrm{e}^{x}\right)+c\)
\(\int \cot x \mathrm{~d} x=\ln (\sin x)+c \quad \int \operatorname{coth} x \mathrm{~d} x=\ln (\sinh x)+c\)
\(\int \sin m x \sin n x \mathrm{~d} x=\frac{\sin (m-n) x}{2(m-n)}-\frac{\sin (m+n) x}{2(m+n)}+c\)
\(\int \cos m x \cos n x d x=\frac{\sin (m-n) x}{2(m-n)}+\frac{\sin (m+n) x}{2(m+n)}+c\)
```


Standard substitutions

```
If the integrand is a function of
\[
\begin{array}{ll}
\left(a^{2}-x^{2}\right) \text { or } \sqrt{a^{2}-x^{2}} & x=a \sin \theta \text { or } x=a \cos \theta \\
\left(x^{2}+a^{2}\right) \text { or } \sqrt{x^{2}+a^{2}} & x=a \tan \theta \text { or } x=a \sinh \theta \\
\left(x^{2}-a^{2}\right) \text { or } \sqrt{x^{2}-a^{2}} & x=a \sec \theta \text { or } x=a \cosh \theta
\end{array}
\]
substitute:
```


if $m^{2} \neq n^{2}$
if $m^{2} \neq n^{2}$

If the integrand is a rational function of $\sin x$ or $\cos x$ or both, substitute $t=\tan (x / 2)$ and use the results:

$$
\sin x=\frac{2 t}{1+t^{2}} \quad \cos x=\frac{1-t^{2}}{1+t^{2}} \quad \mathrm{~d} x=\frac{2 \mathrm{~d} t}{1+t^{2}} .
$$

If the integrand is of the form: substitute:

$$
\begin{array}{ll}
\int \frac{\mathrm{d} x}{(a x+b) \sqrt{p x+q}} & p x+q=u^{2} \\
\int \frac{\mathrm{~d} x}{(a x+b) \sqrt{p x^{2}+q x+r}} & a x+\dot{b}=-\frac{1}{u} .
\end{array}
$$

Integration by parts

$$
\int_{a}^{b} u \mathrm{~d} v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v \mathrm{~d} u
$$

Differentiation of an integral

If $f(x, \alpha)$ is a function of x containing a parameter α and the limits of integration a and b are functions of α then

$$
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \int_{a(\alpha)}^{b(\alpha)} f(x, \alpha) \mathrm{d} x=f(b, \alpha) \frac{\mathrm{d} b}{\mathrm{~d} \alpha}-f(a, \alpha) \frac{\mathrm{d} a}{\mathrm{~d} \alpha}+\int_{a(\alpha)}^{b(\alpha)} \frac{\partial}{\partial \alpha} f(x, \alpha) \mathrm{d} x .
$$

Special case,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} f(y) \mathrm{d} y=f(x)
$$

Dirac δ-'function'

$$
\delta(t-\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp [i \omega(t-\tau)] d \omega .
$$

If $f(t)$ is an arbitrary function of t then $\int_{-\infty}^{\infty} \delta(t-\tau) f(t) \mathrm{d} t=f(\tau)$.
$\delta(t)=0$ if $t \neq 0$, also $\int_{-\infty}^{\infty} \delta(t) \mathrm{d} t=1$

Reduction formulae

Factorials
$n!=n(n-1)(n-2) \ldots 1, \quad 0!=1$.
Stirling's formula for large $n: \quad \ln (n!) \approx n \ln n-n$.
For any $p>-1, \int_{0}^{\infty} x^{p} \mathrm{e}^{-x} \mathrm{~d} x=p \int_{0}^{\infty} x^{p-1} \mathrm{e}^{-x} \mathrm{~d} x=p!. \quad(-1 / 2)!=\sqrt{\pi}, \quad(1 / 2)!=\sqrt{\pi} / 2$, etc.
For any $p, q>-1, \int_{0}^{1} x^{p}(1-x)^{q} \mathrm{~d} x=\frac{p!q!}{(p+q+1)!}$.
Trigonometrical

If m, n are integers,

$$
\int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n} \theta \mathrm{~d} \theta=\frac{m-1}{m+n} \int_{0}^{\pi / 2} \sin ^{m-2} \theta \cos ^{n} \theta \mathrm{~d} \theta=\frac{n-1}{m+n} \int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n-2} \theta \mathrm{~d} \theta
$$

and can therefore be reduced eventually to one of the following integrals

$$
\int_{0}^{\pi / 2} \sin \theta \cos \theta \mathrm{~d} \theta=\frac{1}{2}, \quad \int_{0}^{\pi / 2} \sin \theta \mathrm{~d} \theta=1, \quad \int_{0}^{\pi / 2} \cos \theta \mathrm{~d} \theta=1, \quad \int_{0}^{\pi / 2} \mathrm{~d} \theta=\frac{\pi}{2}
$$

Other
If $I_{n}=\int_{0}^{\infty} x^{n} \exp \left(-\alpha x^{2}\right) \mathrm{d} x \quad$ then $\quad I_{n}=\frac{(n-1)}{2 \alpha} I_{n-2}, \quad I_{0}=\frac{1}{2} \sqrt{\frac{\pi}{\alpha}}, \quad I_{1}=\frac{1}{2 \alpha}$.

Importantivector Identicu ched
ut \bar{A} - be the general vator.

1. $\nabla \cdot(\nabla \times \bar{A})=0 \quad$... wed in incorsintency of

Amparin Law. (module-5A)
2. $\nabla \times(\nabla \times \bar{A})=\nabla \cdot(\square \bar{A})-\nabla^{2} \bar{A}=$ uned in Alave oq 4 duvivation (m-5B)
$3 \cdot \bar{J} \cdot(\bar{A} \times \bar{B})=\bar{B} \cdot(\nabla \times \bar{A})-\bar{A} \cdot(\nabla \times \bar{B})$...ched in - poynting theorem proof.
4. $\bar{A} \cdot \frac{\partial \vec{A}}{\partial t}=\frac{1}{2} \frac{\partial A^{2}}{\partial t}-$ ued in poynting therom $\begin{array}{r}\text { proof. }(m-5 B)\end{array}$
5. let vator $\bar{A}=v_{d} \nabla v_{d}$

$$
\nabla \cdot \bar{A}=\sigma \cdot\left(v_{d} \nabla v_{a}\right)=v_{d} a^{2} v_{d}+\nabla v_{d} \cdot \nabla v_{d} \text {..ched }
$$ in Uniquenen theoren (M3)

6. Divergence theorm

$$
\left.\oint_{\langle S\rangle} \bar{A} \cdot \overline{d s}=\int\left(v_{0}\right\rangle \bar{A}\right) d v .\left(m_{2}\right)
$$

7. stokintheorm $\oint_{\langle\lambda\rangle} \bar{A} \cdot \overline{d l}=\int_{\langle S\rangle}(\nabla \times \bar{A}) \cdot \overline{d S} \cdot[\mid M B B]$
8. $\nabla \cdot(V \bar{D})=V \nabla \cdot \bar{D}+\bar{D} \nabla V \ldots$ ched in Energy. density in clutrostatic
field $\left[M_{2}\right]$

$$
C=\frac{1}{2} G E^{2} \mathrm{~J} / \mathrm{m}^{3}
$$

by imagnatic Energy densily

$$
e_{m}=\frac{1}{2} \mu H^{2} \mathrm{~J} / m^{3}
$$

q. Bernoulis theorem.

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2} x^{2}+\frac{n(n-1)(n-2)}{31} x^{3}+\cdots
$$

$$
\text { if }|x|<1 \text {. }[M 5 B]
$$

Module 1: Coulomb's Law, Electric Field Intensity and Fiux density Experimental law of Coulomb, Electric field intensity, Field due to continuous volume charge distribution, Field of a line charge, Electric flux density.

Topics:

Dankan V Gowda Mrech,(Ph.D) Assistant Professor, Dept. of E\&CE
Email:dankan.ece@svcengg.com
1.1 Coulombs Law
a. Statement
b. Vector form of Coulombs Law.
\checkmark Solved Problems
c. Force due to N -number of point charges
\checkmark Solved Problems
d. Applications of Coulomb's Law
e. Limitation of Coulomb's Law
1.2 Types of Charge Distribution
a. Point charge distribution
b. Line charge density
c. Surface charge density
d. Volume charge density
\checkmark Solved Problems
1.3 Electric Field Intensity
a. Definition of Electric Field Intensity
b. Field due to point charge
c. Field due to N -number of point charges
\checkmark Solved Problems
d.Field due to infinite line charge.
e. Field due to infinite sheet charge.

Solved Problems
f. Field due to various charge distribution (point, line, surface, volume) \checkmark Solved Problems

1.4 Electric Flux Density

a. Definition of Electric Flux and its properties
b. Definition of Electric Flux density
c. Electric Flux density due to point charge
d. Relationship b / w electric field intensity and electric flux density.
e. Electric Flux density due to infinite line charge and infinite sheet charge
f. Flux density due to various charge distributions
\checkmark Solved Problems
Summary

- List of Symbols
- List of Formulae

1- Ia Coulomb's Law
Question \rightarrow State and explain Coulomb bis Law. clearly

- indicate the unit of quantities cred in the force equation. [O2-Dec [Ja n-2009(6m)] [06- $\operatorname{Dec} / \operatorname{Jan} 2009(6 \mathrm{~m})]$.
(or)
\rightarrow State and explain. Coulombs Law of fore bleturen two point charges. mention the units.

$$
\begin{aligned}
& \text { - mention the unis. } \\
& {[10-\operatorname{DeC} \mid \mathrm{Jan}-2014(6 m)]}
\end{aligned}
$$

(or)
\rightarrow State and Explain the Coulombs Law of force between the two point charges.

$$
\text { [02-Junc/Joly } 2010(5 \mathrm{~m})]
$$

(or)
\rightarrow State and explain Coulomb bis Law of force.

$$
[06-\operatorname{Dec} \mid \operatorname{Jan}-2012]
$$

Statement:- The force of attraction (or) repulsion
between any two point charges is directly proportional to the product of the charges and Inversely proportional to the square of the distance between them.
i.e mathematically

$$
F=K \frac{Q_{1} Q_{2}}{r^{2}} \quad \text { Newton }
$$

where k-constant of proportionality.

$$
K=\frac{1}{4 \pi \epsilon} \quad m / F_{-r a d} \Rightarrow F=\frac{\theta_{1} \theta_{2}}{4 \pi \epsilon r^{2}} N
$$

where
E-permittivity of the medium in which the point charges are Located (F / m).
Q_{1}, Q_{2} - two point charges (Coulomb's).
r-distance between the two point charges (mater's).

$$
\epsilon=\epsilon_{0} \epsilon_{r} \quad \mathrm{~F} m
$$

E_{0}-absolute permittivity of free-pace (6) vacuum

$$
\epsilon_{0}=\frac{1}{36 \pi} \times 10^{-9}=8.854 \times 10^{-12} \mathrm{Flm}
$$

ϵ_{r} - relative permittivity of the medium. (Nounit) In freespace $E_{r}=1$
F-Force befuren two point charges (Newton).
Note: The value of k in freespace medium
(or) vacuum medium is

$$
\left.\left.k=\frac{1}{4 \pi \epsilon_{0}} \simeq 9 \times 10^{9}\right] \mathrm{~m} / \mathrm{f}-\mathrm{rad} \text { problem }\right]
$$

1.1b Vector form of Coulombs Law

Questions.
\rightarrow State vector form of Coulombs Law of force between two point charges and indicate the units of quantities in the force equation. $[06-\operatorname{Dec} / \operatorname{Jan} 2014(6 \mathrm{~m})]$.
\rightarrow Explain with diagramñodroper units of the parameters used, Vutorform of Coulomb bi Law. [O2-Dec 2010(6m)] (or)
\rightarrow State and Explain Coulomb's Law in vatoform.

$$
\begin{aligned}
& {[06 \text { - June Jolo } 2011(6 \mathrm{~m})] \text {, }[10-\text { Dec } / \text { Jan } 2015 /(6 \mathrm{~m})]} \\
& {[10-\text { June/ Jody } 2014(6 \mathrm{~m})] \text {, [06 - Juno July } 2013(5 \mathrm{~m})} \\
& \text { x 15-Junf July-2017 (wm) [CBCs-schume]. }
\end{aligned}
$$

Statement:-
The force of attraction (or) repubion between any two point charges is directly proportional to the product of the charges and inversdy proportional to the square of the distance between them.

The force in a vector quantity and it is attractive if the charges are unite and repulsive if the charges are alike. it acth along the straight Line joining the two point charges.

\bar{F}-vector Force between two point charges (Newton)
$E=E_{0}$ Gr Film... permittivity of the medium.
$\overline{\text { ar }}$ - unit vector indicates the direction of force. $\epsilon_{0}=8.854 \times 10^{-12} \mathrm{fm}$ and $\epsilon_{r}=1$ in frespace. 178 Dept of E\&CE., SVCE
\rightarrow Fore on charge θ_{2} (or) Force experienced by charge θ_{2}
(or) Force Existed on charge θ_{2} due θ_{1}.

Consider a two point charges of Q_{1} and θ_{2} Coulomb Coated

$$
p\left(x_{1}, y_{1}, z_{1}\right)
$$

fig. vatorfore on
the Force expericnce/exerted on charge θ_{2}
due to charge Q_{1} in given by

$$
\begin{equation*}
\overline{F_{2}}=\frac{Q_{1} Q_{2}}{\varphi \pi \in|\overrightarrow{P Q}|^{2} a_{P Q}} \tag{3}
\end{equation*}
$$

Newton
where $\overline{P Q}=\left(x_{2}-x_{1}\right) \overline{a_{x}}+\left(y_{2}-y_{1}\right) \overline{a_{y}}+\left(z_{2}-z_{1}\right) \overline{a_{z}}$

$$
\begin{aligned}
& |\overline{P Q}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} ; \text { uteri } \\
& \overline{Q_{P Q}}=\frac{\overline{P Q}}{|\overline{P Q}|} \\
& \overline{a_{P Q}}=\frac{\left(x_{2}-x_{1}\right) \overline{a_{x}}+\left(y_{2}-y_{1}\right) \overline{a_{y}}+\left(z_{2}-z_{1}\right) \overline{a_{2}}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}
\end{aligned}
$$

fromeq (3) $\quad \overline{F_{2}}=\frac{Q_{1} \theta_{2}}{u \pi \epsilon|\overline{P Q}|^{2}} \cdot \frac{\overline{P Q}}{|\overline{P Q}|}$

$$
\begin{align*}
& \overline{F_{2}}=\frac{Q_{1} Q_{2}}{u \pi \epsilon|\overline{P Q}|^{3}} \cdot \overline{P Q} \quad \text { Nuston } \\
& \Rightarrow \overline{F_{2}}=\frac{Q_{1} Q_{2}\left[\left(x_{2}-x_{1}\right) \overline{a_{n}}+\left(y_{2}-y_{1}\right) \overline{a_{y}}+\left(z_{2}-z_{1}\right) \overline{a_{z}}\right.}{u \pi \epsilon\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{3 / 2}\right.} \text { Newth } \tag{5}
\end{align*}
$$

时. Force on charge Q :
$\theta_{2}{ }^{C}\left(32^{2 r} \quad\right.$ Fore experienced by charge
 by

$$
\begin{align*}
& \overline{Q_{p}}=\left(x_{1}-x_{2}\right) \overline{a_{n}}+\left(y_{1}-y_{2}\right) \overline{a_{y}}+\left(z_{1}-z_{2}\right) \overline{a_{2}} \tag{6}\\
& \left|\overline{\theta_{p}}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}} \text { nter }
\end{align*}
$$

$$
\begin{aligned}
& \overline{a_{0 p}}=\frac{\overline{\theta_{p}}}{\left|\overline{a_{p}}\right|}=\frac{\left(x_{1}-x_{2}\right) \overline{a_{x}}+\left(y_{1}-y_{2}\right) \overline{a_{y}}+\left(z_{1}-z_{2}\right) \bar{a}_{z}}{\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}} \\
& \bar{F}=\frac{Q_{1} \theta_{2}}{u \pi \epsilon|\overline{\theta p}|^{2}} \cdot \frac{\overline{\theta p}}{|\overline{\theta p}|} \\
& \bar{F}=\frac{Q_{1} Q_{2}}{Q_{1}} \text { Naiton } \\
& \left.\overline{F_{1}}=\frac{Q_{1} \theta_{2} \quad\left[\left(x_{1}-x_{2}\right) \bar{a}_{n}+\left(y_{1}-y_{2}\right) \bar{a}_{y}+\left(z_{1}-z_{2}\right) \bar{a}_{3}\right]}{u \pi \epsilon\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right]^{3 / 2}}\right]
\end{aligned}
$$

Keynote points:-
i. $\left|\overrightarrow{F_{1}}\right|=\left|\bar{F}_{2}\right|$ and $\overline{a_{p A}}=-\overline{a_{a p}}$
ii. $\overline{F_{1}}=-\bar{F}_{2}$ (or) $\bar{F}_{2}=-\overline{F_{1}}$.
iii. The Resultant force F can be tie (v)
-re that depends on nature of the charges.

iv. The approximated value of $\frac{1}{4 \pi \epsilon_{0}} \simeq 9 \times 10^{9}$.
4. The resultant force \bar{F} can be exposed as

$$
\bar{F}=F_{x} \bar{a}_{x}+F_{y} \bar{a}_{y}+F_{z} \bar{a}_{z} \quad \text { Newton. }
$$

where F_{x}, F_{y}, F_{z} are force componertsalong x, y and z direction respectively.
Vi. Magnitude of Resultant force $\frac{F}{F}$ in given by

$$
|\bar{F}|=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}} \text { Norton. }
$$

vii. The point at which the force coperienced (exerted in Considered to be the end point.

Solved problems:
problem 1. Let $\theta_{1}=3 \times 10^{-4} \mathrm{C}$ at $\cdots, p(1,2,3)$ and a charge of $\theta_{2}=-10^{-4} \mathrm{C}$ at, $\mathrm{g}(2,0,5)$ in a

Vaccum. Find
i. Force exerted on θ_{2} by θ_{1}.
$i i$. Force exerted on θ_{1} by θ_{2}.

$$
[\mathrm{W} \cdot \mathrm{H} \cdot \text { Hays } /[10-\operatorname{DeC} / \operatorname{Jan} 2015(6 \mathrm{M})]]
$$

Sola:-
i. Force exerted on charge Q_{2} by Q_{1}.

$$
\begin{aligned}
& Q_{2}=10^{-\mu} \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& p(1,2,3) \text { veto fore } F_{2} \\
& \therefore \epsilon=G_{0} \mathrm{Hm} \text {. } \\
& \text {; } \epsilon_{r}=1 \text {. } \\
& \overline{F_{2}}=\frac{\theta_{1} \theta_{2}}{4 \pi \epsilon_{0}|\overline{P Q}|^{2}} \overline{A_{P Q}} \quad \text { Newton. } \\
& \overline{P Q}=(2-1) \overline{a_{x}}+(0-2) \overline{a_{y}}+(5-3) \overline{a_{z}} \\
& \overline{P Q}=\overline{a_{x}}-2 \overline{a_{y}}+2 \overline{a_{z}} \\
& \text { given medium is } \\
& \text { Vacuum. } \\
& \text { fig }
\end{aligned}
$$

$$
\begin{aligned}
& |\overrightarrow{P Q}|=\sqrt{1+4+4}=\sqrt{9}=3 \mathrm{~m} . \\
& |\overline{P D}|^{2}=9 \text {. } \\
& {\overline{a_{P Q}}}=\frac{\overline{P Q}}{|\overline{P Q}|}=\frac{\overline{a_{x}}-2 \overline{a_{y}}+2 \overline{a_{z}}}{\sqrt{9}} \\
& \text { use } \frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} ; \bar{F}_{2}=\frac{\theta_{1} Q_{2}, \overline{P Q}}{4 \pi \epsilon_{0}|\overrightarrow{P Q}|^{3}} \\
& \bar{F}_{2}=\frac{\left(3 \times 10^{-4}\right)\left(-10^{-4}\right) \times 9 \times 10^{9}}{(3)^{3}}\left[\bar{a}_{x}-2 \bar{a}_{y}+2 \overline{a_{z}}\right] \\
& \overline{F_{2}}=-10\left[\bar{a}_{x}-2 \overline{a_{y}}+2 \overline{a_{z}}\right] \\
& \overline{F_{2}}=-10 \bar{a}_{x}+20 \overline{a_{y}}-20 \overline{a_{z}} \text { xewton }
\end{aligned}
$$

ii. Force on Q_{1} i.e force exerted on Q_{1} by Q_{2}

$$
\begin{aligned}
& \bar{F}_{1}=-\overline{F_{2}}=10 \overline{a_{x}}-20 \overline{a_{y}}+20 \overline{a_{z}} \\
& \bar{F}_{1}=10 \overline{a_{n}}+20 \overline{a_{y}}+20 \overline{a_{z}} \text { Newton. } \\
& \left|\bar{F}_{1}\right|=\left|\bar{F}_{2}\right|=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{2}^{2}}=\sqrt{10^{2}+20^{2}+20^{2}}=30 \mathrm{~N}
\end{aligned}
$$

$$
\left|\bar{F}_{1}\right|=\left|\bar{F}_{2}\right|=30 \mathrm{~N}
$$

the Force Component in of $\overline{F_{1}}$ and $\overline{F_{2}}$ along x, y and z direction are

$$
\begin{aligned}
& x, y \text { and } z \text { direction ane } \quad F_{2 z}=-20 \mathrm{~N} . \\
& F_{2 x}=-10 \mathrm{~N} ; \quad F_{2 y}=20 \mathrm{~N}, \quad F_{1 z}=20 \mathrm{~N} . \\
& F_{1 x}=10 \mathrm{~N} ; \quad F_{1 y}=-20 \mathrm{~N} ;
\end{aligned}
$$

problem 2.
Two point charges $Q_{1}=100 \mathrm{uc}$ and $O_{2}=10 \mathrm{Mc}$ one Located of points $(-1,1,-3) \mathrm{m}$ and $(3,1,0) \mathrm{m}$ roppectivly. Find the x, y and z components of the force on Q_{1}. What in the magnitude of the total force?
[06-Jinf July 2013]

$$
\begin{aligned}
& \overline{F_{1}}=\frac{\theta_{1} \theta_{2}}{u \pi \epsilon_{0}|\overline{P 0}|^{3}} \overline{P O} \text { Newton. } \\
& \overline{P D}=-4 \overline{a_{x}}+0 \overline{a_{y}}-3 \overline{a_{z}} \\
& \overline{p o}=-4 \overline{a_{x}}-3 \overline{a_{z}} \\
& |\overrightarrow{P O}|=\sqrt{16+9}=\sqrt{25}=5 \mathrm{~m} \\
& \overline{F_{i}}=\frac{(100 \mathrm{~m})(10 \mathrm{~m}) \times 9 \times 10^{9}}{(5)^{3}}\left[-4 \overline{a_{x}}-3 \overline{a_{z}}\right] \\
& \bar{F}_{1}=0.072\left[-4 \bar{a}_{2}-3 \bar{a}_{3}\right] \\
& \vec{F}_{1}=-0.288 \overline{a_{n}}-0.216 \bar{a}_{2} \text { Niwton }
\end{aligned}
$$

$$
\overline{F_{1}}=F_{x} \overline{a_{n}}+F_{y} \overline{a_{y}}+F_{z} \overline{a_{2}} \text { Nixon }
$$

the x, y and z component of the force on Q_{1}
are

$$
\begin{aligned}
& F_{x}=-0.288 \mathrm{~N} \\
& F_{y}=0 \mathrm{~N} ; \text { and } \\
& F_{z}=-0.216 \mathrm{~N} .
\end{aligned}
$$

the magnitude of the total force

$$
\begin{aligned}
& \left|\bar{F}_{1}\right|=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}} \\
& \left|\bar{F}_{1}\right|=\sqrt{(-0.288)^{2}+0^{2}+(-0.216)^{2}} \\
& \left|F_{1}\right|=0.36 \quad \text { Newton }
\end{aligned}
$$

Problem 3. A charge $Q_{A}=-20 \mathrm{Mc}$ is Located at $A(-6,4,7)$ and a charge $Q_{B}=50 \mathrm{Mc}$ is at $B(5,8,-2)$ in free spa if distances are given in meters. Find.
a) $\overline{R_{A B}}$ ib> $R_{A B}$.

Determine the vector force exerted on Q_{A} by Q_{B} if $\epsilon_{0}=10^{-9} / 36 \pi \mathrm{Rm}$ id $>8.854 \times 10^{-12} \mathrm{Hm}$
solus. [W.H. Hay].

i. $\vec{R}_{A B}=\overline{A B}=(5+6) \overline{a_{x}}+(8-4) \overline{a_{y}}+(-2-7) \overline{a_{z}}$

$$
\overline{R_{A B}}=\overline{A_{B}}=11 \overline{a_{x}}+4 \overline{a_{y}}-9 \overline{a_{z}}
$$

ii $R_{A B}=\left|\overline{R_{A B}}\right|=|\overline{A B}|=\sqrt{11^{2}+4^{2}+(-q)^{2}}$

$$
R_{A B}=\sqrt{218}=14.764 \mathrm{~m}
$$

iii. Vector force exerted on Q_{A} due to θ_{B}
in given by [we $\left.\epsilon_{0}=10^{-9} / 36 \pi\right]$

$$
\begin{aligned}
& \overline{F_{A}}=\frac{Q_{A} \theta_{B}}{4 \pi \sigma_{0}|\overline{B A}|} \overline{a_{B A}}: \text { Nuiton } \\
& \overline{F_{A}}=\frac{\theta_{A} \theta_{B}}{4 \pi \epsilon_{0}|\overline{B A}|^{3}} \overline{B_{A}} \quad \text { Nwton. } \\
& \overline{B A}=-\overline{A B}=-1 \mid \overline{a_{n}}-4 \overline{a_{y}}+9 \overline{a_{z}}
\end{aligned}
$$

and $\quad|\overrightarrow{B A}|=|\overrightarrow{A B}|=\sqrt{218} \mathrm{~m}$.

$$
\begin{aligned}
& \bar{F}_{A}=\frac{(-20 \mu)(50 \mu)}{4 \pi \times 10^{-g} / 36 \pi(\sqrt{218})^{3}}\left[-11 \overline{a_{x}}-4 \overline{a_{y}}+9 \overline{a_{z}}\right] \\
& \overline{F_{A}}=-2.7961 \times 10^{3}\left[-11 \overline{a_{x}}-4 \overline{a_{y}}+9 \overline{a_{z}}\right] \\
& \left.\overline{F_{A}}=0.03075 \overline{a_{x}}+0.01118 \overline{a_{y}}-0.02516 \overline{a_{z}}\right], N .
\end{aligned}
$$

$$
\begin{equation*}
\overline{F_{A}}=30.75 \overline{a_{n}}+11.18 \overline{a_{y}}-25.16 \overline{a_{2}} \mathrm{mN} \tag{a}
\end{equation*}
$$

iv. using $\epsilon_{0}=8.854 \times 10^{-12} \mathrm{Hm}$.

$$
\begin{aligned}
& \bar{F}_{A}=\frac{(-20 \mu)(50 \mu)}{4 \pi \times 8.854 \times 10^{-12} \times(\sqrt{218})^{3}}\left[-11 \overline{a_{x}}-4 \bar{a}_{y}+9 \bar{a}_{a}\right] \\
& \overline{F_{A}}=-2.792324 \times 10^{-3}\left[-11 \overline{a_{x}}-4 \overline{a_{y}}+9 \bar{a}_{3}\right] \\
& \overline{F_{A}}=0.03071 \overline{a_{x}}+0.0116 \overline{a_{y}}-0.02513 \overline{a_{z}} \\
& \overline{F_{A}}=30.71 \overline{a_{x}}+11.16 \overline{a_{y}}-25.13 \overline{a_{2}} \frac{\mathrm{mN}}{\pi}
\end{aligned}
$$

value of
obs: the Force Experienced in both the cases are approximately equal.
problem 4. Apoint charge of $Q_{1}=2 \mu \mathrm{c}$ in located. in free space at $P_{1}(-3,7,-4)$ while $\theta_{2}=5 \mathrm{uc}$ is at $P_{2}(2,4,-1) m$. Find \bar{F}_{2} and \bar{F}_{1}.

Sola:-
i.

$$
\overline{F_{1}}=\frac{\theta_{1} \theta_{2}}{u \pi \epsilon_{0}\left|\bar{P}_{21}\right|^{2}} \hat{a}_{P_{21}} ; \text { Newton }
$$

$$
\overline{F_{1}}=\frac{\theta_{1} \theta_{2}}{4 \pi \epsilon_{0}\left|\bar{P}_{21}\right|^{3}} \overline{P_{21}} \text {. Newton }
$$

$$
\overline{p_{21}}=(-3-2) \bar{a}_{x}+(7-4) \overline{a_{y}}+(-4+1) \overline{a_{2}}
$$

$$
\overline{P_{21}}=-5 \overline{a_{x}}+3 \overline{a_{y}}-3 \overline{a_{z}}
$$

$$
\left|\vec{P}_{21}\right|=\sqrt{25+9+9}=\sqrt{43}
$$

$$
\left|\bar{P}_{21}\right|=\sqrt{43} \mathrm{~m}
$$

$$
\begin{aligned}
& \overline{F_{1}}=\frac{(2 \mu)(5 \mu) \times 9 \times 10^{9}}{(\sqrt{43})^{3}}\left[-5 \overline{a_{x}}+3 \overline{a_{y}}-3 \overline{a_{z}}\right] \\
& \overline{F_{1}}=319.18 \times 10^{-6}\left[-5 \overline{a_{x}}+3 \overline{a_{y}}-3 \overline{a_{z}}\right] \\
& \left.\overline{F_{1}}=1595 . \overline{9 a_{\bar{a}}}+957549 \overline{a_{y}}-957.549 \overline{a_{z}}\right] \mathrm{mN} \\
& \left.\overline{\overline{F_{1}}}=1.595 \overline{a_{x}}+0.9575 \overline{a_{y}}-0.9575 \overline{a_{z}}\right] \mathrm{mN}
\end{aligned}
$$

ii. Force $\overline{F_{2}}=-\overline{F_{1}}$

$$
\begin{gathered}
\overline{F_{2}}=-1.595 \bar{a}_{x}-0.9575 \bar{a}_{y}+0.9575 \bar{a}_{2} \mid \mathrm{mN} \\
\left|\bar{F}_{1}\right|=\left|\bar{F}_{2}\right|=\sqrt{1.595^{2}+0.9575^{2}+0.9575^{2}} \mathrm{mN} \\
\left|\overline{F_{1}}\right|=\left|\bar{F}_{2}\right|=2.09228 \mathrm{mN}
\end{gathered}
$$

problem5. point charge $\theta_{1}=300 \mathrm{Mc}$ located at
$(1,-1,-3) \mathrm{m}$ experiences a force
$\overline{F_{1}}=8 \bar{a}_{x}-8 \bar{a}_{y}+4 \bar{a}_{z} \quad N$ due to point charge
Q_{2} at $(3,-3,-2) m$. Dtermine Q_{2}.

$$
\begin{aligned}
& P(3,-3,-2) m \\
& R(1,-1,-3) m \overline{O_{P R}} \\
& Q_{1}=300 \mathrm{NC} \\
& \begin{array}{l}
\overline{F_{1}}=\frac{Q_{1} \theta_{2}}{4 \pi G_{0}|\overline{P R}|^{2}} \overline{Q_{P R}} \quad \text { Nucton. } \\
\overline{F_{1}}=\frac{Q_{1} \theta_{2}}{4 \pi \epsilon_{0}|\overline{P R}|^{3}} \overline{P R} \quad \text { Nuwton. }
\end{array} \\
& \overrightarrow{P R}=(1-3) \overline{a_{x}}+(-1+3) \overline{a_{y}}+(-3+2) \overline{a_{z}} \\
& \overline{P R}=-2 \overline{a_{x}}+2 \overline{a_{y}}-\overline{a_{3}} \\
& |\overline{P R}|=\sqrt{4+4+1}=\sqrt{9}=3 m \\
& |\overline{P R}|=3 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{F_{1}}=\frac{Q_{1} \theta_{2}}{u \pi \epsilon_{0}(3)^{3}}\left[-2 \overline{a_{x}}+2 \overline{a_{y}}-\overline{a_{2}}\right] \\
& \text { given } \overline{F_{1}}=8 \overline{a_{x}}-8 \overline{a_{y}}+4 \overline{a_{z}}-N
\end{aligned}
$$

i.e

$$
8 \overline{a_{x}}-8 \overline{a_{y}}+4 \overline{a_{z}}=\frac{\theta_{1} \theta_{2}}{4 \pi \epsilon_{0}(3)^{3}}\left[-2 \overline{a_{x}}+2 \overline{a_{y}}-\overline{a_{z}}\right]
$$

Liquating x-component of Forv [i.e $\left.F_{x}\right]$ on both sides

$$
\begin{aligned}
& 8=\frac{Q_{1} \theta_{2}}{4 \pi G_{0}(27)}(-2) \\
& 8=\frac{(300 \mu)\left(\theta_{2}\right)\left(9 \times 10^{9}\right)(-2)}{27} \\
& 8=\left(-200 \times 10^{3}\right) Q_{2} \\
& \Rightarrow Q_{2}=-4 \times 10^{-5} C
\end{aligned}
$$

(o)

$$
\theta_{2}=-40 \mu \mathrm{C}
$$

Problem 6. Two small identical Conducting Spiers have charges of 2×10^{-9} Coulomb and $-0.5 \times 10^{-9} \mathrm{Ci}$ ropectively. when thy are placed 4 cm apart, what io the force between them? if they are brough in to Contact and then Separated by 4 cm , what is the force blefuren them.
solu:'

$$
\theta=2 n c
$$

$$
r=4 \mathrm{~cm}=0.04 \mathrm{~m}
$$

$$
r=4 \mathrm{~cm}
$$

the force bturen two conduting spheres is

$$
\begin{gathered}
F=\frac{\theta_{1} \theta_{2}}{u \pi t_{0} \gamma^{2}} \\
F=\frac{(2 n)(-0.5 n) \times 9 \times 10^{9}}{(0.04)^{2}} \\
F=-5.625 \times 10^{-6} \mathrm{~N} \\
F=-5.625 \mu \mathrm{~N}
\end{gathered}
$$

when there two conduting Spheres are brought
into contact and then separated, thy ane
Separated by equal amount.
the charge on each sphere is then

$$
\begin{aligned}
& Q=\frac{Q_{1}+\theta_{2}}{2}=\frac{2 \times 10^{-9}-0.5 \times 10^{-9}}{2} \\
& Q=0.75 \times 10^{-9} \mathrm{G} \\
& Q=0.75 \mathrm{nC}
\end{aligned}
$$

Now the desired force F when they con Separated by 4 cm apart will be

$$
\begin{aligned}
& \mathrm{cm} \text { apart will be } \\
& F=\frac{Q_{1} \theta_{2}}{4 \pi G_{0} r^{2}} \quad Q_{2}=0.75 \mathrm{nc} \\
& Q_{1}=\theta_{2}=Q=0.75 \mathrm{MC} \\
& F=\frac{(0.754)^{2} \times 9 \times 109}{(0.04)^{2}} \\
& F=3.1640 \times 10^{-6} \quad \text {. }
\end{aligned}
$$

1.1c Force due to N -number of point charges

Consider a N-number of point charges of $\theta_{1}, \theta_{2}, \ldots$ which are Located at a points P_{1}, P_{2}, \ldots and P_{n} respectively.
the Force caperienced by a point charge of Q $Q C$ which in of points $O(x, y, z) \wedge$ can be calculated using Superposition principle.
ie

$$
\overline{F_{0}}=\overline{F_{P_{1}}}+\overline{F_{P_{2}}}+\bar{F}_{P_{3}}+\cdots+\bar{F}_{P_{n}} \text { Now tor }
$$

$$
\begin{aligned}
& \bar{F}_{0}=\frac{\theta_{1} Q}{u \pi \in\left|\overline{p_{1}}\right|^{2}} \overline{a_{p_{1} O}}+\frac{\theta_{2} Q}{u \pi \epsilon\left|\overline{P_{2}}\right|^{2}} \overline{a_{p_{2} O}}+\cdots+\frac{\theta_{n} Q}{u \pi \epsilon\left|\overline{P_{n 0}}\right|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{F_{0}}=\frac{Q}{u \pi \epsilon} \sum_{i=1}^{n} Q_{i} \frac{\overline{a_{p_{i}}}}{\left|\overline{P_{i} 0}\right|^{2}} \text { Newton } \\
& \text { if } \theta=\theta_{2}=\cdots=\theta_{n}=Q C_{i} \\
& \left.\overline{F_{0}}=\frac{Q^{2}}{4 \pi \epsilon} \sum_{i=1}^{n} \frac{\overline{C_{P_{i} O}}}{\left|\overline{P_{i} O}\right|^{2}}\right] \text { Necuton. }
\end{aligned}
$$

problem 7.
Two point charges θ_{1} and θ_{2} are located at $(1,2,0) \mathrm{m}$ and $(2,0,0) \mathrm{m}$ respectively. Find relation between the charges θ_{1} and θ_{2} suit that the total force on a unit positive charge at $(-1,1,0)$ have i> no x-component

$$
\text { ii) noy-component. } 1 \text { - } 10-\operatorname{Dec} \mid \operatorname{Jan} 2015(8 m)]
$$

solver

Onume Medium is freespace

$$
\epsilon=G_{0} \mathrm{Flm}
$$

fIg. valor diagram.
using Superposition principle.
the net force experienced by charge of 14 at point $z(-1,1,0)$ due to θ_{1} and θ_{2} in given

$$
\text { by } \bar{F}_{Z}=\bar{F}_{X}+\bar{F}_{Y} \quad N
$$

$$
\begin{gather*}
\bar{F}_{z}=\frac{Q_{1}}{u \pi \epsilon_{0}|\overline{x z}|^{2}} \bar{a}_{x z}+\frac{Q_{2}}{4 \pi \epsilon_{0}|\overline{Y z}|^{2}} \overline{a_{y z}} ; N \\
\overline{a_{x z}}=\frac{\overline{x z}}{|\overline{x z}|} ; \overline{a_{y z}}=\frac{\overline{Y z}}{|\overline{y z}|} \\
\overline{F_{z}}=\frac{Q_{1}}{4 \pi \epsilon_{0}|\overline{x z}|^{3}} \overline{\overline{x z}}+\frac{\theta_{z}}{4 \pi \epsilon_{0}|\overline{y z}|^{3}} \overline{Y z} \cdot N \\
\overline{x z}=-2 \overline{a_{x}}-\overline{a_{y}} ;|\overline{x z}|=\sqrt{4+1}=\sqrt{5} \mathrm{~m} . \\
\overline{x z}=-3 \overline{a_{x}}+\overline{a_{y}} ;|\overline{Y z}|=\sqrt{9+1}=\sqrt{10} \mathrm{~m} . \\
\overline{F_{z}}=\frac{9 \times 10 \theta_{1}}{(\sqrt{5})^{3}}\left[-2 \overline{a_{x}}-\overline{a_{y}}\right]+\frac{9 \times 10^{9} \theta_{2}}{(\sqrt{10})^{3}}\left[-3 \overline{a_{x}}+\overline{a_{y}}\right] ; N \\
\overline{F_{z}}=F_{x} \overline{a_{x}}+F_{y} \overline{a_{y}}+F_{z} \overline{a_{z}} ; N \tag{6}
\end{gather*}
$$

¿. Given con dition.
Reationting between θ_{1} and θ_{2} such that the net force \bar{F}_{z} has No x Component i.e $\quad F_{x}=0$
by comparing q^{4} (0) and cqu(b), make F_{x} component in equal to zero. ie $F_{x}=0$

$$
\begin{aligned}
& \frac{9 \times 10^{9} \theta_{1}(-2)}{(\sqrt{5})^{3}}+\frac{9 \times 10^{9}\left(\theta_{2}\right)(-3)}{(\sqrt{10})^{3}}=0 \\
& \frac{9 \times 10^{9} \theta_{1}(-2)}{(\sqrt{5})^{3}}=\frac{9 \times 10^{6}\left(\theta_{2}\right)(3)}{(\sqrt{10})^{3}} \\
& \Rightarrow Q_{1}=-0.5303 \theta_{2}
\end{aligned}
$$

ii. The nsultent Force $F_{\mathbf{Z}}$ tan no y-component

$$
\text { ie } F_{y}=0
$$

by comparing $q^{u}(0)$ and $q^{u}(6)$ make F_{y} component in equal to zero.

$$
\begin{aligned}
& \frac{9 \times 10^{9}\left(\theta_{1}\right)(-1)}{(\sqrt{5})^{3}}+\frac{9 \times 10^{9} \theta_{2}}{(\sqrt{10})^{3}}=0 \\
& \frac{9 \times 10^{9}\left(Q_{1}\right)}{(\sqrt{5})^{3}}=\frac{9 \times 10^{9}\left(\theta_{2}\right)}{(\sqrt{10})^{2}} \\
& \Rightarrow Q_{1}=0.3535 \theta_{2}
\end{aligned}
$$

The relationship between Q_{1} and Q_{2} suhthat $\overline{F_{z}}$ has no i x component is

$$
\theta_{1}=-0.5303 \theta_{2} \mathrm{Ci}
$$

and.
The \bar{F}_{2} has no y component isp

$$
\theta_{1}=0.3535 \theta_{2}
$$

Solved problems:
problem B. point charges of 50nc sent are located at $A(1,0,0), B(-1,0,0), C(0,1,0)$ and $D(0,-1,0) m$ Find the total force on the charge at A and also find E at A. $[10-\operatorname{Jan} 2013(5 M)]$.

$$
C B C S:[15-\operatorname{Dec} / \operatorname{Jan}-2017(8 M)]
$$

Solus:-

using Superposition principle the total force at point A due to point charges Q_{B}, Q_{c} and Q_{D}
is given

$$
\begin{aligned}
& \overline{F_{A}}=\frac{Q_{A} Q_{B}}{4 \pi G_{0}|\overline{B A}|^{2}} \overline{a_{B A}}+\frac{Q_{A} Q_{C}}{4 \pi G_{0}\left|\overline{C_{A}}\right|^{2}} \overline{C_{A}}+\frac{Q_{A} Q_{D}}{4 \pi G 0|\overline{D A}|^{2}} \overline{a_{D A}} ; N \\
& \operatorname{given} \bar{Q}_{A}=Q_{B}=Q_{C}=Q_{D}=Q=50 \eta C . \\
& \frac{\overline{a_{B A}}}{\overline{B A}} ; \frac{\overline{a_{C A}}}{|\overline{B A}|}=\frac{\overline{C A}}{|\overline{C A}|} ; \overline{a_{D A}}=\frac{\overline{D A}}{|\overline{D A}|}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \overline{F_{A}}=\frac{Q^{2}}{u \pi \epsilon_{0}|\overline{B A}|^{3}} \overline{B A}+\frac{Q^{2}}{u \pi \epsilon_{0}|\overline{C A}|^{3}} \overline{C A}+\frac{Q^{2}}{u \pi \epsilon_{0}|\overline{D A}|^{3}} \overline{D A} ; N \\
& \overline{B A}=2 \overline{a_{x}} ;|\overline{B A}|=\sqrt{2^{2}}=2 \mathrm{~m} . \\
& \overline{C A}=\overline{a_{x}}-\overline{a_{y}} ; \quad|\overline{C A}|=\sqrt{1+1}=\sqrt{2} \mathrm{~m} . \\
& \overline{D A}=\overline{a_{x}}+\overline{a_{y}} \therefore|\overline{D A}|=\sqrt{1+1}=\sqrt{2} \mathrm{~m} \text {. } \\
& \bar{F}_{A}=\frac{Q^{2}}{u \pi E_{0}}\left[\frac{\overline{B A}}{|\overline{B A}|^{3}}+\frac{\overline{C A}}{|\overline{C A}|^{3}}+\frac{\overline{D A}}{|\overline{D A}|^{3}}\right] \text {, Nowton } \\
& \overline{F_{A}}=\left(50 \times 10^{-9}\right)^{2}\left(9 \times 10^{9}\right)\left[\frac{2 a_{x}}{23}+\frac{\bar{a}_{x}-a_{y}}{(\sqrt{2})^{3}}+\frac{\overline{a_{x}}+a_{y}}{(\sqrt{2})^{3}}\right] \\
& F_{A}=22.5 \times 10^{-6}\left[0.25 \overline{a_{x}}+2 \frac{\overline{a_{x}}}{(\sqrt{2})^{3}}\right] \\
& \bar{F}_{A}=22.5 \times 10^{-6}\left[0.25 \bar{a}_{x}+0.7071 \overline{a_{x}}\right] \\
& \bar{F}_{A}=22.5 \times 10^{-6}\left[0.9571 \bar{a}_{x}\right] \\
& \bar{F}_{A}=21.5349 \times 10^{-6} \overline{a_{n}} \text { Newton } \\
& \overline{F_{A}}=21.5349 \bar{a}_{x} \mathrm{MN} \\
& F_{x}=21.5349 \mu \mathrm{~N} ; \quad F_{y}=0 \mathrm{~N} \text { and } F_{z}=0 \mathrm{~N} \text {. } \\
& \left|\vec{F}_{A}\right|=F_{x}=21.5349 \mu \mathrm{~N} .
\end{aligned}
$$

ii. the Elatric field intensity (\bar{E}) at a point A

$$
\begin{aligned}
& \text { in } \overline{F_{A}}=\frac{\overline{F_{A}}}{Q_{A}}=\frac{21.5349 \times 10^{-6} \overline{a_{n}}}{50 \times 10^{-9}} \\
& \overline{\bar{E}_{A}}=430.698 \overline{a_{x}} \mathrm{v} / \mathrm{m} \\
& E_{x}=430.698 \mathrm{v} / \mathrm{m} ; \quad E_{y}=0 \mathrm{v} / \mathrm{m} ; E_{2}=0 \mathrm{v} / \mathrm{m} . \\
& \left|\overrightarrow{E_{A}}\right|=E_{x}=430.698 \mathrm{v} / \mathrm{m} .
\end{aligned}
$$

problem 9. Find the Force on $100 \mu \mathrm{c}$ charge at $(0,0,3) \mathrm{m}$. if Four like charges of 20 uc ane

Solus:-

$\begin{array}{l:l}A(u, 0,0) \mathrm{m} & \mathrm{Fg} \text { vector force } \overline{F_{0}} . \\ \theta_{A}=20 \mathrm{c} & \mathrm{F}\end{array}$
the net fore at point $0(0,0,3) \mathrm{m}$ in obtained by using superposition principle

$$
\begin{aligned}
& \text { Since giver } Q_{A}=\theta_{B}=Q_{C}=Q_{D}=Q=20 \mathrm{Nec} . \\
& =\bar{R}=\overline{B_{0}}, \overline{a_{D D}}=\bar{D}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since given } Q_{A}=\theta_{B}=\theta_{C}=Q_{D} \\
& \bar{a}_{A O}=\frac{\overline{A D}}{|\overline{A O}|} ; \bar{a}_{B O}=\frac{\overline{B O}}{|\overline{B O}|} ; \overline{a_{C O}}=\frac{\overline{C O}}{\mid \overline{C_{O} \mid}} ; \overline{a_{D O}}=\frac{\overline{00}}{|\overline{D O}|}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{F_{0}}{}=\overline{F_{A}}+\overline{F_{B}}+\overline{F_{C}}+\overline{F_{D}} \text { N watson. } \\
& \overline{F_{0}}=\frac{Q_{0} Q_{A_{1}}}{4 \pi \epsilon_{0}|\overline{A O}|^{2}} \overline{a_{A O}}+\frac{Q_{0} Q_{B}}{u \pi \epsilon_{0}\left|\overline{B_{B}}\right|^{2}} \overline{a_{B O}}+\frac{Q_{0} Q_{C}}{4 \pi \epsilon_{0}|\overline{C O}|^{2}} \overline{a_{C O}}+\frac{Q_{0} Q_{D}}{u \pi \epsilon_{0}\left|\overline{a_{D O}}\right|^{2}} \overline{Q_{B}}
\end{aligned}
$$

$$
\begin{aligned}
& F_{0}=\frac{Q_{0} Q}{u \pi \epsilon_{0}}\left[\frac{\overline{A D}}{|\overline{A O}|^{3}}+\frac{\overline{B O}}{|\overline{B O}|^{3}}+\frac{\overline{C O}}{|\overline{C O}|^{3}}+\frac{\overline{D O}}{|\overline{D O}|^{3}}\right] \\
& \overline{A O}=-4 \overline{a_{n}}+3 \overline{a_{2}} ;|\overline{A O}|=\sqrt{16+9}=5 \mathrm{~m} . \\
& \widehat{B O}=-4 \overline{a_{y}}+3 \overline{a_{z}} ; \quad|\overrightarrow{B O}|=\sqrt{16+9}=5 \mathrm{~m} . \\
& \overline{C O}=4 \overline{a_{x}}+3 \overline{a_{z}} ;|\overline{C O}|=\sqrt{16+9}=5 \mathrm{~m} \\
& \overline{D O}=4 \overline{a_{y}}+3 \overline{a_{z}} \quad|\overline{D O}|=\sqrt{16+9}-5 \mathrm{~m} \text {. } \\
& |\overrightarrow{A O}|=|\overrightarrow{B O}|=|\overrightarrow{C O}|=|\overrightarrow{D O}|=5 \mathrm{~m} . \\
& \overline{F_{0}}=\frac{Q_{0} Q}{4 \pi \epsilon_{0}|\overrightarrow{A O}|^{3}}\left[\overline{A_{0}}+\overline{B O}+\overline{C O}+\overline{D D}\right] \\
& F_{0}=\frac{100 \mu \times 20 \mu \times 9 \times 10}{53}\left[-4 \frac{1}{a_{x}}+3 \overline{a_{z}}-4 a_{y}+3 \overline{a_{z}}\right. \\
& \left.+4 \overline{a_{x}}+3 \overline{a_{2}}+4 a_{y}+3 \overline{a_{z}}\right] \\
& F_{0}=0.144\left[12 \bar{a}_{3}\right] \\
& \overline{F_{0}}=1.728 \overline{a_{2}} \quad \text { Newton } \\
& F_{x}=0 \mathrm{~N} ; \quad F_{y}=0 \mathrm{~N} \text { and } F_{z}=1.728 \mathrm{~N} \text {. } \\
& \left|\bar{F}_{0}\right|=F_{3}=1.728 \mathrm{~N} .
\end{aligned}
$$

obs: The net force along x and y direction in zero. became of charges of equal values placed over a equidistan(207 Dept. of ERCE, SYCE along t be and the x, y ares. Page
problem 10.
Eight point charges of $Q A^{\prime}$ Each are Located at the Corners of a Cube of side Length ' A ' m with one charge at origin and with three nearest charges at $(a, 0,0) \mathrm{m},(0, a, 0) \mathrm{m}$ and $(0,0, a) \mathrm{m}$. Find an exprenion for the total vector force on the charge at $P(a, a, a) m$ anuming frespace.

$$
\left[\begin{array}{c}
\text { space. H. Hay }] \text {. } \\
\text { fore }
\end{array}\right.
$$

Sol.

fig. Vector force at point p ie $\overline{F_{p}}$
using Superposition principle, the net force at point P is given by

$$
\frac{\overline{F_{P}}=\overline{F_{A}}+\overline{F_{B}}+\overline{F_{C}}+\overline{F_{D}}+\overline{F_{E}}+\overline{F_{F}}+\overline{F_{G}} ; N}{\text { Dept. of E\&CE. sVCE }}
$$

Since give all charges \& equal value ie Q C

$$
\begin{aligned}
& \overline{F_{p}}=\frac{\theta^{2}}{u \pi \epsilon_{0}}\left[\frac{\overline{a_{A p}}}{|\overline{A p}|^{2}}+\frac{\overline{a_{B P}}}{|\overline{B P}|^{2}}+\frac{\overline{a_{C p}}}{\left|\overline{\overline{C P}_{p}}\right|^{2}}+\frac{\overline{a_{D p}}}{\left|\overline{D_{p}}\right|^{2}}+\frac{\overline{a_{E p}}}{|\overline{E p}|^{2}}+\frac{\overline{a_{F p}}}{\left|\overline{A_{p}}\right|^{2}}\right. \\
& \left.+\frac{\overline{G_{G P}}}{10 \times\left.\right|^{2}}\right] \\
& \overline{A P}=a \overline{a_{x}}+a \overline{a_{y}} ; \quad|\overline{A P}|=\sqrt{2} a m ; \quad \overline{a_{A P}}=\frac{\overline{A P}}{|\overrightarrow{A P}|} \\
& \overline{B P}=a \bar{a} y+a \overline{a_{z}} ; \quad|\overline{B P}|=\sqrt{2} a m ; \quad \overline{A_{B P}}=\frac{\overline{B P}}{|\overline{B P}|} \\
& \overline{C_{p}}=a \overline{a_{x}}+a \overline{a_{2}} ;|\overline{C P}|=\sqrt{2} a m ; \overline{a_{C p}}=\frac{\overline{C_{p}}}{\left|c_{p}\right|} \\
& \overline{D P}=a \overline{a_{z}} ; \quad|\overline{D P}|=a m ; \bar{a}_{D P}=\frac{\widehat{D P}}{|\overline{D P}|} \\
& \overline{E p}=a \overline{a_{y}} ;|\overline{E p}|=a m ; \quad \overline{a_{E p}}=\frac{E P}{|E p|} \\
& \overline{F P}=a \bar{a}_{x} ;|\overrightarrow{F P}|=a m ; \quad \overline{a_{F P}}=\frac{\overline{F P}}{|\overline{F P}|} \\
& \overline{G_{p}}=a \overline{a_{x}}+a \overline{a_{y}}+a \overline{a_{z}} ; \quad\left|\overline{G_{p}}\right|=\sqrt{3} a m ; \overline{a_{G p}}=\frac{\overline{G p}}{\left|\overline{G_{p}}\right|} \\
& \text { ObS:- }|\overrightarrow{A P}|=|\overline{B P}|=|\overline{C P}| \text { and }|\overline{D P}|=|\overline{E P}|=|\overline{F P}|
\end{aligned}
$$

$$
\begin{aligned}
& \overline{F_{P}}=\frac{Q^{2}}{4 \pi E_{0}}\left[\frac{(\overline{A P}+\overline{B P}+\overline{C P})}{|\overline{A P}|^{3}}+\frac{(\overline{D P}+\overline{E P}+\overline{F P})}{|\overline{D P}|^{3}}+\frac{\overline{G P}}{|\overline{G P}|^{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& |\overline{A P}|=\sqrt{2} a m \div|\overline{A P}|^{3}=(\sqrt{2} a)^{3}=2^{3 / 2} a^{3} \\
& |\overline{D p}|=a m ; \quad|\overline{D p}|^{3}=a^{3} . \\
& |\overline{G p}|=\sqrt{3} a m\rangle \quad|\overline{G p}|^{3}=3^{3 / 2} a^{3} \text {. } \\
& \overline{F_{P}}=\frac{Q^{2}}{4 \pi \epsilon_{0}}\left[\frac{1}{2^{3 / 2} a^{3}}\left[a \bar{a}_{x}+a \bar{a}_{y}+a \bar{a}_{y}+a \bar{a}_{z}+a \overline{a_{x}}+a \bar{a}_{z}\right]\right. \\
& +\frac{1}{a^{3}}\left(a \bar{a}_{z}+a \bar{a}_{y}+a \bar{a}_{x}\right)+\frac{1}{3^{3 / 2} a^{3}}\left(a \overline{a_{x}}+a \bar{a}_{y}+a \bar{a}_{z}\right) \\
& =\frac{Q^{2}}{4 \pi \epsilon_{0}}\left[\frac{1}{2^{3 / 2} a^{3}} \times a\left(2 \overline{a_{x}}+2 \overline{a_{y}}+2 \overline{a_{z}}\right)\right. \\
& +\frac{1}{a^{3}} \cdot\left(\overline{a_{x}}+\overline{a_{y}}+\bar{a}_{z}\right)+\frac{1}{3^{3 / 2} a^{3}} a\left(\bar{a}_{x}+\bar{a}_{y}+\bar{a}_{z}\right) \\
& =\frac{Q^{2}}{4 \pi \epsilon_{0} a^{2}}\left[1.8995 \overline{a_{x}}+1.8995 \overline{a_{y}}+1.899 \overline{a_{z}}\right] \\
& \overrightarrow{F_{p}}=\frac{1.8995 Q^{2}}{4 \pi \epsilon_{0} a^{2}}\left[\overline{a_{x}}+\bar{a}_{y}+\bar{a}_{z}\right] \\
& \left.F_{p} \simeq \frac{1.9 Q^{2}}{4 \pi G_{0} a^{2}}\left[\overline{a_{x}}+\overline{a_{y}}+\overline{a_{z}}\right]\right] \text { Nato } \\
& \left|\overline{F_{p}}\right|=\frac{3.29 Q^{2}}{4 \pi \epsilon_{0} a^{2}} \text { Newton }
\end{aligned}
$$

Problem 11.
Four lon positive charges are Located in the $z=$ plane at the corners of a square of side 8 cm . A fifth lone positive charge is located at a point 8 cm distant from the other charges. Calculate the Magnitude of the force on the fifth charge in freespace

$$
[W \cdot H \cdot H \text { Hay }|06-\operatorname{Dec}| \operatorname{Jan} 2014(7 \mathrm{~m})]
$$

Solve:-
Notes- Convert the distance from \&n to materincm).

fig. Square in $x y$ plane Since it is in $x y$ plane the value of $z=0$.
conc the net force at a point $O(0,0,2)$ due to four point charges can be calculated using Supuposition principle. ie $\bar{F}_{0}=\bar{F}_{P}+\bar{F}_{Q}+\bar{F}_{R}+\bar{F}_{S}$: Newton

To find ' z ' value on z axis un distance formula let $\left|\overrightarrow{P_{O}}\right|=\sqrt{(0+0.06)^{2}+(0-0.06)^{2}+(z-0)^{2}}=8 \mathrm{~cm}=0.08 /$

$$
\begin{aligned}
& 0.08^{2}=0.04^{2}+0.04^{2}+3^{2} \\
& 3= \pm 0.0565
\end{aligned}
$$

Since point $O(0,0,3)$ in on the z axis \therefore
choose $Z=0.0565 \mathrm{~m}$

$$
\because \text { point } 0(0,0,3)=0(0,0,0.0565) \mathrm{m}
$$

$$
\begin{aligned}
& \overline{F_{0}}=\frac{Q_{p} \theta_{0}}{u \pi \epsilon_{0}|\overline{P D}|^{2}} \overline{a_{P O}}+\frac{Q_{R} \theta_{0}}{u \pi \epsilon_{0}|\overline{R O}|^{2}} \overline{a_{R O}}+\frac{Q_{Q} Q_{0}}{u \pi \epsilon_{0}\left|\overline{Q_{0}}\right|^{2}} \overline{Q_{Q_{0}}} \\
& +\frac{Q_{s} Q_{0}}{6 \pi \epsilon_{0}|\overline{S O}|^{2}} \overline{a_{\text {so }}}: N
\end{aligned}
$$

Since $Q_{P}=Q_{S}=Q_{B}=Q_{O}=Q=10 \times 10^{-9} \mathrm{C}$

$$
\overline{F_{0}}=\frac{Q^{2}}{u \bar{H} \epsilon_{0}}\left[\frac{\overline{A_{P O}}}{|\overline{P O}|^{2}}+\frac{\overline{a_{R O}}}{\left|\overline{R_{O}}\right|^{2}}+\frac{\overline{Q_{Q O}}}{\mid \overline{\left.Q_{O O}\right|^{2}}}+\frac{\overline{a_{S O}}}{|\overline{S O}|^{2}}\right] ; N
$$

$$
\begin{aligned}
& \overline{F_{0}}=\frac{Q^{2}}{u \pi \epsilon_{0}}\left[\frac{\overline{P O}}{|\overline{P O}|^{3}}+\frac{\overline{R_{0}}}{\left|\overline{R_{0}}\right|^{3}}+\frac{\overline{Q_{0}}}{\mid \overline{\left.Q_{0}\right|^{3}}}+\frac{\overline{S O}}{|\overline{S O}|^{3}}\right] \\
& \overline{P O}=0.04 \overline{a_{x}}-0.04 \overline{a_{y}}+0.0565 \overline{a_{z}} ;|\overline{P O}|=0.07995 \mathrm{~m} \\
& \overline{R O}=-0.04 \overline{a_{x}}+0.04 \overline{a_{y}}+0.0565 \overline{a_{z}} ;|\overline{R 0}|=0.07995 \mathrm{~m} \\
& \overline{Q O}=0.04 \overline{a_{x}}+0.04 \overline{a_{y}}+0.0565 \bar{a}_{z} ;\left|\overline{Q_{0}}\right|=0.07995 \mathrm{~m} \\
& \overline{S O}=-0.04 \overline{a_{x}}-0.04 \bar{a}_{y}+0.0565 \bar{a}_{z} ;|\overline{S 0}|=0.07995 \mathrm{~m} .
\end{aligned}
$$

Since $\quad|\overrightarrow{P O}|=|\overrightarrow{R O}|=|\overline{Q O}|=|\overline{S O}|=0.07995 \mathrm{~m}$.

$$
\begin{aligned}
& \overline{F_{0}}=\frac{\left(10 \times 10^{-9}\right)^{2}\left(9 \times 10^{9}\right)}{(0.07995)^{3}}\left[\begin{array}{l}
0.04 a_{x}-0.04 \overline{a_{y}}+0.0565 \overline{a_{z}} \\
-0.06 \overline{a_{x}}+0.04 a_{y}
\end{array}\right. \\
& \begin{array}{l}
-0.06 \overline{a_{x}}+0.06 a_{y}+0.0565 \overline{a_{z}} \\
+0.06 \overline{a_{x}}+0.06 a_{y}+0.0565 a^{3}
\end{array} \\
& \left.-0.04 \overline{a_{x}}-0.04 \frac{a_{y}}{a_{y}}+0.0565 \frac{\overline{a_{z}}}{}\right] \\
& \bar{F}_{0}=\frac{\left(10 \times 10^{-9}\right)^{2}\left(9 \times 10^{9}\right)^{1} 4 \times 0.0565 \bar{a}_{3}}{(0.07995)^{3}} \\
& \overline{F_{0}}=3.98014 \times 10^{-4} a_{z} \simeq 4 \times 10^{-4} \overline{a_{z}} \text { Newton } \\
& \overline{F_{0}}=4 \times 10^{-4} \overline{a_{z}} \text { luton }
\end{aligned}
$$

obsi- Since all charges of same value and they Located in Symmetrical moaner with equi-distance along tue and we x, y ares, the net force along x and y
problem 12.
Two point charges of 5 and $-3 \mu \mathrm{C}$ che plant along Straight Line 10 m apart. Determine the Location of third charge of $4 \mu \mathrm{C}$ Such that it in subjected to no force. [10-JunelJoly-2015 (Gm) EEE]
Sola:-
anume that all point charges are boated along x-axis

using supuposition principle

$$
\begin{aligned}
& F_{P}=\vec{F}_{D}+\bar{F}_{A} \quad N \\
& \overline{F_{p}}=\frac{\theta_{1} \theta_{p}}{u \pi \epsilon_{0}|\overrightarrow{o p}|^{2}} \bar{a}_{o p}+\frac{\theta_{2} \theta_{p}}{u \pi G_{0}|\overline{A P}|^{2}}{\overline{a_{A p}}}_{F_{A}}^{N} \\
& \overline{O P}=x \overline{a_{x}} ;|\overline{O p}|=\sqrt{x^{2}}=x \mathrm{~m} . \quad|\overline{O P}|^{2}=x^{2} \\
& \overline{A_{p}}=(x-10) \quad \overline{a_{x}} ; \quad|\overline{A p}|=\sqrt{(x-10)^{2}}=(x-10) m \text {; } \\
& \vec{a}_{O p}=\frac{\overrightarrow{O P}}{|\overrightarrow{O P}|} ;\left.\quad \overrightarrow{A P}\right|^{2}=(x-10)^{2}=\frac{\widehat{A P}}{|\overrightarrow{A P}|}
\end{aligned}
$$

$$
\begin{align*}
& \bar{F}_{p}=\frac{\theta_{1} \theta_{p}}{u \pi \epsilon_{0}} \frac{\overline{o p}}{|\overline{o p}|^{3}}+\frac{\theta_{2} \theta_{p}}{u \pi \epsilon_{0}\left|\overline{A_{p}}\right|^{3}} \overline{A_{p}}: N \\
& \overline{F_{p}}=\frac{\theta_{1} \theta_{p}}{u \pi \epsilon_{0}} \frac{x \overline{a_{n}}}{x^{\gamma^{2}}}+\frac{\theta_{2} \theta_{p}}{u \pi \epsilon_{0}} \frac{(x-10)^{\overline{a_{x}}}}{(x-10)^{\beta_{2}}}: N \\
& \overline{F_{p}}=\left[\frac{\theta_{1} \theta_{p}}{u \pi \epsilon_{0} x^{2}}+\frac{\theta_{2} \theta_{p}}{u \pi \epsilon_{0}(x-10)^{2}}\right] \overline{a_{x}} \tag{1}
\end{align*}
$$

given that the force experienced by the third charge in zero.
ie $\left|\bar{F}_{p}\right|=F_{x}=0$.
fromequ

$$
\begin{aligned}
& \frac{\theta_{1} \theta p}{4 \pi \epsilon_{0} x^{2}}+\frac{\theta_{2} \theta_{p}}{4 \pi \epsilon_{0}(x-10)^{2}}=0 \\
& \frac{\theta_{1} \theta p}{4 \pi E_{0} x^{2}}=\frac{-\theta_{2} \theta p}{4 \pi E_{0}(x-10)^{2}} \\
& \frac{5 \mu}{x^{2}}=\frac{-(-3 \mu)}{(x-10)^{2}} \\
& \Rightarrow 5(x-10)^{2}=+3 x^{2} \\
& 5\left[x^{2}+100-20 x\right]-3 x^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& 5 x^{2}+500-100 x-3 x^{2}=0 \\
& 2 x^{2}-100 x+500=0 . \\
& x=44.3649 \mathrm{~m} \text { and } x=5.63508 \mathrm{~m}
\end{aligned}
$$

\therefore the points at which the force experienced by third charge is to be zero is

$$
\begin{aligned}
& \text { is to be zero is } \\
& P_{1}(44.3649,0,0) \mathrm{m} \text { and } P_{2}(5.63508,0,0) \mathrm{m} \text {. }
\end{aligned}
$$

problem 13
Q_{1} and θ_{2} are the point charges Located at $(0,-4,3)$ and $(0,1,1) \mathrm{m}$. if θ_{1} is $2 \mu \mathrm{c}$. Find θ_{2} sunhat the force on a test charge at $(0,-3,4)$ has no Z-component.

Sols:fig. vatorforce F_{P}
the force erpinience by a tort charge at point $p(0,-3,4) \mathrm{m}$ is calculated by using Superposition principle.

$$
\begin{aligned}
& \text { ide } \overline{F_{P}}=\overline{F_{A}}+\overline{F_{B}} \text { Newton } \\
& \bar{F}_{p}=\frac{\theta_{1} \theta_{t}}{u \pi G_{0}\left|\overline{A_{p}}\right|^{2}} \overline{a_{A p}}+\frac{\theta_{2} A_{t}^{i c}}{4 \pi G_{0}|\overline{B P}|^{2}} \bar{a}_{B P} ; N \\
& \overline{A P}=\overline{a_{y}}+\overline{a_{z}} ; \quad|\overline{A p}|=\sqrt{2} m ; \quad \overline{a_{A p}}=\frac{\overline{A P}}{|\overline{A p}|} \\
& \overline{B P}=-4 \overline{a_{y}}+3 \overline{a_{z}} ; \quad|\overline{B p}|=5 m ; \quad \overline{a_{B p}}=\frac{\overline{B P}}{\left|\overline{B_{P}}\right|}
\end{aligned}
$$

$$
\begin{align*}
& \bar{F}_{p}=\frac{\theta_{1}}{u \pi \epsilon_{0}} \frac{\overline{A_{p}}}{\left|\overline{A_{p}}\right|^{3}}+\frac{\theta_{2}}{4 \pi \epsilon_{0}} \frac{\widehat{B P}}{\left|\overline{B_{p}}\right|^{3}} ; N \\
& \overline{F_{p}}=\frac{(2 \mu)\left(9 \times 10^{9}\right)}{(\sqrt{2})^{3}}\left[\bar{a}_{y}+\overline{a_{z}}\right]+\frac{\theta_{2}\left(9 \times 10^{9}\right)}{(5)^{3}}\left[-4 \overline{a_{y}}+3 \overline{a_{z}}\right] \tag{1}
\end{align*}
$$

To Find O_{2} the force on test charge this
NO- z component.

$$
\text { i.e } \quad F_{z}=O N
$$

from $\mathrm{Cq}^{4} 0$; the F_{2} component in

$$
\left\{\begin{array}{c}
\left.\frac{2 \mu\left(9 \times 10^{9}\right)}{(\sqrt{2})^{3}}+\frac{\theta_{2}\left(9 \times 10^{9}\right)}{(5)^{3}}(3)\right]=0 \\
\frac{2 \mu\left(9 \times 10^{9}\right)}{(\sqrt{2})^{3}}=\frac{-\theta_{2}\left(9 \times 10^{9}\right)}{5^{3}} \times 3 \\
Q_{2}=\frac{\left[-2 \mu \times 5^{3}\right]}{3 \times(\sqrt{2})^{3}}=\frac{29.462 \mu \mathrm{C}}{}
\end{array}\right.
$$

The value of θ_{2} such that the force experienced by the test charge at point $P\left[\right.$ ie $\left.\bar{F}_{p}\right]$ has no ' ${ }^{\prime}$ ' Component in $\theta_{2}=-29.462 \mathrm{Mc}$
problemlly.
A charge $Q_{1}=-20$ Mc in Located at $A(-6,4,6)$ and a charge $\theta_{2}=50 \mathrm{Mc}$ in Located at $B(5,8,-2) \mathrm{m}$ in freespace. Find the force exerted on θ_{2} by θ_{1} in vatorform. [10-Dec/Jan 2015-EEE(6m)]

Solve -

$$
\theta_{1}=-20 \mathrm{Mc} \quad \widehat{A_{B}} \quad \theta_{2}=50 \mathrm{Mc}-\bar{F}_{2}=?
$$

the Force $\bar{F}_{2}=\frac{\theta_{1} \theta_{2}}{4 \pi G_{0}|\overline{A B}|^{2}} \overline{A_{A B}} N$.

$$
\begin{aligned}
& \overline{A B}=(5+6) \bar{a}_{x}+(8-4) \bar{a}_{y}+(-2-6) \overline{a_{z}} ; \overline{a_{A B}}=\frac{\overline{A_{B}}}{\mid \overline{A_{B} \mid}} \\
& \overline{A B}=11 \overline{a_{x}}+4 \bar{a}_{y}-8 \bar{a}_{z} ;|\overline{A B}|=\sqrt{201} \mathrm{~m} . \\
& \overline{F_{2}}=\frac{(-20 \mu)(50 \mu)\left(9 \times 10^{9}\right)}{(\sqrt{201})^{3}}\left[11 \overline{a_{x}}+4 \bar{a}_{y}-8 \bar{a}_{z}\right] \\
& \left.\overline{F_{2}}=-0.03474 \bar{a}_{x}-0.01263 \overline{a_{y}}+0.02526 \overline{a_{z}}\right]
\end{aligned}
$$

problem 15.
Fown point charges each of roMc ane placed in frespace at the pointi $(1,0,0),(-1,0,0),(0,1,0)$ and $(0,-1,0) \mathrm{m}$ ropectively. Determine the force on a poin charge of $20 \mu \mathrm{C} \frac{1}{F_{0}}$ cated at a point $(0,0,1) \mathrm{m}$.
Solu:-

$A(1,0,0) m$ fig. vetorforce \bar{F}_{p}.

Fic net force at point p is Calulating wsing
Supuposition principle.
ie $\bar{F}_{P}=\overline{F_{A}}+\overline{F_{B}}+\overline{F_{C}}+\overline{F_{D}}: N$.
giver $\theta_{A}=\theta_{B}=\theta_{C}=\theta_{D}=Q=10 \mathrm{Nc}$

$$
\begin{aligned}
& \overline{F_{p}}=\frac{Q_{Q P}}{u \pi \epsilon_{0}}\left[\frac{\bar{a}_{P p}}{|\overline{A p}|^{2}}+\frac{\overline{a_{B P}}}{|\overline{B P}|^{2}}+\frac{\overline{a_{C p}}}{\left|\overline{c_{p}}\right|^{2}}+\frac{\overline{a_{D P}}}{\left|\overline{D_{p}}\right|^{2}}\right] \\
& \overline{F_{p}}=\frac{Q \theta_{p}}{u \pi \epsilon_{0}}\left[\frac{\overline{A p}}{\mid \overline{\left.F_{p}\right|^{3}}}+\frac{\overline{B P}}{|\overline{B p}|^{3}}+\frac{\overline{C_{p}}}{\mid \overline{\left.C_{p}\right|^{3}}}+\frac{\overline{O p}}{\left|\overline{O_{p}}\right|^{3}}\right] ; \lambda \\
& \overline{A p}=-\overline{a_{x}}+\overline{a_{z}} ; \quad|\overline{A p}|=\sqrt{2} m . \\
& \overrightarrow{B_{p}}=\overline{a_{x}}+\overline{a_{z}} ; \quad\left|\overline{B_{p}}\right|=\sqrt{2} m . \\
& \overline{C_{p}}=-\overline{a_{y}}+\overline{a_{z}} ; \quad\left|\overline{c_{p}}\right|=\sqrt{2} m . \\
& \overline{D p}=\overline{a_{y}}+\overline{a_{z}} ; \quad\left|\overline{D_{p}}\right|=\sqrt{2} \mathrm{~m} . \\
& \text { Obs:- }|\overrightarrow{A p}|=\left|\overline{B_{p}}\right|-|\overline{C p}|=|\overline{D p}|=\sqrt{2} \mathrm{~J} \\
& \bar{F}_{p}=\frac{Q_{p} \theta_{p}}{u \pi \sigma_{0}(\sqrt{z})^{3}}\left[-a_{n}+\overline{a_{z}}+\frac{\phi_{n}}{}+\overline{a_{z}}-\not \phi_{y}+\overline{a_{z}}+\phi_{x y}+\vec{a}\right. \\
& \overline{F_{p}}=\frac{Q_{Q_{p}}}{u \pi G_{0}(\sqrt{2})^{3}} 4 \overline{a_{z}} \quad \mathrm{~N} \text {. } \\
& \overline{F_{p}}=\frac{10 \mathrm{~m}(20 \mathrm{~m})\left(a \times 10^{9}\right)}{(\sqrt{2})^{3}} 4 \bar{a}_{3} \\
& \overline{F_{p}}=2.54558 \overline{a_{z}} \text { Newton } \\
& \left|\bar{F}_{p}\right|=F_{3}=2.54558 \mathrm{~N} .
\end{aligned}
$$

1.1d Application d of Coulomb's Law.

Coulombs Law is used to:
i. Find the Force between two point charges.
ii. Find the potential at a point diu to a fixed charge.
iii. Find the Electric field at a point due to a fixed charge.
iv. Find the potential and Electric field due to any type of charge distribution.
1.1e Limitation of Coulomb's Law
i. Coulombs Law defined only for point charges.
ii. it indifficulf to apply the Law when Charges one of arbitrary shape.

Topic l.2. Types of charge Dintribution.
There are Four commontypen of charge distributions are
a. point charges, Q (Coulomb).
Li. Line charge distribution $\mathrm{Se}_{e}(\mathrm{~cm})$.
(11) Surface charge distribution $\rho_{S}\left(c / m^{2}\right)$.
d. Volume charge distribution fut $\left(\mathrm{cm}^{3}\right)$.
a. point charge distribution, Q(Coulomto)

These are the charge which do not occupy any Space, that the volume of the point charge in Zero.
Eg. Elution is considered to be a point charge and has a charge of 1.6×10^{-19} Coulombs.

$$
\begin{array}{lll}
& \cdot+Q & +Q \\
+Q & & +Q \\
+\dot{Q} & +Q & +Q \\
+Q & +Q
\end{array}
$$

distribution.
fig. port charge
b. Line charge distribution (b) Line charge density $\rho_{\lambda}(c \mid m)$.

Consider a Q coulomb of charge uniformly distributed ovora line of Length 'L' meter.

$$
\begin{gather*}
S_{l}=\frac{\text { total charge spread }}{\text { total length }} \mathrm{cm}_{m} . \\
S_{l}=\frac{Q}{L} \rho_{m}=0
\end{gather*}
$$

co Q in valid if θ^{\prime} is constant.
chage
if Suppose phage Q^{\prime} is a function of Spatial variables

$$
\begin{equation*}
\text { then } \rho_{l}=\frac{d Q}{d l} \quad \rho_{m} \tag{2}
\end{equation*}
$$

F form G^{4} (2) the total charge ' Q ' is obtained by

$$
\Rightarrow d \theta=\rho_{l} d l \text { Coulomb: }
$$

C. Surface charge dintribution (o) Sutau charge dinsity $\rho_{s}\left(f_{n} n^{2}\right)$
\qquad
Fonsider a charge of ' Q ' Coulomb'n, uniformly distributed overa surtace of arca ' S ' m '.
${ }^{\prime}{ }^{\circ}{ }^{\circ} \mathrm{C}$

Arca Sm^{2}
Area s^{m}.
fig. Surtancherge
distribution.

$$
\rho_{S}=\frac{Q}{S} \rho_{m^{2}}
$$

(6) $Q=\rho_{S}, S$
if ' Q ' is a function of Spatial voriables then Ionsider differntial charge dQ over a Surface ds.

$$
\begin{aligned}
& \quad \int_{\text {the total cherge spread } Q=?}^{\rho_{S}}=\frac{d Q}{d S} \operatorname{lm}^{2} \\
& \quad Q=\int_{S} d S \\
& \quad \rho_{S} \cdot d S \quad \text { Coulombis. }
\end{aligned}
$$

d. Volume charge distribution (大) Volume charge density $\operatorname{suc}_{4}\left(\ln ^{3}\right)$.

- A^{G}

Consider a total charge of ' Q ' coulomb's, uniformly distributed over a volume v

$$
\begin{gathered}
f_{v}=\frac{\text { total charge spread }}{\text { total volume }} \varphi_{m^{3}} \\
\int_{v}=\frac{Q_{0}}{v} \rho_{n^{3}}
\end{gathered}
$$

if charge Q ' is a function of Spatial variables then, consider the differential charge over a differentia Volume $d v$

$$
S_{v}=\frac{d Q}{d v} \quad \varphi_{m^{3}}
$$

the total charge spread $Q=$?

$$
\begin{aligned}
& d Q=\rho_{v} d v \\
& Q=\int_{\langle v 01\rangle} \text { he } d v
\end{aligned} \text { Coulomb }
$$

Keynote points:

1. point charge $Q \longrightarrow$ Coulomb (C).
2. Linecharge density $\rho_{l}=\frac{Q}{L} \quad \rho_{m} \Rightarrow Q_{t}=\rho_{l} L$
(大) $S_{l}=\frac{d Q}{d l} \quad l_{m} \Rightarrow Q_{t}=\int_{\angle l\rangle} S_{l} \cdot d l$
3. Surface charge density (S_{s}).

$$
\rho_{S}=\frac{Q}{S} \quad l_{n}^{2} \quad 2 Q_{t}=\rho_{S} \cdot S
$$

(6) $\rho_{s}=\frac{d Q}{d s} \varphi_{n}^{2} \Rightarrow Q_{t}=\int_{\langle s\rangle} \rho_{s} \cdot d s$
4. Volum charge density (Suv)

$$
\begin{aligned}
& \rho_{v}=\frac{\theta}{v} \rho_{n^{3}} \Rightarrow Q_{t}=\rho_{v} \cdot v \mathrm{Ci} \\
& \left.\rho_{v}=\frac{d \theta}{d v} \rho_{n}^{3} \Rightarrow Q_{t}=\int_{v} d v \sum_{0}\right\rangle
\end{aligned}
$$

5. The quantition $\theta, \rho_{l}, \rho_{S}$, and $l_{\text {re }}$ one Scalar in nature.
6. $\quad \begin{aligned} & \text { nature. } \\ &\langle h\rangle=\text { indicates Line integral and its a } \\ & \text { Single integral. }\end{aligned}$
$\left.\right|_{\langle S\rangle}=\int f$....indicate surface integral and if ina double integral
problem 1.
Find the total charge inside a volume having charge density as $10 z^{2} e^{-0.1 x} \sin (\pi y) \mathrm{cm}^{3}$. The volume in defined between $-2 \leq x \leq 2$,

$$
0 \leq y \leq 2, \quad 3 \leq z \leq 4
$$

Solvi: Given

$$
\begin{aligned}
& \text { Given } \\
& S_{v}=10 z^{2} e^{-0.1 x} \sin (\pi y) \quad f_{m^{3}} \\
& -2 \leq x \leq 2, \quad 0 \leq y \leq 2, \quad 3 \leq 2 \leq 4 \\
& S_{v}=\frac{d Q}{d v} \varphi_{m^{3}} \quad d v=d x d y d_{z} m^{3}
\end{aligned}
$$

\Rightarrow the total charge $Q=\int_{\text {Quod }}$ hredv G^{\prime}

$$
\begin{aligned}
& Q=110 z^{2} e^{-0.1 x} \sin (\pi y) d x d y d z \\
& Q=10 \int_{x=-2}^{2} e^{-0.1 x} d x \int_{y=0}^{2} \sin (\pi y) d y \int_{z=3}^{4} z^{2} d z \\
& Q=10 \times 4.02672 \times 0 \times 12.333
\end{aligned}
$$

$Q=0$ Cioulomtin.
problem 2.
A charge in distributed on y-axis of cartesian system having a line charge density of $3 y^{2} \mu \mathrm{c} / \mathrm{m}$. Find the total charge over the Length of 10 m .

Sols:

the total charge distributed our a Lingthof 10 m in given by

$$
\begin{aligned}
& \rho_{l}=\frac{d Q}{d l} C_{n}{ }^{2} \\
& \Rightarrow Q=\int_{\langle l\rangle} \rho_{l} \cdot d l \quad G
\end{aligned}
$$

Since line charge in placed along y-axis
$d x \rightarrow d y$ and y-range is

$$
0 \leq y \leq 10
$$

$$
\begin{aligned}
& Q=\int_{y=0}^{10} 3 y^{2} \cdot d y \times 1 \mu=\neq\left.\frac{y^{3}}{\beta}\right|_{0} ^{10} \times 1 \mu=10^{-3} \mathrm{G}^{1} \\
& \frac{=1 \mathrm{mc}}{\text { Dept of E\&CE, SVCE }} \mathrm{C} \quad 229
\end{aligned}
$$

problem 3. Find the charge in the volume defined by

$$
1 \leq \rho \leqslant 2 m \text { and } F_{6}=\frac{5 \cos ^{2} \phi}{\rho 4} \mathrm{~cm}^{3} .
$$

Given

$$
q_{r e}=\frac{5 \cos ^{2} \phi}{\rho^{4}} \rho_{m^{3}} \text { and } 1 \leq \rho \leq 2 \mathrm{~m}
$$

f_{v} is in cylindrical Coordinate Systein.
the total charge $Q=\int_{\langle v 0\rangle\rangle} h e d x e$

$$
\begin{aligned}
& P(\rho, \phi, z) \\
& \int_{d}^{\ell} \alpha_{p d p} \rightarrow d_{z} \text {. } \\
& d v=\rho d \rho d \phi d z \text {. } \\
& Q=\int_{\langle v o l\rangle} f_{v} f d \rho d p d z \\
& \left.\left.Q=5 \int_{\rho=1}^{2} / \rho^{3} d \rho \int_{0}^{2 \pi} \int_{\|}^{2 \pi} \cos ^{2 \pi} \cos ^{2} \phi d \phi\right]\right]_{z=0}^{1} d z . \\
& Q=5 \times 0.375 \times 3.1415 \times 1=5.8903 G \\
& Q=5.8903 \text { Coulombs }
\end{aligned}
$$

problems. Find the total charge contained in a 2 cm length of the elution beam, cylindrical in shape with $\rho=1 \mathrm{~cm}$; height of 2 cm from 2 to 4 c and $\phi=0$ to $2 \pi^{c}$. given charge densify

$$
f_{6}=-5 \times 10^{-6} e^{-10^{5} \rho z} q_{m^{3}}
$$

$$
[W \cdot H \cdot \text { Hays } \mid 02 \text {-June } \mid \text { July } 2010]
$$

situ:-

$$
\begin{aligned}
Q & =\int_{\langle 601\rangle}^{-5 \times 10^{-6}} e^{-10^{5 \rho} z}[\rho d \rho d \phi d z] \\
Q & =\int_{\rho=0}^{0.01} \int_{z=0.02}^{0.04} \int_{\phi=0}^{2 \pi}-5 \times 10^{-6} e^{-10^{5 \rho z}} \rho d \rho d \phi d z \\
& =\int_{\rho=0}^{0.01} \int_{z=0.02}^{0.04}-5 \times 10^{-6} e^{-10^{5 \rho} z} \rho d \rho d z \int_{0}^{2 \pi} d \phi \\
& =-5 \times 2 \pi \times 10^{-6} \int_{S=0}^{0.01}, \int_{z=0.02}^{0.04} e^{-105 \rho} \rho d \rho d z
\end{aligned}
$$

firat integrate w.rt 3 ' by treating ' ρ ' to be condtant.

$$
\begin{aligned}
& =-\left.10 \pi \mu \int_{\rho=0}^{0.01} \delta d \rho \cdot \frac{e^{-10^{5} \rho z}}{-10^{5} \rho}\right|_{0.02} ^{0.04} \\
& =+10 \pi \mu \times\left. 10^{-5}\right|_{S=0} ^{0.01}\left[e^{-10^{5} \rho(0.04)}-e^{-10^{5} \rho(0.02)}\right] d \rho \\
& =10 \pi \mu \times 10^{-5}\left[\left.\frac{e^{-10^{5} \rho(0.04)}}{-10^{5}(0.04)}\right|_{0} ^{0.01}-\left.\frac{e^{-10^{5 \rho(0.02)}}}{-10^{5}(0.02)}\right|_{0} ^{0.01}\right]
\end{aligned}
$$

vote. $e^{-\infty}=0$ and $e^{-(\log (N 0)} \simeq 0$

$$
\begin{aligned}
& =10 \pi \mu \times 10^{-5}\left[\frac{-1}{10^{5}(0.04)}\left[e^{-105(0.01)(0.04)}-1\right]\right. \\
& \left.+\frac{1}{10^{5}(0.02)}\left[e^{-10^{5}(0.01)(0.02)}-1\right]\right] \\
& =10 \pi \mu \times 10^{-5}\left[+\frac{1}{10^{5}(0004)}-\frac{1}{10^{5}(0.02)}\right] \\
& =\frac{10 \pi \mu \times 10^{-5}}{10^{5}}\left[(0.04)^{-1}-(0.02)^{-1}\right] \\
& =-78.5398 \times 10^{-15} \mathrm{C} \\
& Q=-0.07853 \times 10^{-12} \mathrm{G} \\
& \theta=-0.078539 p G
\end{aligned}
$$

problems.
Find the charge in the volume defined by
$1 \leq r \leq 2 m$ and in Spherical Coordinate
System $f_{v}=\frac{5 \cos ^{2} \phi}{\gamma^{4}} \varphi_{m^{3}}$.
Solus:-

$$
\begin{aligned}
& Q=\int_{\langle v 01\rangle} \rho_{v} d v \text { Coulomb } \\
& =\int_{\langle v 01\rangle} \rho_{v}\left[r^{2} \sin \theta d r d \theta d \phi\right]: \text { Cougonb } \\
& Q=\int_{\left\langle v_{01}\right\rangle} \frac{5 \cos ^{2} \phi}{r^{4 L}} \cdot r^{2} \sin \theta d r d \theta d \phi \\
& Q=5 \int_{r=1}^{2} \frac{1}{r^{2}} d r \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{\phi=0}^{2 \pi} \cos ^{2} \phi d \phi \\
& Q=5 \times 0.5 \times 2 \times 3.1415 \\
& Q=15 \cdot 7075 \text { Coulombin } \\
& \theta=15.707 G
\end{aligned}
$$

problem6.
Calculate the total charge within Each of the indicated
Volume λ

$$
\begin{aligned}
& \text { Volumen } \\
& \text { a. } 0.1 \leq|x|,|y|,|z| \leq 0.2 ; \quad \rho_{v}=\frac{1}{x^{3} y^{3} z^{3}} \rho_{m^{3}} . \\
& \text { b. } \quad 0 \leq 1 \leq 0.1, \quad 0 \leq \phi \leq \pi, 2 \leq z \leq 4 m ; \\
& \quad \rho_{v}=f^{2} z^{2} \sin (0.6 \phi) q_{m^{3}} .
\end{aligned}
$$

c. Univorse: $f_{u}=e^{-2 \gamma} / \gamma^{2} \cdot f_{m}{ }^{3}$.
[al.H. Hayt].
Solu:-

$$
\begin{aligned}
& \text { a. Given } \quad \rho_{u}=\frac{1}{x^{3} y^{3} z^{3}} \rho_{m^{3}} ; d v=d x d y d z ; m^{3} \\
& \quad 0.1 \leq|x||y| \nmid z \mid \leq 0.2 \\
& |x|= \begin{cases}+x ; & x \geq 0 \\
-x ; x<0\end{cases}
\end{aligned}
$$

$$
\begin{array}{r}
x \geqslant 0 \quad \text { i.e } x+v e \\
0.1
\end{array}
$$

$$
0 \cdot 1 \leq x \leq 0^{2} 2
$$

$x<0$ ie x in-ve

$$
\begin{equation*}
+0^{\circ} 1 \leq-x \leq+0.2 \Rightarrow-0.2 \leq x \leq-0.1 \tag{3}
\end{equation*}
$$

By comparing Lour and uppu Limitn of $q^{\prime \prime}$ (a) and eq"(6)

$$
-0.2 \leq x \leq 0.2
$$

$$
\begin{aligned}
& \therefore \quad-0.2 \leq x, y, z \leq+0.2 \\
& Q=\int_{\langle\text {oi }\rangle} h_{x} d v=\int_{x=\int_{-0.2}^{0.2}}^{x^{3}} d x \int_{0}^{y=0.2} \frac{1}{y_{3}^{3}} d y \int_{\substack{0.2 \\
z=0.2 \\
0.0 .2}}^{0.2} \frac{1}{z^{3}} d z \\
& \bar{Q}=0 \text { Coulomb' }
\end{aligned}
$$

Note: i. If $f(x)$ is an odd function ie $f(-x)=-f(x)$ then $\int_{-a}^{a} f(x) d x=0$.
ii. If $f(x)$ in an cues function ie $f(-x)=f(x)$ then $\int_{-a}^{a} f(x) d x=\theta \int_{0}^{a} f(x) d x$.
b) Given $0 \leq \rho \leq 0.1,0 \leq \phi \leq \pi ; 2 \leq z \leq 4$
and $S_{M}=\rho^{2} z^{2} \sin (0.6 \phi) \in m^{3} \ldots$ Cyberical c :

$$
Q=\int_{\langle v 01\rangle} \rho_{r} d v=\int_{j=0}^{0.1} \int_{\phi=0}^{\pi} \int_{z=2}^{4} \rho^{2} z^{2} \sin (0.6 \phi) \rho d \rho d \phi d z
$$

$$
\begin{aligned}
& Q=\int_{\rho=0}^{0.1} \rho^{3} d \rho \int_{\phi=0}^{\pi} \sin (0.6 \phi) d \phi \int_{z=2}^{4} z^{2} d z \\
& Q=\left(2.5 \times 10^{-5}\right)(2.1817)(18.666) \\
& Q=1.01809 \times 10^{-3} \mathrm{c} \\
& Q=1.01809 \mathrm{mc}
\end{aligned}
$$

c) given $f_{u}=e^{-2 r} / r^{2} c_{1}^{3}$. in Spherial Coondnate system.

$$
\begin{aligned}
& P(\gamma, \theta, \phi) \\
& d r r d \theta, r \sin \theta d \phi \\
& d v=r^{2} \phi \sin \theta d r d \theta d \phi . \\
& \text { univarse } \Rightarrow \quad 0 \leq r \leq \infty \\
& 0 \leq \theta \leq \pi \\
& 0 \leq \phi \leq 2 \pi
\end{aligned}
$$

$$
Q=\int_{\left\langle v_{0}\right\rangle} \rho_{v} d v \text { Coulomb. }
$$

$$
\begin{array}{rl}
Q & =\int_{\langle v o 1\rangle} \frac{e^{-2 r}}{r^{2}} \cdot r^{2} \sin \theta d r d \theta d \phi \\
Q & =\int_{r=0}^{\infty} e^{-2 r} d r \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{\phi=0}^{2 \pi} d \phi \\
= & \left.\frac{e^{-2 r}}{-2}\right|_{0} ^{\infty} \times 2 \times 2 \pi \\
Q & =-\frac{1}{2}\left[e^{-\infty}-e^{6}\right]^{1} \times 4 \pi \\
& =-\frac{1}{2}[-1] \times 4 \pi \\
Q & =+\frac{1}{2} \times 4 \pi=2 \pi \text { G } \\
Q & Q=2 \pi C=6.2831 \text { Coelomb }
\end{array}
$$

problem 7.
Auniform volume charge density of $0.2 \mu \mathrm{clm} \mathrm{m}^{3}$ is proust throughout the Spherical shill Extending from $r=3 \mathrm{~cm}$ to $r=5 \mathrm{~cm}$.
if $\rho_{v}=0$ elsewhere find:
a) the total charge present within the shell and b) γ_{1} if half the total charge is Looted in the region $3 \mathrm{~cm}<r<r_{1}$.
Sou:

$$
\begin{aligned}
& \text { a: give } l_{v}=0.2 \mu \mathrm{~cm} \\
& \mathrm{~m}^{3} \text {. } \\
& \mathrm{rem}^{3}
\end{aligned} \quad=3 \mathrm{~cm} \text { to } r=5 \mathrm{~cm}^{\Rightarrow} \Rightarrow
$$

$$
\begin{aligned}
& 3 \mathrm{~cm} \text { to } r=5 \mathrm{~cm} \Rightarrow \\
& 0<\theta<\pi \text { and } 0<\phi<2 \pi
\end{aligned}
$$

$$
d v=r^{2} \sin \theta d r d \theta d \phi
$$

the total charge

$$
Q=\int_{\langle v o i\rangle} \rho_{v} d v \text { Coulomb }^{\$}
$$

$$
Q=\left.\right|_{\langle v 01\rangle}(0.2 \mu) \gamma^{2} \sin \theta d \gamma d \theta d \phi
$$

$$
\begin{aligned}
& =\left.0.2 \mu \int_{r=0.03}^{0.05} r^{2} d r\right|_{\theta=0} ^{\pi} \sin \theta d \theta \int_{\phi=0}^{2 \pi} d \phi \\
& =(0.2 \mu)\left(3.26 \times 10^{-5}\right)(2)(2 \pi) \\
& =8.1932 \times 10^{-11} \text { Coulomb } \\
& Q=8.1932 \times 10^{-11} \mathrm{C}=81.932 \rho \mathrm{C}
\end{aligned}
$$

b) Find $\gamma_{1}=$? Suchtlat $Q_{\text {total }}=\frac{Q}{2}$ and. region $3 \mathrm{~cm}<\gamma<r_{1}$

$$
Q_{\text {total }}=\int_{\langle v o 1\rangle} \rho_{v} d v \quad \Rightarrow 0.03<\gamma<\gamma_{1} \text {. }
$$

$$
\frac{Q}{2}=\int_{\langle v 01\rangle}(0.2 \mu) \cdot r^{2} \sin \theta d r d \theta d \phi
$$

$$
\frac{\theta}{2}=\left.\int_{0.03}^{r_{1}} r^{2} d r \int_{\theta=0}^{\pi} \sin \theta d \theta\right|_{\phi=0} ^{2 \pi} d \phi \times(0.2 \mu)
$$

and $Q=81.0327 \times 10^{-12} \mathrm{G}$

$$
\begin{aligned}
& 40.966 \times 10^{-12}=\int_{0.03}^{r_{1}} r^{2} d r(2)(2 \pi)(0.2 \mu) \\
& \int_{0.03}^{r_{1}} \gamma^{2} d \gamma=\frac{40.966 \times 10^{-12}}{4 \pi(0.2 \mu)}=16.3 \times 10^{-6} \\
& \int_{0.03}^{r_{1}} r^{2} d r=16.3 \times 10^{-6} \\
& \left.\frac{\gamma^{3}}{3}\right|_{0.03} ^{\gamma_{1}}=16.3 \times 10^{-6} \\
& \frac{-1}{3}\left[(0.03)^{3}-r_{1}^{3}\right]=16.3 \times 10^{-6} \\
& (0.03)^{3}-r_{1}^{3}=-48.9 \times 10^{-6} \\
& r_{1}^{3}=0.03^{3}+48.9 \times 10^{-6} \\
& \gamma_{1}^{3}=75.9 \times 10^{-6}=75.9 \mu \\
& \gamma_{1}^{3}=75.9 \mu \\
& \gamma_{1}=\left(75.9 \times 10^{-6}\right)^{1 / 3}=4.233 \times 10^{-2} \mathrm{~m} \\
& r_{1}=4.233 \mathrm{~cm}=0.04233 \mathrm{~m}
\end{aligned}
$$

The charge density varies with radius in a cylindrical [o-ordinate Systems as $\rho_{l}=\frac{\rho_{0}}{\left(\rho^{2}+a^{2}\right)^{2}} \rho_{m^{3}}$.
within what distance from 3 -axis do en half the total charge lie?
Soln': giver $\rho_{e}=\frac{\rho_{0}}{\left(\rho^{2}+a^{2}\right)^{2}} \quad \rho_{m}{ }^{3} \cdots$ cylindrical $G \cdot S$
the total charge enclosed by the volume with unit Length Lie $z=$ height $E m$].

$$
\begin{array}{r}
Q=\int_{\langle v o 1\rangle} \rho_{v} d v \quad \text { Coulomb. } \\
\qquad p(\rho, \phi, z) \\
d v=s d \rho d \phi d_{z}:
\end{array}
$$

$$
\begin{aligned}
& Q=\int_{\langle v 01\rangle} \frac{\rho_{0}}{\left(\rho^{2}+a^{2}\right)^{2}} \rho d \rho d \phi d_{2}
\end{aligned}
$$

$$
\begin{align*}
& Q=\int_{0}^{\rho} \int_{0}^{2 \pi} \int_{z=0}^{1} \frac{\rho_{0}}{\left(\rho^{2}+a^{2}\right)^{2}} \cdot \rho d \rho d \phi d z \\
& Q=\rho_{0} \cdot \int_{\rho=0}^{\rho} \frac{\rho}{\left(\rho^{2}+a^{2}\right)^{2}} d \rho \int_{0}^{2 \pi} d \phi \int_{z=0}^{1} d z \\
& Q=2 \pi \rho_{0} \int_{0}^{\rho} \frac{\rho}{\left(\rho^{2}+a^{2}\right)^{2}} d \rho \\
& Q=2 \pi \rho_{0}\left[\frac{-1}{2\left(\rho^{2}+a^{2}\right)}\right]_{0}^{\rho} \\
& Q=-\frac{2 \pi \rho_{0}}{2}\left[\frac{1}{\left(\rho^{2}+a^{2}\right)}-\frac{1}{a^{2}}\right] \\
& Q=\frac{\pi \rho_{0}}{}\left[\frac{1}{a^{2}}-\frac{1}{\rho^{2}+a^{2}}\right] \\
& Q \\
& Q=\frac{\pi \rho_{0}}{a^{2}}\left[1-\frac{1}{1+\rho^{2} / a^{2}}\right]=Q(\rho)
\end{align*}
$$

i.e Q is afunction of radius ' 1 m . when $\rho \rightarrow \infty$, the total charge in found to be

$$
Q=\frac{\pi \rho_{0}}{a^{2}} \quad \text { Coulombs. }
$$

from cq (a)
the condition for which $Q \rightarrow \theta / 2$

$$
\text { i.e } \quad \rho={ }^{\prime} a^{\prime} m
$$

when $\rho=a^{\prime} m$ in $e^{2}(1) \quad Q^{\prime}=\frac{\pi \rho_{0}}{a^{2}}[1-1 / 2]$

$$
Q^{\prime}=\frac{\pi J_{0}}{2 a^{2}}=Q / 2 .
$$

i.e when $\rho=a \mathrm{~m}$ the charge becomes half i.e

$$
Q^{\prime}=\frac{Q}{2}=\frac{\pi S 0}{2 a^{2}} \text { Coulomb: }
$$

problem 9．
Two identical uniform Line charge with $\rho_{2}=70 \mathrm{ncm}$ are Located in free space at $x=0 ; y= \pm 0.4 \mathrm{~cm}$ ． what fore per unit length does each Line charge Exert on other．
Sou：－given $\rho_{l}=70 \mathrm{ncm}$
the total charge＇Q＇encloned pr Unit Length（i．e $L=1 m$ ） in $Q=S_{l} \times L=70 \mathrm{n} \mu_{m} \times 1 \mathrm{~m}=70 \mathrm{nc}$

$$
Q=70 \mathrm{nc}
$$

$$
\theta=70 \mathrm{nc} .
$$

$$
\therefore Q=70 n c
$$

the magnitude of Force excosted between both the Line charges is

$$
\begin{aligned}
F & =\frac{Q Q}{u \pi \epsilon_{0} r^{2}}=\frac{Q^{2}}{u \pi \epsilon_{0} r^{2}} \\
F & =\frac{(70 n)^{2}\left(9 \times 10^{9}\right)}{(0.8)^{2}}=68.906 \times 10^{-6} \mathrm{~N} \\
\text { \&y } & F=68.906 \times 10^{-6}=68.906 \mu \mathrm{~N}
\end{aligned}
$$

Problem 10

n^{2} The rime is defined between $-2 \leq x \leq 2.0 \leq y \leq 1.3 \leq z \leq 4$. Ans: $0=316.16 \mathrm{C}$
solus.

$$
\begin{aligned}
& S_{v}=10 z^{2} e^{-0.1 x} \sin (\pi y) \quad \ln ^{3} \\
& -2 \leq x \leq 2, \quad 0 \leq y \leq 1, \quad 3 \leq z \leq 4 .
\end{aligned}
$$

$$
Q=\int_{\langle v 01\rangle} \rho_{v} \cdot d v=\int_{\langle v 01\rangle} \rho_{v} d x d y d z
$$

$$
Q=\int_{\left\langle v_{0}\right\rangle} 10 z^{2} e^{-0.1 x} \sin (\pi y) d x d y d z
$$

$$
Q=10 \int_{x=-26}^{2} e^{-0.1 x} d x \int_{y=0}^{1} \sin (\pi y) d y \int_{z=3}^{4} z^{2} d z
$$

using cable

$$
\theta=10 \times 4.02672 \times 0.63662 \times 12.333
$$

solus
problem 0 . Find the total charge inside a volume having volume charge density as $10 z^{2} e^{0.05 x} \operatorname{Sin}(\pi y) d_{n}$. The volume in defined between $-2 \leq x \leq 2,0 \leq y \leq 1$

problemil
A charga in distributed on x-axis of
Cartesian System having a line charge dinsing of $3 x^{2} \mu \mathrm{~cm}$. Find the total chorge over the Lergth of 10 m .
solui. $\quad S_{e}=3 x^{2} \mu \mathrm{clm}$.

$$
0 \leq x x^{-10 m}
$$

$$
Q=\int_{\langle\lambda\rangle} \rho_{l} \cdot d l
$$

Sinu the linectage dirsity f_{e} in placed along x-axin $d x=d x$.

$$
\begin{aligned}
& Q=\int_{x=0}^{10}\left(3 x^{2} \mu\right) d x=\left.\frac{3 x^{3}}{3}\right|_{0} ^{10} \times 1 \mu \\
& Q=10^{3} \times 1 \mu=10^{-3} \mathrm{G} \\
& Q=\operatorname{lm} \mathrm{C}
\end{aligned}
$$

Elatric Field Intensity.
[10-Jan2014] [10-Jan-2016]
1.3a: Definition of Electric field Intensity (\bar{E})
 Electrostatic field in produced by a charge at root. it in defined by Coulomb's Law.
Definition: Electric field due to a charge in defined as the Coulombs fore per unit test charge it is a vutor quantity and has the unit of Newton per Coulomb $(N \mid C)$ (o) volt per meter (V / m).

$$
\text { i.e } \bar{F}=\frac{\overline{F_{t}}}{\theta_{t}} 1 v / m \text { or N/C }
$$

1.3b: Field due to point charge $[10-\operatorname{Jan} 2012,10-\operatorname{Jan} 2013$ 10-JunelJoly-2014].

In other way the Elutric field Intensity at a point p^{\prime} is knothing but the force experience by a unit positive charge at
point $p\left(x_{2}, y_{2}, z_{2}\right) m$ due to $Q_{1} G_{1}$ of charge at point $O\left(x_{1}, y_{1}, z_{1}\right) m$.
from Coulomis' Law

$$
\begin{aligned}
& \bar{F}=\frac{Q_{1} Q_{t}}{u \pi G_{0}|\overline{O p}|^{2}} \bar{a}_{o p} \text {; Newton } \\
& \overline{E_{p}}=\frac{\overline{f_{p}}}{Q_{t} \mid c} \text { Nlc (O) } v / m
\end{aligned}
$$

Keynote pointos -
i. Itatric field intensity (\bar{E}) is a vatorfield and Measured in N/C (or) V/m.
ii. E at a point P is knothing but forceper unit charge.

$$
\begin{aligned}
& \text { ie charge. } \\
& \text { ie } \overline{E_{p}}=\frac{\overline{F_{p}}}{\theta_{t}+1 c}
\end{aligned} \text { n/c (O) u/m }
$$

"iii. In general Electricficld intensity at apoint ' p ' due to ' Q ' C of point charge is given by
iv. its direction in the same as that of Coulomb's force.
U. F depends on the permittivity g themedium.
v_{i}. it depends on the distance of the charge from another charge which pradoen Coulombistorce.
vii. it depends on the he cation of the charges.
viii. When a unit charge at a distance in moved around a fixed charge, the field Lines and fore appear as shown in fig. below.

fig. Coulombs force and Elutricfield.
1.3c: Electric Field Intensity due to renumber of point charges.
Question. Show that Electric field intensity at a point due to ' u ' number of point charges in given by $(5 \mathrm{~m})$.

$$
\bar{E}=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \frac{Q_{i}}{R_{i}^{2}} \vec{a}_{R_{i}} \quad v / n
$$

(or)
Define Electric field intensity due to point charge in a vutor form. With usual notation drive Exprunion for field at a point due to many charges (bm).
(or)
Define and Explain Electric field intensity. State principil of Superposition and Find elutric field intensity due to multiple point charge distribution. (Gm).

$$
\begin{aligned}
& \text { 10-Dec } \operatorname{Jan}-2016 \text {. } \\
& \text { [15-Jund July } 2017 \text { (2M).CBCS-Stheme }]
\end{aligned}
$$

Sole:-

Consider a point charges $q_{1} Q_{1}, Q_{2}, \ldots$. Q_{n}. placed at points $P_{1}, P_{2}, \ldots P_{n}$ rospectively. the Electrictield intensity $\left(\bar{E}_{0}\right)$ at a point $O(x, y, z)$ in Calculated using principle of superposition.
Superposition principle: the net field intensity at a point $O(x, y, z)$ due to n-numbuof point charges is equal Sum of individual fields acting one i.e $\quad \bar{E}_{0}=\overline{E_{p_{1}}}+\overline{E_{p_{2}}}+\cdots+\overline{E_{p_{n}}} \quad$ atm.

$$
\begin{align*}
& 6 / m \\
& \bar{E}_{0}=\frac{1}{4 \pi \epsilon}\left[Q_{1} \frac{\overline{a_{p_{0}}}}{\mid \overline{\left.P_{1}\right|^{2}}}+\theta_{2} \frac{\overline{a_{2} 0}}{\left|\overrightarrow{P_{2}}\right|^{2}}+\cdots+Q_{n} \frac{\overline{a_{p_{n} O}}}{\left|\bar{P}_{n 0}\right|^{2}}\right] y / n \\
& \overline{F_{0}}=\frac{1}{4 \pi \epsilon} \sum_{i=1}^{n} Q_{i} \frac{\overline{a_{P_{i}}}}{\left|\overline{P_{i}}\right|^{2}} \text { v/m} \tag{1}\\
& \text { if } Q_{1}=Q_{2}=\cdots-\theta_{n} C_{1}=Q_{C} \\
& \operatorname{thn} \overline{E_{0}}=\frac{Q}{u \pi \epsilon} \sum_{i=1}^{n} \frac{\overline{P_{i}},}{\left|\overline{P_{i}}\right|^{2}} \quad v / m \tag{2}
\end{align*}
$$

if the medium in considered to be free space ie $\epsilon=\epsilon_{0} \mathrm{Flm}_{m}$ f $\epsilon_{r}=1$.
then $q^{\prime}(1)$ and $\varphi^{\prime}(2)$ becomes

$$
\begin{aligned}
& \text { then } \bar{L}_{0}=\left.\frac{1}{u \pi E_{0}} \sum_{i=1}^{n} Q_{i} \frac{\overline{a_{p_{i}}}}{\mid \overrightarrow{\left.P_{i}\right|^{2}}} v\right|_{m} . \\
& \text { and } \quad \bar{E}_{0}=\frac{\theta}{u \pi \epsilon_{0}} \sum_{i=1}^{n} \frac{\overline{a_{p_{i} 0}}}{\left|\vec{P}_{i}\right|^{2}} \quad v / m .
\end{aligned}
$$

Solved problems
problem 1.
Find E at $p(1,2,3)$ due to $\theta_{1}=5 \mu \mathrm{c}$ at $(-1,-2,-3)$ and $\theta_{2}=10 \mathrm{Mc}$ at $(3,5,-1)$. (6 m)
[02-DeC 2010].
Sold:-

$\theta_{2}=10 \mu \mathrm{C}$

$$
Y(3,5,-1)
$$

the Electric field intensity at point ' P ' is

$$
\begin{aligned}
& \overline{F_{p}}=\frac{Q_{1}}{u \pi \epsilon|\overline{x p}|^{2}} \bar{a}_{x p}+\frac{Q_{2}}{u \pi \epsilon|\overline{Y p}|^{2}} \bar{a}_{y p} \quad v / m . \\
& \bar{E}_{p}=\frac{Q_{1}}{u \pi \epsilon|\overline{x p}|^{3}} \overline{\overline{x p}}+\left.\frac{\theta_{2}}{u \pi \epsilon\left|\overline{Y_{p}}\right|^{3}} \overline{Y_{p}} \quad v\right|_{m} . \\
& \overline{x_{p}}=(1+1) \overline{a_{x}}+(2+2) \overline{a_{y}}+(3+3) \overline{a_{z}} \\
& \overline{x p}=2 \overline{a_{x}}+4 \overline{a_{y}}+\left(\overline{a_{z}} ;\left|\overline{x_{p}}\right|=\sqrt{4+16+36}\right. \\
& =\sqrt{56} \mathrm{~m} .
\end{aligned}
$$

$$
\begin{aligned}
& \overline{Y P}=(1-3) \overline{a_{x}}+(2-5) \overline{a_{y}}+(3+1) \overline{a_{z}}=-2 \overline{a_{x}}-3 \overline{a_{y}}+4 \overline{a_{z}} \\
& \overline{Y_{p}}=\sqrt{4+9+16}=\sqrt{29} \mathrm{~m}: \bar{a}_{\varphi_{p}}=\frac{\overline{Y_{p}}}{\left|\overline{Y_{p}}\right|} \\
& \overline{F_{p}}=\frac{Q_{1}}{u \pi \epsilon} \frac{\overline{x p}}{|\overline{x p}|^{3}}+\frac{Q_{2} \overline{y_{p}}}{u \pi \epsilon\left|\overline{y_{p}}\right|^{3}} \quad \theta_{m} . \\
& \bar{E}_{p}=\frac{5 \mu\left(9 \times 10^{9}\right)}{(\sqrt{56})^{3}}\left[2 \overline{a_{x}}+4 \overline{a_{y}}+6 \overline{a_{z}}\right] \\
& +\frac{10 \mu\left(9 \times 10^{9}\right)}{(\sqrt{29})^{3}}\left[-2 \overline{a_{x}}-3 \overline{a_{y}}+4 \overline{a_{z}}\right] \\
& \bar{F}_{p}=107.381\left[2 \overline{a_{n}}+4 \bar{a}_{y}+6 \bar{a}_{z}\right]+576.29\left[-2 \bar{a}_{n}-3 \overline{a_{y}}+4 \overline{a_{y}}\right] \\
& \overline{E_{p}}=214.762 \overline{a_{x}}+429.524 \overline{a_{y}}+644.286 \overline{a_{z}} \\
& -1152.58 \overline{a_{x}}-1728.87 \overline{a_{y}}+2305.16 \overline{a_{z}} \\
& \overline{L_{p}}=-937.818 \overline{a_{x}}-1299.34 \overline{a_{y}}+2949.446 \overline{a_{z}} \mathrm{v} / \mathrm{m} . \\
& =-0.9378 \overline{a_{x}}-1.2993 \overline{a_{y}}+2.9494 \overline{a_{z}} \mathrm{kv} / \mathrm{m} . \\
& \left|\bar{E}_{p}\right|=3356.638 \mathrm{v} / \mathrm{m} \text {. (大) } 3.3566 \mathrm{kv} \mathrm{~m}_{\mathrm{m}}
\end{aligned}
$$

problem2. Two point charges of magnitude $3 \mu \mathrm{C}$
and -8uc one Located at place $P_{1}(-3,5,-7)$ and $P_{2}(-4,2,9)$ rusputively intre space. Evaluate the elatric ficld and abo ite magnitude at the point $p(2,-6,5)$. $(7 m)$

$$
[0 g-\operatorname{Dec} 2008 / \operatorname{Jan} 2009]
$$

solvi.

$$
\begin{aligned}
& Q_{p_{1}}=3 \mu \mathrm{C} \\
& P_{P_{1}}(-3,5,-7) \xrightarrow[a_{p_{1} p}]{\vec{a}} \\
& \text { EQv } \bar{E}_{p}=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& F_{p}=\overline{F_{p_{1}}}+\overline{L_{p_{2}}} \quad v / m . \\
& \overline{F_{p}}=\frac{Q_{p_{1}}}{U \pi \epsilon_{0}\left|\overline{P_{1} p}\right|^{2}} \overline{A_{p_{1} p}}+\frac{\theta_{p_{2}}}{4 \pi G_{0}\left|\overline{P_{2} p}\right|^{2}}{\overline{A_{p_{2} p}}}^{Q_{n}} \text {. } \\
& \overline{a_{p_{1} p}}=\frac{\overline{P_{1} p}}{\left|\overline{P_{1} p}\right|} \quad \overline{a_{p_{2} p}}=\frac{\overline{P_{2} p}}{\left|\overline{P_{2} p}\right|} \\
& \overline{E_{p}}=\frac{Q_{p_{1}}}{u \pi \epsilon_{0}\left|\overline{P_{1} p}\right|^{3}} \overline{P_{1} p}+\frac{Q_{p_{2}}}{u \pi G_{0}\left|\overline{P_{2} p}\right|^{3}} \overline{P_{2} p} \quad V I_{m} .
\end{aligned}
$$

«Magnitude of field at

$$
\left|\bar{E}_{p}\right|=591.44 \mathrm{v} / \mathrm{m}
$$ point $P(2,-6,5)$ is

$$
\begin{aligned}
& \overline{p_{1} p}=(2+3) \overline{a_{x}}+(-6-5) \overline{a_{y}}+(5+7) \overline{a_{2}} \\
& \left|\overline{P_{1} P}\right|=5 \overline{a_{x}}-11 \overline{a_{y}}+12 \overline{a_{z}} \\
& \left|\overrightarrow{P_{1} p}\right|=\sqrt{25+121+144}=\sqrt{290} \mathrm{~m} \text {. } \\
& \overline{p_{2} \rho}=(2+4) \overline{a_{x}}+(-6-2) \overline{a_{y}}+(5-9) \overline{a_{z}} \\
& \overline{p_{2} p}=6 \overline{a_{x}}-8 \overline{a_{y}}-4 \overline{a_{z}} \\
& \left|\overline{p_{2} p}\right|=\sqrt{36+64+16}=\sqrt{116} \mathrm{~m} \\
& \bar{F}_{p}=\frac{(3 \mu)\left(9 \times 10^{9}\right)}{(\sqrt{290})^{3}}\left[5 \bar{a}_{x}-11 \overline{a_{y}}+12 \bar{a}_{z}\right] \\
& +\frac{(-8 \mu)\left(9 \times 10^{9}\right)}{(\sqrt{116})^{3}}\left[6 \overline{a_{x}}-8 \overline{a_{y}}-6 \overline{a_{z}}\right] \\
& \overline{F_{p}}=5.4672\left[5 \overline{a_{x}}-11 \overline{a_{y}}+12 \bar{a}_{z}\right]-57.629\left[6 \overline{a_{x}}-8 \overline{a_{y}}-4 \overline{a_{z}}\right] \\
& \overline{F_{p}}=-318.638 \overline{a_{x}}+400.89 \overline{a_{y}}+296.1224 \overline{a_{z}} \mathrm{w} / \mathrm{r} \\
& \mathcal{L}_{x}=-318.438 \mathrm{v} / \mathrm{m} . \quad E_{y}=400.89 \mathrm{v} / \mathrm{m}: E_{z}=296.122 \mathrm{v} / \mathrm{m} .
\end{aligned}
$$

problem 3.
A charge of $-0.3 \mu \mathrm{C}$ in located at $A(25,-30,15) \mathrm{cm}$ and a second charge of $0.5 \mathrm{\mu c}$ at $B(-10,8,12) \mathrm{cm}$. Find E at $i\rangle$ the origin ii $\rangle P(15,20,50) \mathrm{cm}$
(06 m)

Sole:-

$$
\begin{aligned}
& \text { Given point are in } \mathrm{cm} \text { Convortititibo meter'n. } \\
& A(25,-30,15) \mathrm{cm} \longrightarrow B(0.25,-0.30,0.15) \mathrm{m} . \\
& B(-10,8,12) \mathrm{cm} \longrightarrow B(-0.10,0.08,0.12) \mathrm{m} .
\end{aligned}
$$

origin $0(0,0,0) \mathrm{cm} \longrightarrow O(0,0,0) \mathrm{m}$.

$$
\begin{aligned}
& \text { n } 0(0,0,0) \mathrm{cm} \longrightarrow 0(0,0,0.10 \\
& P(15,20,50) \mathrm{cm} \rightarrow(0.15,0.20,0.50) \mathrm{m} \\
& <=?
\end{aligned}
$$

$$
P(15,20,50) \mathrm{cm}, \ll=?
$$

i)

$$
\begin{array}{ll}
Q_{A}=-0.3 \mu \mathrm{C} \\
\theta_{B}=0.50 \\
B(-0.10,0.08,0.19) \mathrm{a}
\end{array}
$$

the Electric Field intensity at point $O(0,0,0)$ in given by

$$
\begin{aligned}
& \overline{\mathcal{L}_{0}}=\overline{E_{A}}+\overline{E_{B}} \quad v / m . \\
& \overline{E_{D}}=\frac{Q_{A}}{u \pi \epsilon_{0}|\overline{A D}|^{2}} \overline{a_{A D}}+\frac{Q_{B}}{u \pi \epsilon_{0}|\overline{B O}|^{2}} \overline{a_{B D}} v / m . \\
& \overline{E_{0}}=\frac{Q_{A}}{u \pi G_{0}|\overline{A O}|^{3}} \overline{A 0}+\frac{Q_{B}}{u \pi \sigma_{0}|\overline{B O}|^{3}} \quad \hat{\beta} . \\
& \overline{A O}=-0.25 \overline{a_{n}}+0.3 \overline{a_{y}}-0.15 \overline{a_{2}} \cdot|\overline{A 0}|=\sqrt{0.175} \mathrm{~m} . \\
& \overline{B O}=0.10 \overline{a_{x}}-0.08 \overline{a_{y}}-0.12 \overline{a_{z}} ;|\overline{B O}|=\sqrt{0.0308} \mathrm{~m} . \\
& \bar{E}_{0}=\frac{(-0.3 \mu)\left(9 \times 10^{9}\right)}{(\sqrt{0.175})^{3}}\left[-0.25 \overline{a_{x}}+0.3 \overline{a_{y}}-0.15 \bar{a}_{z}\right] \\
& +\frac{(0.5 \mu)\left(9 \times 10^{9}\right)}{(\sqrt{0.0308})^{3}}\left[0.1 \overline{a_{x}}-0.08 \overline{a_{y}}-0.12 \bar{a}_{z}\right] \\
& \overline{F_{0}}=-36881.33\left[-0.25 \overline{a_{x}}+0.3 \bar{a}_{y}-0.15 \bar{a}_{3}\right] \\
& +832504=211\left[0.10 \bar{a}_{x}-0.08 a_{y}-0.2 a_{z}\right] \\
& \overline{F_{0}}=92470.7536 \overline{a_{x}}-77664.735 \overline{a_{y}}-94368.30 \overline{a_{z}} \quad{ }^{2} / m
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}_{0}=92.47 \overline{a_{x}}-77.66 \overline{a_{y}}-96.36 \overline{a_{z}} \mathrm{kv} / \mathrm{m} \\
& \left|\bar{E}_{0}\right|=153.25 \mathrm{kv} \mathrm{~m} \\
& E_{0}=?
\end{aligned}
$$

ii>

$$
\theta_{A}=-0.3 \mu c
$$

$$
\begin{aligned}
& \theta_{A}=-0.3 \mu \mathrm{AP} \\
& A(0.25,-0.3,0.15) \mathrm{m} \\
& a_{A P}
\end{aligned}
$$

$$
\overline{E_{p}}=\frac{Q_{A}}{u \pi \epsilon|\overline{A p}|^{2}} \bar{a}_{A p}+\frac{Q_{B}}{u \pi \epsilon|\overline{B P}|^{2}} \bar{a}_{B p} v / n
$$

$$
\bar{E}_{p}=\frac{Q_{A}}{u \pi \epsilon} \frac{\overline{A P}}{|\overrightarrow{A p}|^{3}}+\frac{Q_{B}}{u \pi \epsilon} \frac{\overline{B P}}{|\overline{B P}|^{3}} \quad v I_{m} .
$$

$$
\begin{aligned}
& \overline{A P}=-0.1 \overline{a_{x}}+0.5 \bar{a}_{y}+0.35 \overline{a_{z}} ; \quad|\overline{A P}|=\sqrt{0.3825} \mathrm{~m} \\
& \overline{B P}=0.25 \overline{a_{x}}+0.12 \overline{a_{y}}+0.3 \overline{a_{z}} ;|\overline{B P}|=\sqrt{0.2213} \mathrm{~m}
\end{aligned}
$$

$$
\bar{E}_{p}=\frac{(-0.3 \mu)\left(9 \times 10^{9}\right)}{(\sqrt{0.3825})^{3}}\left[-0.1 \bar{a}_{a}+0.5 \overline{a_{y}}+0.35 \overline{a_{z}}\right]
$$

$$
+\frac{(0.5 \mu)\left(9 \times 10^{9}\right)}{(\sqrt{0.2213})^{3}}\left[0.25 \overline{a_{x}}+0.12 \overline{a_{y}}+0.38 \bar{a}_{z}\right]
$$

$$
\begin{aligned}
& \begin{aligned}
\overline{F_{p}}= & -11413.44\left[-0.1 \overline{a_{x}}+0.5 \overline{a_{y}}+0.35 \overline{a_{z}}\right] \\
& +43225.53\left[0.25 \overline{a_{x}}+0.12 \overline{a_{y}}+0.38 \overline{a_{z}}\right] \\
\overline{F_{p}}= & 11947.72 \overline{a_{x}}-519.656 \overline{a_{y}}+12430.997 \overline{a_{z}} \mathrm{v} / \mathrm{m}
\end{aligned} \\
& \overline{\bar{F}_{p}}=11.947 \overline{a_{x}}-0.5196 \overline{a_{y}}+12.4309 \bar{a}_{z} \mathrm{kv} / \mathrm{m} .
\end{aligned}
$$

the magnitude of E-lutric field intensity at point

$$
\left|E_{p}\right|=17.2495 \mathrm{kv} / \mathrm{m}
$$ $P(0.15,0.20,0.50) \mathrm{m}$ is

problem le.
Let a point charge $Q_{1}=25 \mathrm{nc}$ be located at $A(4,-2,7)$ and a charge $Q_{2}=60 n \mathrm{c}$ be at $B(-3,4,-2)$. Find $i \cdot \frac{E}{E}$ at $C(1,2,3)$ ali. find the diration of the Elutric field. Given
${ }_{\text {Po }} 15$-Junfuly 2017

$$
\begin{aligned}
& \text { direction of the } \quad(10 \mathrm{~m}) \quad[10 \mathrm{M}-\mathrm{CB} \mathrm{cs} \text { s-stimen }] \\
& \epsilon_{0}=8.854 \times 10^{-12} \mathrm{Flm} .
\end{aligned}
$$

[W.H.Hayt/ OG-JunelJdy-20II]
iii. at what point on the y-axis is $\mathrm{F}_{\mathrm{x}} \mathrm{F} \mathrm{ov}_{\mathrm{g}}$

Solus:-

$$
\begin{aligned}
& Q_{1}=25 n c \\
& \overline{A C} \\
& A(4,-2,7) m \\
& \vec{a}_{A C} \\
& 00_{C}(1,2,3)_{m} \\
& a_{2}=60 n c \\
& B(3)^{41_{1}^{2}} \\
& \text { i. } \bar{E}_{c}=\text { ? } \\
& \text { ii. } \bar{a}_{E_{c}}=\text { ? } \\
& \text { iii. } p(0, y, 0)=\text { ? } \\
& \text { Po } \overline{E_{C}}=\overline{E_{A}}+\overline{E_{B}} \\
& =\frac{Q_{1}}{u \pi \epsilon|\overline{A C}|^{2}} \overline{a_{A C}}+\frac{Q_{2}}{u \pi E|\overline{B C}|^{2}} \overline{A_{B C}} \quad v / m .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{Q_{1}}{4 \pi \epsilon} \frac{\overline{A C}}{|\overline{A C}|^{3}}+\frac{Q_{2}}{4 \pi \epsilon} \frac{\overline{B C}}{|\overline{B C}|^{3}} d_{m} . \\
& \overline{A C}=(1-4) \overline{a_{x}}+(2+2) \overline{a_{y}}+(3-7) \overline{a_{2}} \\
& \overline{A C}=-3 \overline{a_{x}}+4 \overline{a_{y}}-4 \overline{a_{z}}-\quad|\overline{A C}|=\sqrt{41} \mathrm{~m} . \\
& \overline{B C}=(1+3) \overline{a_{x}}+(2-4) \overline{a_{y}}+(3+2) \overline{a_{2}} \\
& \overline{B C}=4 \overline{a_{x}}-2 \overline{a_{y}}+5 \overline{a_{z}} ; \quad \overline{B C} \leq \sqrt{45} \mathrm{~m} . \\
& \bar{F}_{c}=\frac{(25 n)\left(9 \times 10^{9}\right)}{(\sqrt{41})^{3}}\left[-3 \bar{a}_{x}+4 a_{y}-4 \bar{a}_{z}\right] \\
& +\frac{(60 n)\left(9 \times 10^{9}\right)}{(\sqrt{45})^{3}}\left[4 \bar{a}_{x}-2 \overline{a_{y}}+5 \bar{a}_{z}\right] \\
& \overline{F_{c}}=0.85705\left[-3 \overline{a_{n}}+4 \overline{a_{y}}-4 \bar{a}_{z}\right] \\
& +1.788\left[4 \overline{a_{x}}-2 \overline{a_{y}}+5 \bar{a}_{z}\right] \\
& \overline{E_{c}}=4.58085 \bar{a}_{x}-0.1478 \bar{a}_{y}+5.5118 \bar{a}_{z} \quad v / m
\end{aligned}
$$

Magnitudiof E_{0}

$$
\left|\bar{E}_{c}\right|=7.1684 \mathrm{v} / \mathrm{m} .
$$

$$
\begin{gathered}
E_{x}=6.5808 \mathrm{v} / \mathrm{m} ; \quad E_{y}=-0.1478 \mathrm{v} / \mathrm{m} \text { and } \\
F_{z}=5.5118 \mathrm{v} / \mathrm{m} .
\end{gathered}
$$

$i{ }_{i}$ diration of Electric ficld \bar{E}_{c} is knothing beot unit vator along \bar{E}_{c} i.e ${\overline{a_{E}}}_{E_{c}}$

$$
\begin{aligned}
& \overline{a_{E}}=\frac{\overline{E_{c}}}{\left|\bar{E}_{c}\right|}=\frac{4.5808 \bar{a}_{x}-0.1478 \bar{a}_{y}+5.518 \bar{a}_{z}}{7.1684} \\
& \overline{a_{E_{c}}}=0.63906 \bar{a}_{x}-0.0206 \bar{a}_{y}+0.768 \bar{a}_{z}
\end{aligned}
$$

ieie. at what point on the y-axin the fild component-

$$
E_{x}=0 V 1 \mathrm{~m} .
$$

Consider a point on ' y coxis $p(0, y, 0)$.
Find ' y ' suhthat $E_{p_{x}}=0 v / m$.

$$
\begin{aligned}
& \left.\overline{E_{p}}=\frac{Q_{1}}{u \pi \epsilon\left|\overline{p_{1} p}\right|^{2}} \overline{a_{p_{1} p}}+\frac{Q_{2}}{u \pi \epsilon\left|\overline{P_{2} p}\right|^{2}} \overline{a_{p_{2} p}} \quad v \right\rvert\, m \\
& \overline{E_{p}}=\frac{\theta_{1}}{4 \pi \epsilon} \frac{\overline{p_{1} p}}{\left|\overline{p_{1} p}\right|^{3}}+\frac{\theta_{2}}{u \pi \epsilon} \cdot \frac{\bar{p}_{2}}{\left|\overrightarrow{p_{2} p}\right|^{3}} v / m \text {. } \\
& \overline{p_{1} p}=-4 \overline{a_{x}}+(y+2) \overline{a_{y}}+(0-7) \overline{a_{2}} \\
& \overline{P_{1} P}=-4 \overline{a_{x}}+(y+2) \overline{a_{y}}-7 \overline{a_{z}} . \\
& \left|\overline{p_{1} p}\right|=\sqrt{4^{2}+(y+2)^{2}+7^{2}} \mathrm{~m} \\
& \overline{P_{2} P}=3 \bar{a}_{x}+(y-4) \bar{a}_{y}+2 \bar{a}_{z} \text {. } \\
& \left|\overline{p_{2} p}\right|=\sqrt{9+(y-4)^{2}+4} \mathrm{~m} \\
& \bar{E}_{p}=\frac{25 n\left(9 \times 10^{9}\right)}{\left[4^{2}+(y+2)^{2}+7^{2}\right]^{3 / 2}}\left[-4 \overline{a_{x}}+(y+2) \overline{a_{y}}-7 \overline{a_{z}}\right] \\
& +\frac{6 n\left(9 \times 10^{9}\right)}{\left[9+(y-4)^{2}+4\right]^{3 / 2}}\left[3 \bar{a}_{x}+(y-4) \bar{a}_{y}+2 \bar{a}_{z}\right]
\end{aligned}
$$ given the Field component $E_{p_{x}}=0 \mathrm{~km}$.

ie

$$
\begin{aligned}
& \mathcal{F}_{p_{x}}=\frac{(25 n)\left(9 \times 10^{9}\right)(-4)}{\left[16+(y+2)^{2}+49\right]^{3 / 2}}+\frac{(60 n)\left(9 \times 10^{9}\right)(3)}{\left[9+(y-4)^{2}+4\right]^{3 / 2}}=06 / m \\
\Rightarrow & \frac{(25 y)\left(9 \times 10^{9}\right)(-4)}{\left[65+(y+2)^{2}\right]^{3 / 2}}=\frac{(-60 n)\left(9 \times 10^{9}\right)(3)}{\left[13+(y-4)^{2}\right]^{3 / 2}} \\
\Rightarrow & 100\left[13+(y-4)^{2}\right]^{3 / 2}=180\left[65+(y+2)^{2}\right]^{3 / 2} \\
\Rightarrow & 100^{2 / 3}\left[13+(y-4)^{2}\right]=(180)^{2 / 3}\left[65+(y+2)^{2}\right] \\
\Rightarrow & \left.13+y^{2}+16-8 y\right]=1.4797\left[65+y^{2}+4+4 y\right] \\
\Rightarrow & 0.479 y^{2}+13.92 y+73.10=0 .
\end{aligned}
$$

$$
y=-6 \cdot 883 \text { and } y=-22 \cdot 19
$$

\therefore the points on ' y ' orin Such that the x component of net field $E_{p_{x}}=0$ is

$$
p_{1}(0,-6.803,0) \text { and } p_{2}(0,-22.120)
$$

problems. Two point charges 20nc and $-20 n c$ are
situated at $[1,0,0) \mathrm{m}$ and $(0,1,0) \mathrm{m}$ in frespace. Determine "Watutric field interity at $(0,0,1) \mathrm{m} .(5 \mathrm{~m})$

Solu:

$$
\begin{aligned}
& \text { [10-JunelJoly } 2014 \text {] } \\
& \theta_{A}=20 n C \\
& \text { A }(1,0,0) \mathrm{m} \\
& \underset{B(0,1,0) m}{ } 4 \\
& \theta_{B}=-20 \mathrm{Cl}^{2} \\
& { }_{x} \\
& \begin{array}{l}
\overline{\delta_{p}}=\overline{E_{A}}+\overline{E_{B}} V_{m} . \\
\frac{Q_{A}}{4 \pi \epsilon_{0}|\overrightarrow{A P}|^{2}} \overline{a_{A p}}+\frac{Q_{B}}{u \pi \epsilon_{0}|\overline{B P}|^{2}} \overline{a_{B P}} \quad Q_{m}
\end{array} \\
& \overline{E_{P}}=\frac{Q_{A_{1}}}{A \pi \epsilon_{0}|\overline{A P}|^{3}}+\frac{Q_{B}}{4 \pi G_{0}|\overrightarrow{B P}|^{3}} \overline{B P} \quad v / m . \\
& \overline{A P}=-\overline{a_{x}}+\overline{a_{z}} ; \quad|\overline{A p}|=\sqrt{2} m . \\
& \overline{B P}=-\bar{a}_{y}+\overline{a_{z}} ;|\overline{B p}|=\sqrt{2} \mathrm{~m} . \\
& \bar{E}_{p}=\frac{(20 n)\left(9 \times 10^{9}\right)}{(\sqrt{2})^{3}}\left[-\bar{a}_{x}+\bar{a}_{z}\right]+\frac{(-200)\left(9 \times 10^{9}\right)}{(\sqrt{2})^{3}}\left[-\bar{a}_{y}+\bar{a}_{z}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \overline{E_{p}}=63.639\left[-\overline{a_{x}}+\overline{a_{z}}\right]-63.639\left[-\overline{a_{y}}+\overline{a_{z}}\right] \\
& \left.\overline{\bar{E}_{p}}=-63.639 \overline{a_{x}}+63.639 \overline{a_{y}}+127.27 \overline{a_{z}}\right] \text { ofm. } \\
& \left|\bar{E}_{p}\right|=155.872 \mathrm{v} / \mathrm{m} \\
& E_{x}=-63.639 v / m, \mathcal{E}_{y}=63.639 \mathrm{v} / \mathrm{m} \\
& \quad \text { and } \quad \mathcal{E}_{z}=127.27 \bar{a}_{z} .
\end{aligned}
$$

problem 6.
Three point charges $D_{1}=-1 \mu c, \alpha_{2}=-2 \mu \mathrm{c}$ and $Q_{3}=-3 \mu c$ ane placed at the corners of an equilateral traingle of side 1 m . Find the magnitude of the clutricficld intensity at the point bisecting
$(7 \mathrm{~m})$ the joining θ_{1} and θ_{2}.
[10-Jund July -2016].

Sole:-

using pythagorous theorem, to find value of ' y '

$$
\begin{aligned}
& |x z|=\sqrt{|z w|^{2}+|x w|^{2}} \\
& 1=\sqrt{y^{2}+0.5^{2}} \\
& y^{2}+0.5^{2}=1^{2} \Rightarrow y=0.866 \mathrm{~m}
\end{aligned}
$$

choone tue valu of ' y ' b_{12} the point $z(0.5, y)$ in on fins quadrant.
the Elcutricficld Intensity (\bar{E}) at the point bisecting the joining θ_{1} and θ_{2} in at point W i.e

$$
\begin{aligned}
& \bar{E}_{w}=2_{c} \\
& \bar{E}_{w}=\bar{E}_{x}+\bar{E}_{y}+\bar{E}_{z} \quad v / n . \\
& \overline{E_{N}}=\frac{Q_{1}}{u \pi \epsilon|\overline{x \omega}|^{2}} \bar{a}_{x \omega}+\frac{\theta_{2}}{u \pi \epsilon|\overline{Y \omega}|^{2}} \bar{a}_{y \omega}+\frac{\theta_{3}}{4 \pi \in|z \omega|^{2}} \bar{a}_{z \omega} / n \\
& \bar{E}_{w}=\frac{Q_{1}}{u \pi \epsilon} \frac{\overline{x \omega}}{|\overline{x \omega}|^{3}}+\frac{\theta_{2}}{u \pi \epsilon} \frac{\bar{Y} \omega^{3}}{\mid \overline{\left.\psi_{\omega}\right|^{3}}}+\frac{\theta_{3}}{4 \pi \epsilon|\overline{z \omega}|^{3}} \overline{z \omega} \\
& \overline{x \omega}=0.5 \overline{a_{x}} ;|\overline{x \omega}|=0.5 \mathrm{~m} \\
& \overline{Y \omega}=-0.5 \overline{a_{x}} ;|\overline{Y \omega}|=0.5 \mathrm{~m} . \\
& \overline{z \omega}=-0.866 \overline{a_{y}} ;|\overline{z \omega}|=0.866 \mathrm{~m} \\
& \bar{E}_{w}=\frac{(-1 \mu)\left(9 \times 10^{9}\right)}{(0.5)^{3}}\left[0.5 \bar{a}_{x}\right]+\frac{(-2 \mu)\left(9 \times 10^{9}\right)}{(0.5)^{3}}\left[-0.5 \bar{a}_{x}\right] \\
& +\frac{(-3 \mu)\left(9 \times 10^{9}\right)}{(0.866)^{3}}\left[-0.866 \bar{a}_{y}\right] \\
& \bar{F}_{\omega}=-36000 \bar{a}_{x}+72000 \overline{a_{y}}+36002 \overline{a_{y}} \text { v/m } \\
& \overline{E_{\omega}}=36000 \overline{a_{x}}+36002 \overline{a_{y}} \mathrm{v} / \mathrm{m} \\
& \overline{E_{w}}=36 \overline{a_{x}}+36.002 \overline{a_{y}} \mathrm{kv} / m
\end{aligned}
$$

magnitudeg fild $\overline{E_{\omega}}$ in $\left|\bar{E}_{\omega}\right|=50.913 \mathrm{kv} / 271$

$$
\begin{aligned}
& E_{x}=36 \mathrm{kv} / \mathrm{m} ; \quad E_{y}=36.002 \mathrm{kv} / \mathrm{m} . \\
& \text { and } \quad\left|E_{w}\right|=\sqrt{E_{x}^{2}+E_{y}^{2}}=50.913 \mathrm{kv} / \mathrm{m}
\end{aligned}
$$

problemit.
Find E at $p(1,1,1)$ caured by four identical $3 n c$ (nano-Coulomb) charges Located at $P_{1}(1,1,0)$,

$$
P_{2}(-1,1,0), P_{3}(-1,-1,0) \text { and } P_{4}(1,-1,0) \text {. }
$$

Lyin Supuposition principle

$$
\begin{gathered}
\quad \frac{\text { Qup }}{E_{p}}=\bar{E}_{p_{1}}+\bar{E}_{p_{2}}+\bar{E}_{p_{3}}+\bar{E}_{p_{4}} v p_{m} . \\
\overline{E_{p}}=\frac{Q}{u \pi \epsilon \mid \overline{\left.p_{1} p\right|^{2}}} \overline{a_{p_{1} p}}+\frac{Q}{u \pi \epsilon\left|\overline{P_{2} p}\right|^{2}}{\overline{A_{p} p}}^{u}+\frac{Q}{u \pi \epsilon\left|P_{3} p\right|^{2}} \bar{a}_{p_{3 p}} \\
\\
+\frac{Q}{u \pi \epsilon\left|\overline{p_{u} p}\right|^{2}} \overline{a_{p u p}} v / m .
\end{gathered}
$$

$$
\begin{aligned}
& \overline{E_{p}}=\frac{Q}{4 \pi \epsilon}\left[\frac{\overrightarrow{P_{1} P}}{\left|\overrightarrow{P_{1} P}\right|^{3}}+\frac{\overline{P_{2} P}}{\left|\overrightarrow{P_{2} p}\right|^{3}}+\frac{\overline{P_{3} P}}{\left|\overrightarrow{P_{3} P}\right|^{3}}+\frac{\overrightarrow{P_{4} P}}{\left|\overrightarrow{P_{4} P}\right|^{3}}\right] q_{m} \\
& \overline{P_{1} p}=\overline{a_{2}} ; \quad\left|\overrightarrow{P_{1} p}\right|=1 \mathrm{~m} . \\
& \overline{P_{2} p}=2 \overline{a_{n}}+\overline{a_{2}}-\left|\overline{P_{2} P}\right|=\sqrt{4+1}=\sqrt{5} \mathrm{~m} \text {. } \\
& \overline{p_{3} p}=2 \bar{a}_{x}+2 \bar{a}_{y}+\bar{a}_{2} ;\left|\overline{p_{3} p}\right|=\sqrt{4+4+1}=\sqrt{9}=3 \mathrm{~m} \text {. } \\
& \overline{P_{4 P}}=2 \overline{a_{y}}+\overline{a_{z}} ; \quad\left|\overline{P_{4 P}}\right|=\sqrt{u+1}=\sqrt{5} m \\
& \overline{E_{p}}=(3 n)\left(9 \times 10^{9}\right)\left[\frac{\overline{a_{z}}}{(1)^{3}}+\frac{2 \overline{a_{n}}+\overline{a_{z}}}{(\sqrt{5})^{3}}+\frac{2 a_{x}+2 \overline{a_{y}}+\overline{a_{z}}}{(\sqrt{9})^{3}}\right. \\
& \left.+\frac{2 \bar{a}_{y}+\bar{a}_{z}}{(\sqrt{5})^{3}}\right] \\
& E_{p}=27\left[0.2529 \bar{a}_{x}+0.2529 \bar{a}_{y}+1.2159 \bar{a}_{z}\right] q_{m} \\
& \bar{E}_{p}=6.8283 \overline{a_{x}}+6.8283 \overline{a_{y}}+32.829 \overline{a_{z}} \mathrm{v} / \mathrm{m} \\
& F_{x}=E_{y}=6.8283 \mathrm{~V} / \mathrm{m} \text { and } E_{3}=32.829 \mathrm{~V} / \mathrm{m} \\
& \left|E_{p}\right|=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}=\sqrt{6.8283^{2}+6.8283^{2}+32.829{ }^{2}} \\
& \left|E_{E_{p}}\right|=34.219 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

problem 8.
Find the \vec{E} at $(0,3,4) \mathrm{m}$ due to a point charge of $Q=0.5 \mu \mathrm{c}$ placed at the origin.

$$
\begin{aligned}
& Q=\overbrace{0(0,0,0)}^{\overline{E F}_{p}}=3 \\
& \bar{E}_{p}=\frac{Q}{u \pi \epsilon|\overrightarrow{o p}|^{2}} \overline{a_{o p}} \quad v l_{n} . \\
& \bar{E}_{p}=\frac{Q}{u \pi \epsilon} \frac{\overline{O P}}{|\overline{O p}|^{3}} \mathrm{v} / \mathrm{m} \\
& \overline{O P}=3 \bar{a}_{y}+4 \bar{a}_{z}-\quad|\overline{o p}|=\sqrt{9+16}=5 \mathrm{~m} . \\
& \bar{F}_{p}=\frac{(0.5 \mu)(9 \times 109)}{(5)^{3}}\left[3 \overline{a_{y}}+4 \overline{a_{z}}\right] \\
& \bar{E}_{p}=36\left[3 \overline{a_{y}}+4 \overline{a_{z}}\right] \\
& \overline{E_{p}}=108 \overline{a_{y}}+144 \overline{a_{z}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

$E_{x}=0 \mathrm{v} / \mathrm{m} ; \quad E_{y}=108 \mathrm{v} / \mathrm{m}$ and $E_{z}=144 \mathrm{v} / \mathrm{m}$.

$$
\begin{gathered}
\left|\bar{E}_{p}\right|=\sqrt{108^{2}+144^{2}}=180 \mathrm{v} / \mathrm{m} . \\
\left|\bar{E}_{p}\right|=180 \mathrm{v} / \mathrm{m}
\end{gathered}
$$

problem 9.
point charges of 120 nc are located at $A(0,0,1)$ and $B(0,0,-1)$ in free space.
a) Find E at $p(0.5,0,0)$
b) what single charge at the origin would provide the identical field strength?

Sola:-

$$
\begin{aligned}
& \text { [kl.H.Hayt]. } \\
& \text { no } \vec{E}_{P}=\text { ? } \\
& A(0,0,1) \mathrm{m} \\
& \theta=12 n c \\
& \theta=2 n\left(\sigma^{\prime 2} O^{\prime \prime}\right. \text { in given by } \\
& \bar{E}_{p}=\bar{E}_{A}+\bar{E}_{B} \mathrm{v} / \mathrm{m} . \\
& \bar{E}_{p}=\frac{\theta}{u \pi E|\overline{A P}|^{2}} \overline{a_{A P}}+\frac{Q}{u \pi E|\overline{B P}|^{2}} \bar{a}_{B P} \quad v / m \\
& \overline{E_{p}}=\frac{Q}{u \pi \epsilon} \frac{\overline{A P}}{|\overline{A P}|^{3}}+\frac{Q}{u \pi \epsilon} \frac{\overline{B P}}{|\overrightarrow{B P}|^{3}} \mathrm{v} / \mathrm{m} .
\end{aligned}
$$

$$
\begin{aligned}
& \overline{A p}=0.5 \overline{a_{n}}-\overline{a_{2}} ; \quad|\overline{A p}|=\sqrt{0.5^{2}+1^{2}}=\sqrt{1.25 \mathrm{~m}} \\
& \overline{B P}=0.5 \overline{a_{x}}+\overline{a_{z}} ; \quad|\overline{B P}|=\sqrt{0.5^{2}+1^{2}}=\sqrt{1.25} \mathrm{~m} \text {. } \\
& \Rightarrow \quad|\overline{A P}|=|\overline{B P}|=\sqrt{1.25} \mathrm{~m} \\
& \overline{E_{p}}=\frac{Q}{4 \pi \in(\sqrt{1.25})^{3}}[\overline{A p}+\overline{B p}] \quad v / m \text {. } \\
& \bar{E}_{p}=\frac{(120 \wedge 1)\left(9 \times 1 \phi^{1}\right)}{(\sqrt{1.25})^{3}}\left[0.5 \bar{a}_{x}-a_{2}+0.5 \overline{a_{x}}+\not \hat{a}_{3}\right. \\
& \overline{E_{p}}=772.78 \bar{a}_{x} \text { vf. } \\
& \left|\bar{E}_{p}\right|=\underline{772.78} \mathrm{v} / \mathrm{m} \\
& \mathcal{F}_{x}=772.78 \mathrm{v} / \mathrm{m} \text { and } \mathcal{F}_{y}=\sigma_{z}=0 \mathrm{v} / \mathrm{m} \text {. } \\
& E_{E_{p}}=772.78 \overline{a_{s}} \quad v / \mathrm{m} . \\
& \theta=? \\
& \left|\bar{E}_{p}\right|=772.78 \mathrm{v} / \mathrm{m} . \\
& O(0,0,0) \mathrm{m} \quad \widehat{O P}=0.5 \overline{a_{n}} \\
& |\overline{O P}|=0.5 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{E_{p}}=\frac{Q}{4 \pi \in|\overline{o p}|^{2}} \overline{a_{o p}} \quad v / m . \\
& |\overline{o p}|=0.5 \mathrm{~m} . \\
& \left|{\overline{E_{p}}}\right|=\frac{Q}{u \pi \epsilon(\overline{o p})^{2}} \text { v/m. } \\
& \theta=\left|E_{p}\right| \times 4 \pi \epsilon \times(|\overline{O P}|)^{2} \text { Cioulomb } \\
& Q=(772.78)\left(9 \times 10^{9}\right)^{-1} \times(0.5)^{2} \\
& Q=21.4662 \times 10^{-9} \text { Coulomb } \\
& Q=21.46624 C
\end{aligned}
$$

problem10.
A $2 \mu \mathrm{c}$ point charge in Located at $A(4,3,5)$ in freespace. Find E_{ρ}, E_{ϕ}, and E_{z} at

$$
p(8,12,2) . \quad[W \cdot H \cdot H \text { ayt }]
$$

Solui:

$$
\bar{E}_{p}=65.97 \overline{a_{x}}+148.44 \overline{a_{y}}-49.48 \overline{a_{3}} \quad v / \mathrm{m} .
$$

[onvurt the - rectangular vector into the equivalent Cylindrical form.

$$
\begin{aligned}
& E_{x}=65.97 \mathrm{v} / \mathrm{m} ; \quad E_{y}=148.44 \mathrm{~V} / \mathrm{m} \quad E_{z}=-49.48 \mathrm{v} / \mathrm{m} \\
& p(8,12,2) \Longrightarrow p(9, \phi, 3) \\
& \rho=\sqrt{x^{2}+y^{2}}=\sqrt{8^{2}+12^{2}}=\sqrt{208}=14.4 \mathrm{~m} \text {. } \\
& \phi=\tan ^{-1}(y / x)=\tan ^{-1}\left(\frac{12}{8}\right)=56.3^{\circ} \\
& z \Rightarrow z=2 m \\
& {\left[\begin{array}{c}
E_{\rho} \\
E_{\phi} \\
E_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]_{3 \times 3}\left[\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]_{3 \times 1 .}}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{E_{p}}=E_{x} \overline{a_{n}}+E_{y} \overline{a_{y}}+E_{z} \overline{a_{z}} \\
& v_{1} \\
& \frac{v}{P_{p}}=E_{p} \overline{a_{y}}+E_{\phi} \overline{a_{\phi}}+E_{z} \bar{a}_{z} \\
& v_{m} \ldots . . \text { cylindrical } \\
& \frac{\text { rut ar }}{}
\end{aligned}
$$

$$
\begin{aligned}
& E_{\rho}=E_{x} \cos \phi+E_{y} \sin \phi \\
& E_{\rho}=65.97 \cos (56.3)+148.64 \sin \left(56.3^{\circ}\right) \\
& E_{\rho}=160.09 \mathrm{v} / \mathrm{m} \\
& E_{\phi}=-E_{x} \sin \phi+E_{y} \cos \phi=-65.97 \sin \left(56.3^{\circ}\right) \\
& t 148.44 \cos \left(56.3^{\circ}\right) \\
& \mathcal{E}_{\phi}=27.677 \mathrm{v} / \mathrm{m} \\
& \text { and } \mathcal{L}_{2}=-49.48 \mathrm{v} / \mathrm{m} \\
& \overline{E_{p}}=160.09 \bar{a}_{\rho}+27.477 \bar{a}_{\phi}-49.48 \bar{a}_{3} \quad \mathrm{~d} / \mathrm{m}
\end{aligned}
$$

\rightarrow field \bar{E}_{p} in Cylindrical coordinate sytem.
 apart. Determine \vec{E} at point ' A ' situated at a durance of 0.5 m from Each of the two particles. ancure diclutric constant of 5 .
Engineering Electromagnetic 15EC36 Dec/Jan 2017 CBCS Scheme Dankan V Gowda M.Tech., (Ph.D) problem 11.
-b. Two particles having charges 2nano-coutomb and snano-coulomb are spaced 80 cm apart. Determine the electric field intensity at point "A" situated at a distance of 0.5 m from each of the two particles. Assume dielectric constant of 5 .
solve.:
Consider the point charges
placed along ' x ' axis.
[CBCS 15- Oed (os Marks)
Dankan V Gouda mтech,(PRD)
Assistant Professor, Dept. of E\&CE Email:dankan.ece@svcengg.com $+919844554940$
with distance of Separation is 80 cm .

To find y use pythagorasis theorem

$$
\begin{aligned}
& \text { ie } O A^{2}=O M^{2}+y^{2} \\
& \Rightarrow y^{2}=O A^{2}-O m^{2}=0.5^{2}-0.4^{2} \\
& y^{2}=0.09
\end{aligned}
$$

$$
y=0.3 \mathrm{~m}
$$

\therefore the point $A(0.4, y)=A(0.4,0.3) \mathrm{m}$.

The Elcetric ficld Irtensity at a point A deu to the two point chargen at pointin 0 and P io given by

$$
\begin{aligned}
& \overline{F_{A}}=\overline{L_{P}}+\overline{F_{O}} \\
F_{A} & =\frac{Q_{P}}{u \pi \epsilon|\overline{P A}|^{2}} \overline{a_{P A}}+\frac{Q_{O}}{u \pi \epsilon|\overline{O A}|^{2}} \overline{a_{O A}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

given $Q_{p}=5 n c$ and $Q_{0}=2 n c ; \theta=5 G_{0} \mathrm{Rm}$

$$
\begin{aligned}
& \overline{P A}=-0.4 \overline{a_{x}}+0.3 \overline{a_{y}} \text { and } \overline{O A}=0.4 \overline{a_{x}}+0.3 \overline{a_{y}} \\
& |\overrightarrow{P A}|=|\widehat{O A}|=0.5 \mathrm{~m} ., \quad \overline{a_{P A}}=\frac{\widehat{P A}}{|\overrightarrow{P A}|} \text { and }{\overline{a_{O A}}}^{\mid \overrightarrow{O A}} \frac{\widehat{O A}}{|\widehat{O A}|} \\
& \overline{E_{A}}=\frac{Q_{P}}{u \pi \epsilon|\overrightarrow{P A}|^{3}} \overline{P A}+\frac{Q_{0}}{u \pi \epsilon|\overline{O A}|^{3}} \overline{O A} \quad v / m . \\
& \bar{I}_{A}=\frac{5 \times 10^{-9}}{4 \pi \epsilon} \frac{\left[-0.4 \bar{a}_{x}+0.3 \bar{a}_{y}\right]}{(0.5)^{3}}+\frac{2 \times 109}{4 \pi \epsilon} \frac{\left[0.4 a_{x}+0.3 \overline{a_{y}}\right]}{(0.5)^{3}} \\
& \bar{F}_{A}=\frac{1 \times 10^{-a} \times 9 \times 10^{0}}{5(0.5)^{3}}\left[5\left(-0.4 \overline{a_{x}}+0.3 \bar{a} y\right)+2(0.4 \bar{a} x+0.3 \bar{a} y)\right. \\
& \text { ept. E\&CE., SVCE Bangalore }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}_{A}=14.4\left[-1.2 \overline{a_{x}}+2.1 \overline{a_{y}}\right] \\
& \bar{F}_{A}=-17.28 \bar{a}_{n}+30.24 \overline{a_{y}} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

problem ag. A loon (point charge in located. at $A(-1,1,3)$ in free space.
i Find the Locus of all point en $p(x, y, z)$ at which $E_{x}=500 \mathrm{~V} / \mathrm{m}$.
ii) Find y_{1} if $p(-2, y, 3)$ lin on that Locus.

$$
\begin{aligned}
& \text { Locus. } \\
& {[\text { Wh.tertayt }]_{10-D e c-\tan 2014]}^{(8 \mathrm{M})} .}
\end{aligned}
$$

problem 13.
three point charges south of 5 nc are located on the x-axis at $x=-1,0$ and 1 m in free

Space: Find
i. E at $x=5 \mathrm{~m}$.
ii. Determine the value and location of the quivalunt single point charge that would produce the same field at very large distance.
iii. Determine E at $x=5 \mathrm{~m}$ using approxim - ation of ($i i$).
[butH.Hayt].

A 100 ne point charge is located at $A(-1,1,3)$ in free space-
Problem 12 i) Find the locus of altyonits $P(x, y, z)$ at whiche $g=500 \mathrm{~V} / \mathrm{m}$.
Soly:-i>

10 Dec-Jan 2014.
(8m) g.ve ${ }^{(08 \mathrm{marts})}$
(given $500 \mathrm{~V} / \mathrm{m}$

$$
\begin{gathered}
E_{p}=\not \dot{f}_{x} \overline{a_{x}}+E_{y} \bar{a}_{y}+E_{z} \bar{a}_{z} \\
v / m
\end{gathered}
$$

$$
\bar{E}_{p}=\frac{Q_{A}}{4 \pi \epsilon_{0}|\overline{A P}|^{2}} \bar{a}_{A P}=\frac{Q_{A}}{4 \pi \epsilon_{0}|\overline{A P}|^{3}} \bar{A} \quad V / m
$$

$$
\overline{A p}=(x+1) \overline{a_{x}}+(y-1) \bar{a}_{y}+(z-3) \overline{a_{z}}
$$

$$
|\overline{A P}|=\sqrt{(x+1)^{2}+(y-1)^{2}+(z-3)^{2}}
$$

$$
\bar{\delta}_{p}=\frac{100 n \times 9 \times 109}{\left[(x+1)^{2}+(y-1)^{2}+(z-3)^{2}\right]^{3 / 2}}\left[\frac{\left.b x+1) \overline{a_{x}}+(y-1) \overline{a_{y}}+(z-3) \overline{a_{z}}\right]}{}\right.
$$

givn

$$
\alpha F_{x}=500 \mathrm{v} / \mathrm{m}
$$

the E_{x} componed in equ is

$$
\begin{aligned}
& \frac{1004 x 9 \times 10}{\left[(x+1)^{25}+(y-1)^{2}+(z-3)^{22}\right]^{3 / 2}} \times(x+1)=500 v / m \\
& (x+1)=5 / 9\left[(x+1)^{2}+(y-1)^{2}+(z-3)^{2}\right]^{3 / 2}
\end{aligned}
$$

Locus of all pointo $P(x, y, z)$ at which $E_{x}=500 \mathrm{~V} / \mathrm{m}$.
Probolvenco
ip) To find y_{1} given point $p(-2, y, 3)$ Lies on Locus i.e

$$
(x+1)=5 / 9\left[(x+1)^{2}+(y-1)^{2}+(z-3)^{2}\right]^{3 / 2}
$$

put $x=-2, y=y$, and $z=3$.

$$
\begin{aligned}
& (-2+1)=5 / 9\left[(-2+1)^{2}+\left(y_{1}-1\right)^{2}+\left(3 f^{0}\right)^{2}\right]^{3 / 2} \\
& -1=5 / 9\left[1+\left(y_{1}-1\right)^{2}\right]^{3 / 2} \\
& {\left[1+\left(y_{1}-1\right)^{2}\right]^{3 / 2}=(-9 / 5)}
\end{aligned}
$$

squar on both side

$$
\begin{gathered}
{\left[1+\left(y_{1}-1\right)^{2}\right]^{3}=(-9 / 5)^{2}} \\
\left.y_{1}=1.6926 \text { and } 1+\left(y_{1}-1\right)^{2}\right]^{3}=3.24 \\
y_{1}^{2}-2 y_{1}+0.52027=0.3073
\end{gathered}
$$

Hayt Probleml3
Three point charges each of 5 nC are located on the x -axis at $\mathrm{x}=-1,0$ and 1 m in free space. Find
i. … E at $\mathrm{x}=5 \mathrm{n}$

Determine the value and location of the equivalent single point charge that would produce the same field at very large distance.
Determine E at $\mathrm{x}=5 \mathrm{~m}$ using approximation of (ii) HeH . Hayt.

$$
\begin{aligned}
& \text { Solv:- } \\
& \uparrow^{3} \text { m. } \quad i>\bar{E} \text { at } x=5 \mathrm{~m} \text { i.e } \\
& x_{x=-1} \\
& \bar{E}_{p}=\bar{E}_{A}+\bar{E}_{B}+E_{C} \quad v / m \\
& \begin{array}{l}
x=\operatorname{lm}_{c(1,0,0)}, \bar{E}, \\
\hline
\end{array} \\
& x=5^{m} \\
& \text { r } \begin{array}{l}
E_{p}=\text { ? } \\
p(5,0,0)
\end{array} \\
& F_{-p}=\frac{Q}{4 \pi \epsilon}\left[\frac{\overline{A p}}{|\overline{A p}|^{3}}+\frac{\overline{B P}}{\mid \overrightarrow{B P} C^{3}}+\frac{(\overrightarrow{E D}}{|\overrightarrow{C P}|^{3}}\right] \mathrm{V} / \mathrm{m} \text {. } \\
& \overline{A P}=6 \overline{a_{x}} ;|\overline{A P}|=6(n) \quad \overline{B P}=5 \overline{a_{x}},|\overline{B P}|=5 \mathrm{~m} \text {. } \\
& \overline{c_{p}}=4 \overline{a_{x}} \dot{\bar{Q}} \cdot \overline{a_{p}}=4 \mathrm{~m} . \\
& \overline{E_{p}}=5 \eta p \times 9 \times 1 \phi^{9} \sqrt{\left.\frac{a_{x}}{(6)^{3}}+\frac{5 \overline{a_{x}}}{(5)^{3}}+\frac{4 \overline{a_{x}}}{(4)^{3}}\right] v / m . ~} \\
& \bar{E}_{p}=45 \times 0.13027 \overline{a_{x}}=5.8625 \bar{a}_{x} \times 1 m \\
& \bar{E}_{p}=5.8625 \overline{a_{x}} \mathrm{~V} / \mathrm{m} \text { and }\left|\bar{E}_{p}\right|=5.8625 \mathrm{~V} / \mathrm{m} \text {. }
\end{aligned}
$$

ii. To find the value and location of single point charge that would produre same \bar{E} at Large distance.
let the location be genval ' x ' and ' x ' inverylorge.
given x in very－viry Large

$$
(x+1)^{2} \simeq x^{2} \text { and }(x) \simeq x^{2} \simeq x^{2} .
$$

$$
\overline{F_{p}}=\frac{Q}{4 \pi t_{0}} \times \frac{3 \overline{a_{x}}}{x^{2}} v \operatorname{lon} \text { and given } \bar{E}_{p} \text { to b same. }
$$

$$
\therefore 5.8625 \frac{1}{4} \frac{18}{4 \pi E_{0}} t_{x}
$$

$$
5.8625=\frac{3 Q}{4 \pi 60 x^{2}}
$$

$$
x^{2}=\frac{3 Q}{4 \pi E_{0} \times 5 \cdot 8625} \quad \Rightarrow \quad \text { ut } x=80 i \cdot x \quad x>1
$$

Consider i to be vary Large ie $\infty=1 / 0$ ．
H苏 in is possible only when

\therefore the point charge value $Q=0.537 \times 10^{-8}=5.37 n C$
iii）if $3 Q=1.511 \times 10^{-8} \mathrm{C}$ in bit（ii）
then $E_{p} @ x=5 \mathrm{~m}$ is $\left\{\begin{array}{l}Q=0.483 \times 10^{-8} G=4.834 \mathrm{C}\end{array}\right.$

$$
F_{p}=4.83 \times 10^{-9} \times 9 \times 10^{9}\left[36^{-1}+25^{-1}+16^{-1}\right] \overline{a_{x}}=5.45 \overline{a_{x}} v 1 \mathrm{~m}
$$

problem le.
Hays
A charge Q_{0}, located at the origin in free space, produces a field for which $E_{z}=I \mathrm{kV} / \mathrm{m}$ at point $P(-2,1,-1)$. (a) Find Qu. Find \bar{E} at $M(1,6,5)$ in: (b) cartesian coordinates; (c) cylindrical coordinates; (d) spherical coordinates. [W.H.Hayt]
Solis:-
a)

$$
\begin{aligned}
& \text { given } 1 k v / n \\
& Q_{0}^{Q_{0}=2} \underset{O(0,0,0)}{\stackrel{\ddot{O P}}{\longrightarrow} \bar{a}_{0 p}} \underset{p(-2,1,-1)}{\longrightarrow} \bar{E}_{p}=E_{x} \overline{a_{x}}+E_{y} \bar{a}_{y}+\dot{\phi}_{z} \overline{a_{z}} V / m
\end{aligned}
$$

$$
\begin{aligned}
& \overline{E_{p}}=\frac{Q_{0}}{4 \pi \epsilon_{0}|\overline{O P}|^{2}} \bar{a}_{o p} . v l_{m}=\frac{Q_{0} \quad \overrightarrow{O P}}{4 \pi \epsilon_{0}|\overline{O P}|^{3}}{ }^{\prime} . \\
& \overline{o p}=-2 \overline{a_{x}}+\overline{a_{y}}-\overline{a_{z}}: \quad|\overline{o p}|=\sqrt{4+1+0}=\sqrt{6} \mathrm{~m} . \\
& \bar{F}_{p}=\frac{0 . \times 9 \times 10^{9}}{(\sqrt{6})^{3}}\left[-2 \bar{a}_{x}+\bar{a}_{0} \sigma^{2}\right] \quad v / \mathrm{m}
\end{aligned}
$$

the \mathcal{F}_{3} component ing bone exprusion is

$$
\begin{aligned}
& F_{2}=\frac{-Q_{0} \times 9 \times 10^{9} \theta^{0}}{(\sqrt{6})^{3}} 1 \mathrm{KV} / \mathrm{m} \\
& \text { © } \theta_{0}=-1.6329 \text { u } C
\end{aligned}
$$

b)

$$
\begin{aligned}
Q_{0} & =-1.632 g \mu c \\
& 0(0,0,0) \stackrel{\sigma}{\frac{O_{m}}{\sigma_{0 n}}} M(1,6,5)
\end{aligned} \bar{E}_{m}=?
$$

$$
\begin{aligned}
& \overline{O M}=\overline{a_{2}}+6 \overline{a_{y}}+5 \overline{a_{z}} ; \quad|\overline{o m}|=\sqrt{1+36+25}=\sqrt{62} \mathrm{~m} . \\
& \overline{E_{m}}=\frac{-1.6329 u \times 9 \times 10^{9}}{(\sqrt{62})^{3}}\left[\overline{a_{x}}+6 \overline{a_{y}}+5 \overline{a_{z}}\right]
\end{aligned}
$$

$$
\overline{E_{m}}=-30.105 \bar{a}_{x}-180.63 \bar{a}_{y}-150.52 \bar{a}_{z} \text { on }
$$

c) $\mathcal{L}_{x}=-30.105 \mathrm{~V} / \mathrm{m}=E_{y}=-180.63 \mathrm{~V} / \mathrm{m} \operatorname{Gan} E_{z}=-150.52 \mathrm{~V} / \mathrm{m}$

$$
P(1,6,5) \Rightarrow \rho=\sqrt{1+36},{ }^{3} \Rightarrow ; \phi=\tan ^{-1}(6 / 5)
$$

$$
E_{g}=-30.10 \operatorname{con}\left(80.537^{\circ}\right)-\phi=80.537^{\circ}
$$

$$
\mathcal{E}_{\phi}=+30.10 \sin (80.6)^{\circ}-180.63 \cos \left(80.537^{\circ}\right)=0 \mathrm{~V} / \mathrm{m}
$$

$$
\mathcal{F}_{3}=-150.58=-150.52 \mathrm{v} / \mathrm{m}
$$

$$
\begin{gathered}
\alpha_{3}=-150.52 \% m \\
\bar{F}=-183 \%{ }_{m}-150.5 \bar{a}_{3}
\end{gathered} \stackrel{Y}{m}_{m}
$$

d) \quad in sperical $C \cdot S$ in $m(1,6,5) \Rightarrow r=\sqrt{1^{2}+6^{2}+5^{2}}$
C.S
using dot toblut and (Fundamental) $\phi=\tan ^{-1}(y / x)=80^{\circ} 54^{\circ} \quad \theta=50^{\circ} .58^{\circ}$
teble $\quad \theta=\cos ^{-1}(z) \gamma$
$F_{r}=-30.11 \sin \theta \cos \phi-180.63 \sin \theta \sin \phi^{\circ} ;$
put $\theta=50.58^{\circ}$ and $\phi=80.54^{\circ} \quad E_{\theta}=0 \mathrm{Y} / \mathrm{m}$
$\sigma_{r}=-273.1 \mathrm{~V} / \mathrm{m} \quad E_{\phi(y \mathrm{~m})}=E_{\phi(\text { sphen })}=0 \mathrm{~V} / \mathrm{m}$ put $\phi=80.54^{\circ}$ and $E_{\theta}=-\sin \phi E_{x}+\cos \phi E_{y}=0 \mathrm{~V} / \mathrm{m}$.
problem is.
A charge distributed generates a radial electric field $E=\frac{a}{r^{2}} e^{\frac{-r}{b}} a_{r} V / m$ where a and b are constants. Determine the total charge giving rise to this electric field. $(6 \pi) \quad[$ EEE June Judy $20 / 6$,
Sola:- given $\bar{E}=\frac{a}{r^{2}} e^{-\gamma / b} \overline{a_{r}} v / m$
w.k.t the E due to point charge θ is

$$
\bar{F}=\frac{Q}{4 \pi \epsilon r^{2}} \text { ar } v / m
$$

equating equation (1) and
problem 15. A charge distributed generates
Q racial elutric field $\bar{E}=\frac{a}{r^{2}} e^{-r \mid b}$ ar v / m where a and bare constants. Dutermint the total charge giving rise to this Elutricfield. [EEE- Juke| July
problem 16
Eat $(0,0,5) \mathrm{m}$ \vec{l}
$0,4,0) \mathrm{m} \quad$ at $(3,0,0) \mathrm{m}$
Find electric field intensity E at $(0,0,5) \mathrm{m}$ due to charge Q_{1} at $(0,4,0) \mathrm{m}$ and charge Q_{2} at $(3,0,0) \mathrm{m}$ the charges are $Q_{1}=0.35 \mu \mathrm{E}$ and $\mathrm{Q}_{2}=0.55 \mu \mathrm{E}$ respectively. Hence fud the magnitude and direction. (7 m) of E. $\quad Q_{1}=0.35 \mu \mathrm{C} \quad \mathrm{O}_{2}=-0.55 \mu \mathrm{C}$.
Solus:$E_{B} E=2016$

$$
Q_{1}=0.35 \mu \mathrm{c}
$$

$$
\begin{aligned}
& Q_{1}=0.55 \\
& A(0,4,0)^{m}
\end{aligned}
$$

$E_{B}-E_{P}=$? and $\overline{a_{E}}=$?

$$
\theta_{2}=-0.55 \mu c_{0}
$$

$$
\bar{E}_{p}=\bar{E}_{A}+\vec{E}_{B} v / m
$$

$$
\overline{\bar{F}_{p}}=\frac{\theta_{A}}{4 \pi \in|\overline{A p}|^{2}} \frac{\theta_{A p}}{4(3,0,0) m}+\frac{Q_{B}}{4 \pi \in|\overline{B p}|^{2}} \bar{a}_{B p} v / m \cdot 0^{0}
$$

$$
\overline{E_{p}}=\frac{Q_{A}}{4 \pi \epsilon} \frac{\overline{A P}}{|\overline{A P}|^{3}}+\frac{Q_{B} \overline{B P}}{4 \pi \epsilon|\overline{B P}|^{3}}
$$

$$
\overline{A P}=-4 \overline{a_{y}}+5 \overline{a_{z}} ; \quad|\overline{A P}| \sqrt{2}+25=\sqrt{41} \mathrm{~m} .
$$

$$
\overline{B P}=-3 \frac{1}{a_{x}}+5 \frac{2}{a_{3}} \Rightarrow \Rightarrow \sqrt{9+25}=\sqrt{34} \mathrm{~m}
$$

$$
\bar{E}_{p}=\frac{0.35 \mu \times 9 \times 10^{9}}{(\sqrt{41})^{3}}\left[e^{1}+\left(\overline{a_{y}}\right)+5 \bar{a}_{z}\right]+\frac{(-0.55 u)\left(9 \times 10^{9}\right)}{(\sqrt{3 \varphi})^{3}}\left[-3 \overline{a_{x}}+5 \bar{a}_{z}\right]
$$

$$
\left.=11.99{ }^{2}+\overline{a_{y}}+5 \overline{a_{z}}\right]-24.968\left[-3 \overline{a_{x}}+5 \overline{a_{z}}\right]
$$

Magnitude $\sqrt{y_{p}}=74.90 \overline{a_{x}}-47.992 \overline{a_{y}}-64.85 \overline{a_{z}} \mathrm{~V} / \mathrm{m}$

$$
\left|\bar{E}_{p}\right|=\sqrt{74.9^{2}+47.99^{2}+64.85^{2}}=110.0852 \mathrm{v} / \mathrm{m}
$$

duration of $\overline{E_{p}}$ in $\overline{a_{\varepsilon_{p}}}=\frac{\overline{E_{p}}}{\left|\overline{E_{p}}\right|}=\frac{74.90 \overline{a_{x}}-47.99 \overline{a_{y}}-64.85 \overline{a_{z}}}{110.0852}$

$$
\bar{a}_{E_{p}}=0.6803 \bar{a}_{x}-0.4359 \overline{a_{y}}-0.58908 \bar{a}_{z}
$$

ic Unit victor along $\overline{F_{p}}$.17
problem 17
$\stackrel{(3,4,5) m}{\rightarrow} \quad \lambda^{5 \eta c},(1,2,3) m$

Calculate the field intensity at a point (3,4.5) due to a charge of 5 nC placed at $(1,2,3)$ Ans: $E=2.16 a_{x}+2.16 a_{y}+2.16 a_{x} \mathrm{~V} / \mathrm{m}$
Solu':

$$
\overline{F_{p}}=\frac{Q_{0}}{4 \pi \in|\overline{O p}|^{2}} \overline{a_{o p}} V / m
$$

$$
\overline{E_{p}}=\frac{Q_{0}}{4 \pi E} \frac{\overrightarrow{O p}}{|\overrightarrow{O p}|^{3}} v / m
$$

$$
\overline{o p}=2 \overline{a_{x}}+2 \overline{a_{y}}+2 \overline{a_{z}}
$$

$$
E_{p}=2.165 \overline{a_{0}}+2.165 \bar{a}_{y}+2.165 a_{z} \quad v / m
$$

$$
\left|\bar{E}_{p}\right|=3.75 \mid \mathrm{y} / \mathrm{m}
$$

divation of fille $\quad \overline{a_{E_{p}}}=\frac{\overline{E_{p}}}{\left|\bar{E}_{p}\right|}$

$$
\begin{aligned}
& \bar{a}_{E_{p}}=\frac{2.165 \bar{a}_{x}+2.165 \bar{a}_{y}+20165 \bar{a}_{z}}{3.75} \\
& \frac{\bar{a}_{E_{p}}}{\bar{a}_{\text {Dept. of }}=0.57 E_{1}, \text { SVCE }}
\end{aligned}
$$

Problem 18
Calculate the field intensity at a point on a sphere of radius 3 m , if a positive charge of $2 \mu \mathrm{C}$ is ${ }^{\circ}$ placed at the origin of the sphere
$\mathrm{Ans}: E=1.997 \mathrm{a}_{\mathrm{r}} \mathrm{kV} / \mathrm{m} \simeq 2 \overline{\mathrm{ar}} \mathrm{kv} / \mathrm{m}$
Sola:\leftarrow Sphere of radius

F due to point charge of is C int origen insphericest is is

$$
\bar{E}=\frac{Q}{4 \pi E r^{2}} \overline{a_{r}} v / m .
$$

given $\gamma=3 \mathrm{~m}$.

$$
\bar{E}=\frac{2 \mu \times 9 \times 109 \theta}{(3)^{2} \theta}=2000 \overline{a_{r}} \mathrm{~V} / \mathrm{m}
$$

$$
\overline{\mathcal{L}}=2 \overline{a r} \mathrm{kv} / m
$$

A charge of iC is at $(2,0,0)$ ．What charge must be placed at $(-2,0,0)$ which will make Y component of total E zero at the point $(1: 22), 2$
Ans： $\mathrm{Q}=-2.59 \mathrm{C}$

任気㫙m M funtrat find
 f duh that $\mathrm{O}_{\mathrm{B}}=$ ？

$$
Q_{B}=\text { ? } B(-2,0,0)
$$

$$
\begin{aligned}
& \overline{E_{p}}=\frac{\theta_{A}}{4 \pi E|\overline{A p}|^{2}} \overline{a_{A P}}+\frac{Q_{B}}{4 \pi \in|\overline{B P}|^{2}} \bar{a}_{B P} \theta_{0} \\
& \overline{A P}=-\overline{a_{x}}+2 \overline{a_{y}}+2 \overline{a_{z}} ; \quad|\overline{A P}| \bar{D}+4+4=\sqrt{9}=3 m . \\
& \overline{B P}=3 \overline{a_{x}}+2 \overline{a_{y}}+2 \overline{a_{z}} ; \quad \sqrt{C}=\sqrt{9+4+4}=\sqrt{17 m} \\
& E_{p}=\frac{1 \times q \times 10^{9}}{(3)^{3}}\left[-\bar{a}_{x}+2 \theta^{2}+2 \overline{a_{z}}\right]+\frac{Q_{2} \times 9 \times 10^{9}\left[3 \overline{a_{x}}+2 \bar{a}_{y}+2 \overline{a_{z}}\right]}{\left(\sqrt{17)^{3}}\right]} \\
& \left.\overline{E_{p}}=\frac{9}{27} \times 100^{\left[-\overline{a_{x}}\right.}+2 \overline{a_{y}}+2 \overline{a_{z}}\right]+\frac{9 \times 10^{9} \theta_{z}}{(\sqrt{17})^{3}}\left[3 \overline{a_{x}}+2 \overline{a_{y}}+2 \overline{a_{z}}\right]
\end{aligned}
$$

Eomponent along y duration $E_{y}=D$（given）

$$
\begin{aligned}
& \text { ie } \frac{9}{27} \times 10^{9} \times(+2)+\frac{9 \times 10^{9} Q_{2}}{(\sqrt{17})^{3}} \times 2=0 \\
& \frac{9 \times 10^{6} Q_{2} \times \not 2}{(\sqrt{17})^{3}}=\frac{-2 \times 9 \times 10^{9}}{27} \\
& Q_{2}=\frac{(\sqrt{17})^{3}}{27}=-2.596 G \\
& \therefore Q_{2}=-2.596 \mathrm{Ci}
\end{aligned}
$$

Problem 20
Three equal charges of $1 \mu \mathrm{C}$ each are located at the three comers of a square of 10 cm side. Find the Electric field intensity at the fourth vacant corner of the square. Ans: $\mathrm{E}=-1216.5 \mathbf{a}_{\mathrm{x}}+1216.5 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$

$$
\text { Dept of ERCE., SCC }\left|\overline{E_{A}}\right|=1722.78 \mathrm{kV} / m \quad 121{ }^{\text {Page } 77}
$$

$$
\begin{aligned}
& \bar{E}_{A}=\bar{F}_{0}+\bar{E}_{B}+\bar{E}_{C} \mathrm{~V} / \mathrm{m} \\
& E_{A}=\frac{Q}{4 \pi \epsilon_{0}}\left[\frac{\overline{\sigma_{A}}}{\left|\overline{O_{A}}\right|^{3}}+\frac{\overline{B A}}{|\overline{B A}|^{3}}+\frac{C_{C A}}{\left|\overline{C_{A}}\right|^{3}}\right] v / m \\
& \overline{O A}=0.1 \overline{a_{y}} ; \quad 1 \overline{O A}=0.1 \mathrm{~m} \text {. } \\
& \overline{B A}=\sum_{0.1} \overline{a_{x}}+0 .\left|\overline{a_{y}} ; \quad\right| \overline{B A} \mid=\sqrt{0.02} \mathrm{~m} . \\
& \alpha \sigma^{\prime} C_{A}=-0 .\left|\overline{a_{x}} ;\left|\overline{C_{A}}\right|=0.1 \mathrm{~m} .\right. \\
& \overline{F_{A}}=0 \times 9 \times 10^{9}\left[\frac{0.1 \overline{a_{y}}}{(0.1)^{3}}-\frac{0.1 \overline{a_{x}}}{(\sqrt{0.02})^{3}}+\frac{0.1 \overline{a_{y}}}{(\sqrt{0.02})^{3}}-\frac{0.1 \overline{a_{x}}}{(0.1)^{3}}\right] \\
& \bar{J}_{A}=9 \times 10^{3}\left[-135.35 \overline{a_{x}}+135.35 \overline{a_{y}}\right] \\
& \text { Do } \overline{F_{A}}=-1218.19 \overline{a_{x}}+1218.19 \overline{a_{y}} \mathrm{KV} / \mathrm{m}
\end{aligned}
$$

Noter point on z axis in Cylindlrical coordinate system.

$p(\rho, \phi, 3) \quad$ if $\vec{\beta} \rightarrow 0 \Rightarrow p(0, \phi, 3)$ is the point on : \dot{z} axid.
dy point on $x y$ plane [ie $z=0$ on $x y$ plani] in $p(\rho, \phi, 0)$.
$\rightarrow p(0, \phi, 3)$ point org Suxis \Rightarrow valid in Cylintricoly $G \cdot \delta$.

Electric Field. Intensity \bar{E} due to
Infinite Line charge.
Questions.
Derive an cxprosion for the clectric field intensity due to infinite line charge. $(8 \mathrm{~m}) 10$ June/ July 2013.
(or)
charge in distributed uniformly along an infinite straight line with constant density $\mathrm{l}_{\mathrm{C}} \mathrm{dm}$. Duvelopthe Epronion for \bar{E} at the general point P. ($6 m$)

$$
\begin{gathered}
{[10-\text { June } \mid \text { July } 2012]\left[\begin{array}{c}
06 \text {-mayp/June-2010 } \\
(8 \mathrm{~m})
\end{array}\right]} \\
{[06 \text {-Dec } 2010(12 \mathrm{~m})]\left[\begin{array}{c}
15 \text {-Dee } / \text { Jan } 2017(8 \mathrm{~m}] \\
\text { CBCS-Scheme. }
\end{array}\right]} \\
{[15 \text { - June/ July } 2017(6 \mathrm{~m}) \text {-CBCS-Scheme }]}
\end{gathered}
$$

 LA the point ware mudesive to Caluatate the Elutric firid Intenoity (\bar{E}) to be on $x y$-pane ie $p(\beta, \phi, 0)$.

$$
d Q=\rho_{l} d l \text { Coulemb }
$$

Since line chage in placed along ' ${ }^{\text {' }}$ axis
(24) $\therefore x=\mathrm{dz}$
$\therefore d Q=\rho_{l} \cdot d_{2}$ Cioulombo
the difterential Elatricfilld Intensity $\left(d E_{p}\right)$ at a point p due to differential charge $d \theta$ is

$$
\begin{aligned}
& d \bar{E}_{p}=\frac{d Q}{4 \pi \in|\overline{O p}|^{2}} \bar{a}_{o p} \quad v / m . \quad ; \overline{a_{o p}}=\frac{\overrightarrow{O p}}{|\overline{O p}|} \\
& \overline{O P}=(\rho-0) \overline{a_{y}}+(\phi-\phi) \bar{a}_{\phi}+(0-z) \overline{a_{z}} \\
& \overline{O p}=\rho \overline{a_{1}}-3 \overline{a_{z}} ; \quad|\overrightarrow{o p}|=\sqrt{\rho^{2}+3} \overline{3} \mathrm{~m} \text {. } \\
& d \bar{E}_{p}=\frac{d Q}{4 \pi \epsilon|\overline{O P}|^{3}} \overline{Q P} \quad V / m \\
& d \bar{E}_{p}=\frac{d Q}{4 \pi \epsilon\left(\rho^{2}+z^{2}\right)^{3 / 2}\left[a_{\rho}-z a_{2}\right]^{\circ}}
\end{aligned}
$$

Since foreviry dg at' z there is another $d Q$ at ' $-z$ ', the z compansto of these two will gets cancel. then rouli's $L \hat{y} y$ ' component.

$$
\begin{aligned}
& \mathcal{F}_{\text {i.e }} d \bar{E}_{p}=\frac{d Q}{4 \pi \epsilon\left(\rho^{2}+z^{2}\right)^{3 / 2}} \rho \bar{a}_{\rho} \\
& \overline{F_{p}}=\int_{z=-\infty}^{\infty} \frac{\rho_{l} \cdot d z}{4 \pi \epsilon\left(\rho^{2}+z^{2}\right)^{3 / 2}} \rho \cdot \overline{a_{\rho}} \quad v / m . \\
& \text { put } z=\rho \tan \theta
\end{aligned}
$$

$$
z=\rho \tan \theta
$$

L.L. $\quad 3 \rightarrow-\infty \quad \theta=\tan ^{-1}(3 / \rho) ; \theta=-\pi / 2$.

U1. $z \rightarrow+\infty ; \quad \theta=+\pi / 2$.

$$
d z=\rho \sec ^{2} \theta d \theta
$$

and the term

$$
\begin{aligned}
& \left(\rho^{2}+3^{2}\right)^{3 / 2}=\left(\rho^{2}+\rho^{2} \tan ^{2} \theta\right)^{3 / 2} \\
& =\left[\rho^{2}\left(1+\frac{1}{2} \operatorname{sen}^{2} \theta\right)\right]^{3 / 2}=\left[s^{2} S^{3} \sec ^{2} \theta\right]^{3 / 2} \\
& =(\rho \sec \theta)^{2 \times 3 / 2}=\left(\rho 9 \dot{c}^{3}=(\rho \sec \theta)^{3}\right. \\
& \left(\rho^{2}+z^{2}\right)^{3 / 2}=(\rho \sec \theta)^{3} \\
& \overline{F_{p}}=\int_{\theta=-\pi / 2}^{\pi / 2} \frac{\rho_{l \times} \times \rho \sec \theta \theta}{4 \pi(\rho \sec \theta)^{3}} \rho \bar{a}_{\rho} \quad v / m \\
& V^{2}=\int_{0}^{\pi / 2} \frac{\rho_{l} \rho^{2} \sec ^{2} \theta d \theta}{4 \pi \epsilon \rho^{2} \sec ^{6} \theta} a_{\rho} v / m \\
& \theta=-1 / 2 \\
& =\frac{\rho_{e}}{4 \pi \epsilon \rho} \bar{a}_{\rho} \int_{\theta=-\pi / 2}^{\pi / 2} \frac{1}{\sec \theta} d \theta=\frac{\rho_{e}}{4 \pi \epsilon \rho} \bar{a}_{\rho} \int_{\theta=-\pi / 2}^{\pi / 2} \cos \theta d \theta \\
& =\frac{\rho_{l}}{4 \pi \epsilon \rho} \bar{a}_{\rho} \times\left.\sin \theta\right|_{-\pi / 2} ^{\pi / 2}=\frac{\rho_{\lambda}}{4 \pi \epsilon \rho} \bar{a}_{\rho}\left[\begin{array}{c}
\left.\sin 0_{2}+\sin \pi_{2}\right] \\
2
\end{array}\right] \\
& \begin{aligned}
{\left[\sin \left(\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{2}\right)\right.} & =1+1 \\
& =2
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{F_{\rho}}=\frac{\rho_{l}}{4 \pi \epsilon \rho} \times \not 2 \overline{a_{\rho}} \\
& \overline{F_{\rho}}=\frac{\rho_{l}}{2 \pi \epsilon \rho} \overline{a_{\rho}} \quad \text { V/m }
\end{aligned}
$$

obs:-1. the diration of field \bar{K}_{p} in toward's $\overrightarrow{a_{\rho}}$.
2. In the above expronion, ' ρ ' is the Lingth ourpundicular dintanu from the desired point to the Fore charge and \bar{a}_{ρ} is the unit vator in the direfig of perpendiculars towards the desired pointes.
$1.3 e \cdot F$ due to Inite shect chorge $\left(S_{S}\right) \varphi_{m}{ }^{2}$
E due to In oite shect charge (Ss) cm^{2} is given by

$$
\bar{F}=\frac{\rho_{\dot{s}}}{2 \epsilon} \bar{a}_{n}
$$

whore ρ_{S} - shect charge dirsity $\mathrm{Cm}_{\mathrm{m}}{ }^{2}$
\bar{a}_{n} - unit normal vator 1ε to the shatherge.
Note! - Field diration in always fowardo the desived
boint. point.

Eanes.

$\overline{a_{n}}$ ig decided by the point hocation. Ot the point
Location in above the shut harge $+a_{n}=+a_{2}$ and if it Lis blow the shet chog ,fien $\bar{a}_{n}=-\overline{a_{2}}$.
ly conctik.

Caserif.
 Euriotp' - Fild at a point due to infinite stutchorge in independint

Mote:- theraluof $\frac{1}{2 \pi G}$ Depta of EGE, B.M.S.I.T\&M
Note:- $\frac{1}{2 \pi \epsilon_{0}}=18 \times 10^{9}$
$\dot{x} \times \quad 2 \pi \epsilon_{0} \quad \leqslant P_{k}=4 \mathrm{oclm}$
problen1.
A uniform tine charge of infinite length with $P=40$ nc/m, lics along the z-axis. Find \bar{E} al
Ans: $E=-180 a_{x}+180 a_{y} \mathrm{~V} / \mathrm{m}$

Assistant Professor, Depl. of ERCE
Email:dankan.ecensucengb.com
(as marck) $06-\operatorname{Dec}\left(\operatorname{Jan} 201^{-}\right.$ 4m-15-Def Jon-2017 CCBCI-Schen
\qquad

$$
\begin{aligned}
& \quad \overline{E_{p}}=? \\
& p(-2,2,8) \\
& E=\frac{\rho_{l}}{2 \pi t \rho} a_{0} H_{n} .
\end{aligned}
$$

$\rho-1^{1}$ dintance from orid point to the line chare

$$
\bar{F}=\left.\frac{\rho_{l}}{2 \pi E} \quad v\right|_{m} \quad \bar{a}_{p p}=\frac{\overline{O p}}{|\overline{O p}|}
$$

$$
\begin{aligned}
& \mathcal{F}_{p}=\frac{40 \times 10^{-9} \not x 18 \times 10^{9}}{(\sqrt{8})^{2}}\left[-2 \overline{a_{x}}+2 \overline{a_{y}}\right] \\
& \bar{E}_{p}=90\left[-2 \overline{a_{x}}+2 \bar{a}_{y}\right] \\
& \bar{E}_{p}=-180 \overline{a_{x}}+180 \bar{a}_{y} \quad v / m \\
& E_{x}=-180 \mathrm{v} / \mathrm{m} \quad E_{y}=+180 \mathrm{v} / \mathrm{m} \\
& V_{p}
\end{aligned}
$$

$$
\overline{\text { Dept. of ERCE, SVCE }} \sqrt{\left|E_{0}\right|}=254.55 \mathrm{~V} / \mathrm{m} \sqrt{\text { Page 84 }}
$$

Problem 2.
enctm
$0.1 \mathrm{ncm}^{2}$
A line charge of $2 \mathrm{nc} / \mathrm{m}$ lies along y -axis while surface charge densities of $0.1 \mathrm{nc} / \mathrm{m}^{2}$ and

Sol:-

$$
\bar{E}_{\rho_{n t}}=\bar{E}_{\rho_{l}}+\bar{E}_{\rho_{s+}}+\bar{E}_{\rho_{S-}} \quad N / c(0) / m .
$$

[02-Jund July $2012]$
conei. Ep due to line charge

$$
\begin{aligned}
& \begin{array}{l}
\overline{E_{s l}}=\frac{\rho_{l}}{2 \pi \epsilon \rho} \overline{a_{l}} v \operatorname{lnc}^{\prime} \\
\overline{F_{\rho_{l}}}=\frac{\rho_{l}}{2 \sigma_{0}} \bar{a}_{o p} \quad V_{m}
\end{array} \\
& x=\begin{array}{l}
\quad \begin{array}{l}
\partial_{p} \\
\vdots
\end{array}\left\{\begin{array}{l}
\rho_{1}=2 n \\
a_{0 p}(1,7,-2)
\end{array}\right. \\
\frac{E_{p_{s}}}{}=?
\end{array} \\
& \frac{p(1,7,-2)}{E_{p}=?} \frac{\theta}{E_{j l}}=\frac{\rho_{l}}{2 \pi \epsilon|\sigma p|^{2}} \text { op } v / m \\
& \theta \begin{array}{l}
\dot{O P}=\overline{a_{x}}-2 \overline{a_{z}} \\
|\overrightarrow{O P}|=\sqrt{1+4}=\sqrt{5} \mathrm{~m}
\end{array} \\
& \therefore \alpha^{\frac{0}{\rho_{2}}}=\frac{2 n \times 18 \times 10^{9}}{(\sqrt{5})^{2}}\left[\bar{a}_{x}-2 \bar{a}_{3}\right] \\
& \overline{E_{g e}}=7 \cdot 2\left[\overline{a_{x}}-2 \overline{a_{z}}\right]=7.2 \overline{a_{x}}-1404 \overline{a_{z}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

Caserii. E_{p} due to shatclarge ρ_{S+}.

$$
\begin{aligned}
E_{\rho_{+}}=\frac{\rho_{S_{+}}}{2 t} \overline{a_{n}} & =\frac{0.1 n}{2 \times 8.851 \times 10^{-12}}\left(-\overline{a_{3}}\right) \\
& =-5.647 \overline{a_{z}} v /_{m}
\end{aligned}
$$

coseiit

$$
\vec{F}_{g_{-}-}=\frac{\rho_{s}}{2 E} \overrightarrow{a_{n}}=\frac{-0.14}{2 \times 8.854 \times 10^{-12}}\left(+\overline{a_{2}}\right)
$$

$$
\bar{E}_{n \text { nt }}=7.2 \overline{a_{n}}-14.4 \overline{a_{2}}-5.64 \overline{a_{2}}-5.64 \overline{a_{3}} ;\left[\overline{E_{n 4}}=7-2 \overline{a_{n}}-25.67 \overline{a_{3}}\right] \mathrm{y}
$$

$\triangle P$ A line charge density $\rho_{\mathrm{L}}=50 \mathrm{nC} / \mathrm{m}$ is located along the line $x=0, y=5$ in free space. Find
Solus-,
$|\overline{O P}|$ - is the 1^{k} distance from diesiredpoont to the line charge..
$x=0, y=5$
(on this line x value \& y values orlefixied)

$$
\begin{aligned}
& \overline{a_{o p}}=\frac{\overrightarrow{O P}}{|\overline{O P}|} \\
& \overline{O P}=\bar{a}_{x}-2 \overline{a_{y}} ; \quad|\overrightarrow{O P}|=\sqrt{1+4}=\sqrt{5} \mathrm{~m} \text {. } \\
& \sigma^{2} \bar{E}_{p}=\frac{50 n \times 18 \times 10^{-9}}{(\sqrt{5})^{2}}\left[\overline{a_{x}}-2 \overline{a_{y}}\right] \\
& \overline{E_{p}}=180\left[\overline{a_{x}}-2 \overline{a_{y}}\right] \quad \mathrm{V} / \mathrm{m} \\
& \overline{E_{p}}=180 \overline{a_{x}}-360 \overline{a_{y}} \quad \mathrm{~V} / \mathrm{m} \quad E_{p_{x}}=180 \mathrm{v} / \mathrm{m} \\
& \text { and } E_{p y}=-360 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Hayt Probleml.
$7^{5 n c} / m$
solu: (a) $\bar{F}_{p_{A}} \equiv$?

$$
\begin{aligned}
& \overline{E_{P_{A}}}=\bar{E}_{f_{1-x}}+\bar{E}_{\rho_{l-y}} \quad V / m .
\end{aligned}
$$

$$
\begin{align*}
& C^{C} \frac{D}{D P_{A}}=+4 \overline{a_{2}} \\
& \text { (D) }\left|O O_{A}\right|=4 \mathrm{~m} \text {. } \\
& \bar{F}_{l_{l-x}}=\frac{5 k \times 18 \times 9}{144}\left[4 \bar{a}_{3}\right]=22.5 \overline{a_{3}} \mathrm{~V} / \mathrm{m} \\
& \bar{F}_{F_{1-y}=}=? \\
& \bar{F}_{\rho_{k-y}}=\frac{5 n \times 18 \times 10^{9}}{(4)^{2}}\left[4 \overline{a_{z}}\right]=22.5 \overline{a_{z}} \mathrm{~V} / \mathrm{m} \\
& \begin{array}{r}
\overline{E_{P_{A}}}=\overline{E_{\rho_{l-x}}}+\bar{E}_{\rho_{1-y}}=22.5 \overline{a_{z}}+22.5 \overline{a_{3}} \mathrm{~V} / \mathrm{m} \\
=45 \overline{a_{3}} \mathrm{v} / \mathrm{m}
\end{array} \\
& \frac{-450.01 \mathrm{~m}}{38 \mathrm{mge} 77} \\
& \overline{\bar{F}_{p}}=45 \overline{a_{3}} \mathrm{~V} / \mathrm{m} \tag{132}
\end{align*}
$$

$$
\overline{E_{P_{B}}}=? @ P_{B}(0,3,4)
$$

conei $\bar{E}_{P_{B-x}}$ due to x axis line charge.
b) $\overline{\bar{E}_{P_{B}}}=? @ P_{B}(0,3,4)$
$0100,1 e=5 n \mathrm{c} / \mathrm{m}$
along x caxio

$$
\overline{F_{P_{B-x}}}=\left.\frac{\rho_{l}}{2 \pi \epsilon\left|\overline{o p}_{B}\right|} \bar{a}_{D_{B}} v\right|_{n}
$$

$$
\overrightarrow{O P_{B}}=3 \overline{a_{y}}+4 \overline{a_{z}}, \quad \overline{O P} \bar{O}^{9} 9+16=5 \mathrm{~m}
$$

$$
\overline{F_{P_{B-x}}}=\frac{5 x \times 18 \times 10^{0^{2}}}{(5)^{2}}\left[3 \overline{a_{y}}+\bar{c}^{2} a_{z}\right]=3.6\left[3 \overline{a_{y}}+4 \overline{a_{z}}\right]
$$

(1) $\overline{\bar{E}_{P_{B-x}}}=10.8 \overline{a_{y}}+14.4 \overline{a_{z}}=1 \mathrm{~m}$.
concii. EP $_{B-y}$ durso your line charge.

$$
\vec{\delta}_{P_{B-y}}=\frac{\rho_{A}}{2 \pi E\left|\bar{O}_{B}\right|^{2}} \overline{O_{B}} \cdot \hat{v}
$$

$$
\begin{aligned}
& \underset{O(0,3,0)+\ldots}{c} y_{c} \text { coubs } \\
& \overline{O P_{B}}=4 \overline{a_{z}} ; \quad\left|\overrightarrow{O P}_{B}\right|=4 \mathrm{~m} . \\
& \overline{F_{P_{B-y}}}=\frac{5 \times 10^{-9} \times 18 \times 10^{9}}{(4)^{x}}\left[4 \overline{a_{z}}\right]=22.5 \overline{a_{z}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

problem 5.
A uniform line charge of $16 \mathrm{nC} / \mathrm{m}$ is located along the line defined by $y=-2, z=5$. If $\epsilon \neq \epsilon_{0}:(a)$ find E at $P(1,2,3)$; (b) find E at that point in the $z=0$ plane where the direction of E is given by $\frac{1}{3} \mathbf{a}_{y}-\frac{2}{3} a_{z}$.

$$
\begin{aligned}
& \text { Ans: a. } \mathrm{E}=57.6 \mathrm{a}_{\mathrm{\gamma}}-28.8 \mathrm{a}_{2} \mathrm{~V} / \mathrm{m} \\
& \text { b. } \mathrm{E}=23 \mathrm{a}_{\mathrm{\gamma}}-46 \mathrm{a}_{\mathrm{z}} \mathrm{~V} / \mathrm{m}
\end{aligned} \quad \begin{gathered}
\text { Darken } \mathrm{V} \text { Gouda Mitch. (P anD) }
\end{gathered}
$$

Solus:-
a)
 fixed ie $y=-2$ and $z=5$.
\qquad

$$
\begin{aligned}
& E_{p} E_{p}=57.6 \overline{a_{y}}-28.8 \overline{a_{z}} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

b) 10 Find E at that point in the $z=0$ plane. we need to trow the point where $\bar{E}=1 / 3 \overline{a_{y}}-2 / 3 \overline{a_{z}}$

$$
\text { i.e } E_{z}=-2 E_{y} \text { (o) } E_{y}=-1 / 2 E_{3} \quad V_{n}=-\frac{1}{2} E_{3} V_{m}
$$

the point in on $z=0$ plane $i \cdot e$ on ry plane that can be $(1, y, 0)$.
Dept of ExCl., SVCE ito a point on ry plane $\therefore z=0$ Page 89
(134) and $x=\frac{1}{\sqrt{2}}$ bis on point $0(1,-2,5)$. and ' y 'Untrosios.

$$
\begin{align*}
& O(1-35) \quad \rho_{1}=16 \mathrm{ch} \mathrm{~m} \text {. } \\
& \overline{I_{p}}=\frac{\rho_{i}}{2 \pi \epsilon I_{0 p}} \overline{a_{p p}} \times /_{m} \\
& \overline{F_{p}}=\frac{\rho_{l}}{2 \pi \epsilon|\overline{O p}|^{2}} \overline{\overrightarrow{O P}} \mathrm{v} / \mathrm{m} . \\
& \overline{o p}=\left(y+2 \sqrt{a_{y}}-5 \overline{a_{z}}\right. \\
& \text { 6 } \underbrace{-\infty p \mid}=\sqrt{(6 y+2)^{2}+25} \\
& \overline{F_{p}}=\frac{16 x \times 18 \times 10^{6}}{\left[\sqrt{\left.(y+2)^{2}+25\right]^{2}}\right.}\left[(y+2) a_{y}-5 \bar{a}_{3}\right]
\end{align*}
$$

$\operatorname{given}_{E_{z}=\frac{288(-5)}{(y+2)^{2}+25}}^{5(3+2 E y} \Rightarrow$ to fond $y^{\prime} y^{\prime}$ value.

$$
\begin{align*}
& E_{z}=\frac{288 x^{2}}{(y+2)^{2}+25} \quad v / m \text { and } E_{y}=\frac{16 \times 18(y+2)}{(y+2)^{2}+25} \\
& E_{3}=-2 E y \\
& \theta \frac{088 x+5}{\left[(y+2)^{2}+25\right]}=+\frac{2 \times 16 \times 18(y+2)}{\left[(y+2)^{2}+25\right]} 0 \\
& (y+2)=5 / 2 \Rightarrow y=2.5-2=0.5 \\
& \therefore y=1 / 2 \text { (o) } 0.5 \text { using } c^{4}(a) \\
& \frac{\bar{E}_{p_{2=\text { oplane }}}=\frac{16 \times 18}{(0.5+2)^{2}+25}\left[(0.5+2) a_{y}-5 \overline{a_{z}}\right]=9.216\left[2.5 \overline{a_{y}}-5 \overline{a_{z}}\right]}{\text { Dept. of ELCE.SVCE }} \\
& \left.\bar{E}_{p_{2=\text { oplane }}}-23.04 \overline{a_{y}}-46.08 \overline{a_{z}}\right] \mathrm{V} / \mathrm{m}^{\text {Page 90 }} \tag{135}
\end{align*}
$$

$E_{P_{2}=\text { plane }}=$

$$
=23.04 \overline{a_{y}}-46.08 \overline{a_{z}}
$$

\square
Ant infinite Uniform Line charge $\rho_{l}^{a}=2 n c / m$ lies along the x-axis in free space, while point charges of 8 nC each are Located at $(0,0,1)$ and $(0,0,-1)$ Find
Hoy \quad Ho H. Hay t]
Solus.'

$$
\begin{aligned}
& 9 m \\
& O P=3 a_{y}-4 \overline{a_{z}} ;|\overline{O P}|
\end{aligned}=\sqrt{9+16}, ~=5 \mathrm{~m} .
$$

$$
\overline{A p}=2 \overline{a_{x}}+3 \overline{a_{y}}-5 \overline{a_{z}} ;
$$

$$
\begin{aligned}
& |\overrightarrow{m p}|=\sqrt{4}+25=\sqrt{38} \mathrm{~m} . \\
& =2 a_{n} 4 a_{n}-20 .
\end{aligned}
$$

$$
\overrightarrow{B P}=2 \overline{a_{x}} \mathcal{G} a_{y}-3 \overline{a_{3}} ;
$$

$$
|\overrightarrow{B P}|=\sqrt{9}+9+q=\sqrt{22} \mathrm{~m} .
$$

$$
\bar{E}_{p}=\overline{E_{O P}}+\overline{E_{A p}}+\overline{E_{B P}}, \dot{A}
$$

$$
\sigma_{p}=\vec{E}_{p}+\vec{E}_{p}+\overline{E_{p}} \mathrm{~V} / \mathrm{m} .
$$

$$
\begin{aligned}
& \bar{E}_{p}=\frac{\rho_{l}}{2 \pi \epsilon|\overline{O P}|^{2}} \overline{O P} \frac{Q_{A}}{4 \pi \epsilon|\overline{A P}|^{3}} \overline{A P}+\frac{Q_{B}}{4 \pi \epsilon|\overline{B P}|^{3}} \overline{B P} v / n . \\
& \left.\overline{F_{p}}=\frac{2 n \times 18 \times \bar{\theta}^{5}}{3 \bar{a}_{y}-4 \bar{a}_{3}}\right]+\frac{8 n \times 9 \times 10^{9}}{(\sqrt{38})^{3}}\left[2 \overline{a_{x}}+3 \overline{a_{y}}-5 \bar{a}_{z}\right] \\
& +\frac{8 n \times 9 \times 10^{9}}{(\sqrt{22})^{3}}\left[2 \overline{a_{x}}+3 \overline{a_{y}}-3 \overline{a_{z}}\right] \\
& \bar{F}_{p}=1.44\left[3 \overline{a_{y}}-4 \overline{a_{z}}\right]+0.3072\left[2 \overline{a_{x}}+3 \overline{a_{y}}-5 \overline{a_{z}}\right] \\
& +0.69774\left[2 \overline{a_{x}}+3 \bar{a}_{y}-3 \bar{a}_{z}\right] \\
& \overline{E_{p}}=\frac{2.009 \overline{a_{x}}+7.33408 \overline{a_{y}}-9.38922 \overline{a_{z}} \mathrm{~V} / \mathrm{m}}{\text { Dept. of ECEE. SVCE }} \\
& \begin{array}{l}
\mathcal{F}_{x}=2.009 \mathrm{~V} / \mathrm{m} ; \quad \mathcal{\delta}_{y}=7.334 \mathrm{~N} / \mathrm{m} \text { and } \mathcal{F}_{z}=-9.389 \mathrm{Paze} / \mathrm{m}, 310
\end{array}
\end{aligned}
$$

b) SO_{4} :-

$$
\overline{E_{p}}=\frac{\rho_{1} \times 18 \times 10^{9}}{3} \overline{a_{0 p}}+18 \overline{a_{A p}}+4 \cdot 5 \bar{a}_{B p}\left(\frac{1}{0} 0,3\right)
$$

$$
\left|\bar{E}_{p}\right|=0 \quad \text { given. }
$$

$$
\left|\bar{E}_{p}\right|=\left[\left(\frac{\rho l \times 18 \times 10^{9}}{3}\right)^{1} 18+4.5\right]
$$

$$
\begin{align*}
& \operatorname{g}_{0}^{\operatorname{in}}\left|F_{p}\right|=\left(\frac{\rho_{1} \times 18 \times 10}{30}+18+4.5\right. \\
& \rho_{l} \times 18 \times 10^{9}+22.5
\end{align*}
$$

$$
\begin{aligned}
& \rho_{l}=\frac{-22.5 \times 3}{18 \times 10^{+9}}=\frac{-67.5}{18} \times 10^{-9} \\
& \rho_{l}=-3.75 \mathrm{n} \mathrm{fm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { hot find } h_{x}=\text { ? } \\
& F_{p}=\frac{\rho_{l}}{2 \pi(-|\overline{O p}|} \bar{a}_{o p}+\frac{\theta_{A}}{u \pi\left(\mid \overline{a_{p}}\right)^{2}} \overline{a_{A p}}+\frac{\theta_{B}}{u \pi \in|\overline{B P}|^{2}} \\
& |\overrightarrow{O P}|=3 \mathrm{~m} ;|\overrightarrow{A P}|=2 \mathrm{~m} ;|\overrightarrow{B P}|=4 \mathrm{~m} . \\
& \overline{\sigma_{p}}=\frac{\rho \lambda \times 18^{\times 109}}{3} \overline{a_{0 p}}+\frac{8 n \times 9 \times 10^{9}}{4} \bar{a}_{A p}+\frac{8 n \times 9 \times 109}{16} a_{B p}
\end{aligned}
$$

problem 7.
A uniform line charge of $2 \mu \mathrm{C} / \mathrm{m}$ is located on the z axis. Find E in cartesian coordinates at $P(1,2,3)$ if the charge extends from: (a) $z=-\infty$ to $z=\infty ;(b) z=-4$ to $z=4$.
Solver a) $z=-\infty$ to $z=+\infty$.

$$
\begin{aligned}
& \text { O(0,0,3) } \\
& \overrightarrow{o p}=\overline{a_{x}}+2 \overline{a_{y}} ; \quad, \quad \dot{b} \mid=\sqrt{1+4}=\sqrt{5} m \\
& F_{p}=\frac{2 \not x \times 18 \times 10^{10}}{(\sqrt{5})^{2}}+2 \bar{a} \\
& \bar{E}_{p}=7 \cdot 2 \overline{a_{x}}+\left.14 \cdot 4 \overline{a_{y}} \mathrm{kV}\right|_{\mathrm{m}}
\end{aligned}
$$

(b) $z=-4$ to $z=+4$.

$$
\begin{aligned}
& \operatorname{dq}^{2} \sum_{z=+4}^{2} d E_{p}=\frac{d Q}{4 \pi \in|\overrightarrow{O P}|^{2}} \overline{a_{0 p}} \quad Q / m ; d Q=\rho_{l} \cdot d_{z} \\
& O(0,0,2)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{O P}=\overline{a_{x}}+2 \overline{a_{y}}+(3-z) \overline{a_{z}} \\
& |\overrightarrow{o p}|=\sqrt{1+4+(3-z)^{2}}=\sqrt{5+(3-z)^{2}}
\end{aligned}
$$

$$
F_{p}=18000\left[0.27217 \theta^{0} 0.54434 a_{y}\right.
$$

(a) $)^{5}$

$$
+0.272165 \overline{a_{3}}
$$

$$
\bar{E}_{p}=4.899 \overline{a_{x}}+9.798 \overline{a_{y}}+4.8989 \bar{a}_{2} \mathrm{kV} / \mathrm{m}
$$

$$
\begin{aligned}
& \Sigma_{p}=\frac{\rho_{l}}{4 \pi \epsilon_{0}} \int_{z=-4}^{4} \frac{\overline{a_{x}}+2 \overline{a_{y}}+(3-z)^{(3-z)}}{\left[5+(3-z)^{2}\right]^{3 / 2}} d_{z} \\
& \overline{\mathcal{F}_{p}}=2 \mu \times 9 \times 10^{9}\left[\begin{array}{l}
\frac{4}{4} \frac{d z>0.27217}{\left[5+(3-3)^{2}\right]^{3 / 2}} \overline{a_{x}}+2 \int_{z=-4}^{4} \frac{d z \pi}{\left[5+(3-3)^{2}\right]^{3 / 2}} \frac{0.27217}{a_{y}} \\
\end{array}\right. \\
& \left.+\int_{z=-4}^{4} \frac{(3-z) d z}{\left[5+(3-3)^{2}\right]^{3 / 2}}\right]
\end{aligned}
$$

probleme
$x_{x}^{x=2 m} y=$ um

$$
\rightarrow{ }_{l}=200 \mathrm{fm}
$$

On the line described by $x=2 \mathrm{~m}, \mathrm{y}=-4 \mathrm{~m}$ there is a unifom clarge distribution of density $\rho_{l}=$ 2Onc/m. Determine the E at $(-2,4,4)$
Solvi: $E P(-2,-1,4)$

$$
\rho_{l}=20 \mathrm{nc} \rho_{\mathrm{m}}
$$

$$
\begin{aligned}
& \rho_{l}=20 \mathrm{~m}, y=-4 \mathrm{~m} \\
& x=2 \mathrm{~m}, \mathrm{lne} x
\end{aligned}
$$ on th in line $x+y$ valuen ane fixed.

problem q
$\mathbb{c}^{h_{k}}=$ unctm $\kappa^{x=0} \quad \kappa^{y}= \pm 4 m$:
Two Uniform Line charge density $p_{l}=4 n \mathrm{C} / \mathrm{m}$ lies in the $\mathrm{x}=0$ plane at $\mathrm{y}= \pm 4 \mathrm{~m}$. Find E at
$(4,0,10) \mathrm{m}$
$(4,0,10) m$.
E

$+\angle l_{l}=4 \mathrm{ndm}_{\mathrm{m}^{-}}$

onthindine
$x=0$ and
$y=-4$ fixed.

$$
E_{p_{1}}=\frac{4 \not 2 \times 18 \times 10^{6}}{(\sqrt{32})^{2}}\left[4 \overline{a_{x}}+4 \overline{a_{y}}\right]
$$

$$
\overline{I_{p_{1}}}=9 \overline{a_{x}}+a \overline{a_{y}} \quad v / m
$$

$$
\begin{aligned}
& \text { Dept. of E\&CE., SVCE }
\end{aligned}
$$

problem io $E_{\text {nt }}=18 \overline{a_{n}}$ atm -20 nc $(1,0,0) m(0,1,0) m$.
Two point charges of 20 nC and -20 nC are situated at $(1,0,0) \mathrm{m}$ and $(0,1,0) \mathrm{m}$ in free space. Determine Electric Field Intensity at $(0,0,1) \propto(0,0,1) \mathrm{m}$.
sole:-

$$
\begin{aligned}
& \overline{x p}=-\overline{a_{x}} \neq \overline{a_{3}} \\
& |\overline{x p}|=\sqrt{2} \mathrm{~m} . \\
& c \overline{y_{p}}=-\overline{a_{y}}+\overline{a_{z}} \\
& |\overline{y p}|=\bar{s} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \bar{F}_{\text {ret }}=\bar{E}_{x}+\bar{E}_{y} \quad \text { oft. }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{F_{\text {nat }}}=\frac{Q_{x}}{4 \pi \epsilon} \frac{\overline{X P}}{|X|} \frac{Q_{y}}{4 \pi \epsilon} \frac{\overline{Y P}}{|\overline{Y P}|^{3}} \\
& \bar{F}_{\text {net }}=200^{20} \times 10^{9}\left[-\overline{a_{x}}+\overline{a_{2}}\right]-\frac{20 n \times 9 \times 10^{9}}{(\sqrt{2})^{3}}\left[-\overline{a_{y}}+\overline{a_{2}}\right] \\
& \vec{L}_{\text {oct }}^{\infty}=\frac{20 \not 0 \times 9 \times 10^{9}}{(\sqrt{2})^{3}}\left[-\overline{a_{x}}+\not a_{z}+\overline{a_{y}}-\hat{a}_{z}\right] \\
& \pm \infty \overline{E_{n t}}=-63.639 \overline{a_{x}}+63.639 \overline{a_{y}} \mathrm{v} / \mathrm{m} \\
& E_{x}=-63.639 \mathrm{v} / \mathrm{m} ; \quad E_{y}=63.639 \mathrm{v} / \mathrm{m} ; E_{z}=0 \mathrm{v} / \mathrm{m} \\
& \left|\bar{E}_{\mathrm{Nat}}\right|=89.99 \simeq 90 \mathrm{v} / \mathrm{m}
\end{aligned}
$$

problemll.

$$
\propto_{x}=25 \mathrm{nqm} \quad x=-32=4 m
$$

A uniform Line charge density $\rho_{l}=25 n C / m$, lies on the line $x=-3, z=4 \mathrm{n}$ in space. Find E in
Cartesian compont

-solu:'
ii)

$$
\begin{aligned}
& \beta_{e}=\left.25 n c\right|_{m} \\
& x=-3 m, 2=4 m \\
& \overline{E_{p}}=\frac{S_{l}}{2 \pi \in|\overrightarrow{o p}|} \overline{a_{o p}} \text { ofm } \\
& \overline{E_{p}}=\frac{\int_{l}}{2 \pi \in|\overline{O p}|^{2}} \overline{O p} \mathrm{~km}
\end{aligned}
$$

$$
\overrightarrow{O P}=5 \overline{a_{x}}-\overrightarrow{a_{g}} ; \quad|\overline{O p}|=\sqrt{25+1}=\sqrt{26} \mathrm{~m}
$$

$$
\begin{aligned}
& \text { i) } P(-3,0,4)^{\infty} e^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{E_{0}}=\frac{\rho_{l}}{2 \pi \in|\overline{P \theta}|} \quad \overline{a_{p o}}=\frac{\rho_{l}}{2 \pi \in|\overline{P D}|^{2}} \overline{\overline{P O}} \mathrm{u} / \mathrm{m} . \\
& \overline{F_{0}}=\frac{25 n \times 18 \times 10^{9}}{(5)^{2}}\left[3 a r-4 \overline{a_{3}}\right]
\end{aligned}
$$

iii) $Q(\rho=4, \phi=60, z=2)$ given poinf in Olindrical
[o-ordinate sytem. Convont it into. ©puivalent point in Cartesian Co-dinate systean 80

$$
\begin{align*}
& f=\sqrt{x^{2}+y^{2}} \text { and } \Phi(\tan (y / x) . \\
& \rho^{2}=x^{2}+y^{2} \\
& 16=x^{2}+y^{2} \tag{2}\\
& 16=x^{2}+3 x^{2} \\
& \tan \phi=y / x \\
& \tan (00)=y / x \\
& 4 / x=1.732
\end{align*}
$$

$\begin{gathered}x=\text { 2) buagimut } \\ \text { point be tre }\end{gathered} y=1.732 x$

$$
\overline{F_{\Delta}}=77.586 \overline{a_{x}}-31.034 \overline{a_{3}} \mathrm{k} / \mathrm{m}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mu=25 n 4 m^{i . e} 60^{\circ} \mathrm{nd}[y=3.464 \mathrm{~m} . \\
x=-3,2=-4 m . \quad Q(2,3.464,2) .
\end{array} \\
& \overline{F_{Q}}=\frac{\rho_{l}}{2 \pi \epsilon|\overline{O D}|^{2}} \overline{O Q} \mathrm{v} / \mathrm{m} \\
& \begin{array}{l}
\overline{O A}=5 \overline{a_{x}}-2 \overline{a_{z}} ;|\overline{O B}|=\sqrt{25+4} \\
\bar{F}=25 \text { 的 } 18 \times 10 \times|\overline{O B}|=\sqrt{29} \mathrm{~m} . \\
{\left[5 \bar{a}_{x}-2 \overline{a_{2}}\right]}
\end{array} \\
& \begin{array}{l}
\overline{O D}=5 \overline{a_{x}}-2 \overline{a_{z}} ;|\overline{O D}|=\sqrt{25+4} \\
\bar{F}=2524 \times 18 \times 10 \overline{0} \mid=\sqrt{29} \mathrm{~m} . \\
{\left[5 \overline{a_{x}}-2 \overline{a_{2}}\right]}
\end{array} \\
& \overline{E_{Q}}=\frac{25 n \times 18 \times 105}{(\sqrt{29})^{2}}\left[\begin{array}{l}
\mid \overline{08} 1=\sqrt{29} \\
\left.5 \bar{a}_{x}-2 \overline{a_{3}}\right]
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}_{p}=\frac{25 \eta \times 18 \times 10^{6}}{(\sqrt{26})^{2}}\left[5 \overline{a_{x}}-\bar{a}_{g}\right] \\
& \therefore \bar{E}_{p}=17.3076\left[5 \overline{a_{x}}-\bar{a}_{z}\right] \\
& \overline{F_{p}}=86.538 \overline{a_{x}}-17.3076 \overline{a_{z}} \mathrm{o} / \mathrm{m}
\end{aligned}
$$

problemen 12

$$
\rho_{s}=2 \mathrm{on} / \mathrm{m}^{2}
$$

Sheet charge Ties in y= ion plane in the form of infinite square sheet with a uniform charge density of $\rho_{S}=20 \mathrm{nc} / \mathrm{m}^{2}$. Determine $\frac{E}{E}$ at all the points.

$$
\text { Ans: i. if } y>10 \mathrm{~m} ; E=360 \pi a_{y} \mathrm{~V} / \mathrm{m} \text { ii. if } y=10 \mathrm{~m}: E=0 \mathrm{~V} / \mathrm{m}
$$

iii. if $y<10 m ; E=360 \pi\left(-a_{y}\right) \mathrm{V} / \mathrm{m}$
sou:-

 No unit normal vector. for that surface

$$
Q^{0} \therefore E=0 . v / m
$$

*i.eficld on shit chore \$ 001 m .
$\frac{\text { iii) }}{2} \% y<10 \mathrm{~m}$.

$$
\begin{aligned}
& \bar{E}=\frac{\rho_{s}}{2 t} \overline{a_{m}}=\frac{\rho_{s}}{2 t}\left(-\bar{a}_{y}\right) \\
& \bar{E}=20 \neq 18 \pi \times 1 \phi^{h}\left[-\bar{a}_{y}\right] \\
& \left.\bar{E}=-360 \pi \bar{a}_{y}\right] \mathrm{k} / \mathrm{m} O=-1.1309 \bar{a}_{y} \mathrm{kv} / \mathrm{m} \\
& 0,0
\end{aligned}
$$

Problem13.

$$
r_{1}=2 n 4 m, z=3 \quad 2=-4 m
$$

 solvir conei.

м E_{p} due to line chonge densitg.

$$
\begin{aligned}
& \text { (D) }|\overrightarrow{O P}|=\sqrt{1+4}=\sqrt{5} \mathrm{~m} \text {. } \\
& \overline{E_{\rho l}}=\frac{2 口 1 \times 18 \times 10^{6} b^{c}\left[\bar{a}_{x}-2 \overline{a_{2}}\right]=7.2\left[\overline{a_{x}}-2 \overline{a_{3}}\right]}{(\sqrt{5})^{2} \theta} \\
& \bar{E}_{s_{k}}=7.2 \overline{a_{x}}-14.4 \overline{a_{2}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

Conesi: $\%$ due to shat chorgiof $\rho_{s t}=0.1 \mathrm{ncmm}^{2}$ Louatd
(a) $2=3 \mathrm{~m}$.

(46)

$$
\begin{array}{r}
\vec{E}_{\rho_{+}}=\frac{\rho_{S}}{2 t} \overline{a_{n}}=0.1 中 \times 18 \pi \times 109\left(-\overline{a_{3}}\right) \\
\bar{E}_{s_{s+}}=-5.6548 \overline{a_{3}} \mathrm{v} / \mathrm{m}:
\end{array}
$$

concii. F_{p} due to shat cloge of $\rho_{s_{-}}=-0.1 \mathrm{ncm}_{m}^{2}$ placed at $Z=-4 \mathrm{~m}$.

$$
\overline{E_{s-}}=-5.6548 \bar{a}_{z} \mathrm{v} / \mathrm{m}
$$

net field at point ' p ' is

$$
\begin{aligned}
& \overline{\mathcal{F}_{\rho}}=\bar{F}_{\rho_{l}}+{\overline{F_{\rho_{s}}}+\overline{\bar{F}_{s-}}}^{\rho_{s}} \\
& =7.2 \overline{a_{x}}-14.4 \overline{a_{z}}-5.6548 \overline{a_{2}}-5.6548 \bar{a}_{z} \text { v/m } \\
& \overline{L_{p}}=7.2 \overline{a_{x}}-25.709 \bar{a}_{z} \mathrm{v} / \mathrm{n}
\end{aligned}
$$

problemlle $\sum_{<}(1,5,2) m=120$ nom
Find E at $\mathrm{P}(1,5,2) \mathrm{m}$, free space if a point charge of $6 \mu \mathrm{C}$ is located at $(0,0,1) \mathrm{m}$, the uniform line charge density $\rho_{l}=180 \mathrm{nC} / \mathrm{m}$ along x -axis and uniform sheet charge with $\rho_{s}=25 \bar{\pi} \mathrm{C} / \mathrm{m}^{2}$ - over the plane $Z=-1 m \in z=-1 m$.
Ans: $\mathrm{E}_{\mathrm{Q}}=384.37 \mathrm{a}_{\mathrm{x}}+1921.8 \mathrm{a}_{\mathrm{y}}+384.3 \mathrm{a}_{\mathrm{z}} \mathrm{V} / \mathrm{m} ; \mathrm{E} \rho_{\mathrm{l}}=557.8 \mathrm{a}_{\mathrm{y}}+223.14 \mathrm{a}_{\mathrm{z}} \mathrm{V} / \mathrm{m} ; \quad \mathrm{N} \mathrm{g}_{\mathrm{S}}=25 \mathrm{nc} / \mathrm{m}^{2}$
$\mathrm{E} \rho_{s+}=1411.79 \mathrm{a}_{\mathrm{z}} \mathrm{V} / \mathrm{m} ; \mathrm{E}_{\mathrm{uet}}=384.37 \mathrm{a}_{\mathrm{x}}+2479.7 \mathrm{a}_{\mathrm{y}}+2019.31 \mathrm{a}_{\mathrm{z}} \mathrm{V} / \mathrm{m}$
Solder: Cane i. $\bar{E}_{\rho_{1}}$ due to point charge

$$
\begin{aligned}
& \xrightarrow[O(0,0,1) m]{6 \mu C} \overrightarrow{o p} \quad \stackrel{E_{p_{1}}}{\overrightarrow{a_{0 p}}} \\
& \overline{O P}=\overline{a_{x}}+5 \overline{a_{y}}+\overline{a_{z}} ;|\overrightarrow{O P}|=\sqrt{1+25+1} \frac{\sqrt{2+} m}{\frac{1}{y}} . \\
& F_{p_{1}}=\frac{Q}{4 \pi \epsilon|\overline{o p}|^{2}} \bar{a}_{o p} \mathrm{v} / \mathrm{m}=\frac{Q}{4 \pi G \sigma_{0}^{\circ} \mathrm{Op}} \mathrm{v} / \mathrm{m} . \\
& \bar{E}_{p_{1}}=\frac{6 \mu \times q \times 10^{9}}{(\sqrt{27})^{3}}\left[\overline{a_{x}}+5 \overline{a_{y}}+\overline{a_{3}}\right] \\
& \bar{E}_{p_{1}}=384.9\left[\bar{a}_{x}+\dot{b}_{y}+\bar{a}_{z}\right] \\
& \bar{E}_{P_{1}}=384.9 \overline{a_{x}}+1924.5 \overline{a_{y}}+384 \cdot 9 \overline{a_{3}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

Coneri W_{2} due to line charge

$$
\begin{aligned}
& \overrightarrow{F_{p_{2}}}=\frac{\rho_{l}}{2 \pi \epsilon|\overrightarrow{O P}|} \cdot \bar{a}_{o p} \cdot v / m \\
& \overrightarrow{F_{P_{2}}}=\frac{\rho_{e}}{2 \pi \epsilon|\overrightarrow{O p}|^{2}} \overline{O p} v / m \\
& \overrightarrow{O P}=5 \overline{a_{y}}+2 \overline{a_{3}} \\
& |\overrightarrow{O p}|=\sqrt{25+4}=\sqrt{29} \mathrm{~m}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\bar{E}_{p_{2}}=18011 \times 18 \times 10^{\phi} \\
(\sqrt{29})^{2}
\end{array} 5 \overline{a_{y}}+2 \overline{a_{2}}\right] .
$$

Coneiri $E_{P_{3}}$ due to shatchage planed@ $z=-1 m$

$$
\frac{-1 m}{\bar{E}_{P_{3}}}=25 n \times 18 \pi \times 10^{15}\left(+\bar{a}_{3}\right)
$$

$$
\bar{F}_{p_{3}}=1413.71 \bar{a}_{2} \mathrm{~km}
$$

$$
\frac{E_{\text {net }}}{E_{p_{1}}}+\overline{F_{p_{2}}}+\overline{F_{p_{3}}} v / m
$$

$$
\begin{aligned}
& E_{\text {net }}=F_{p_{1}}+\mathcal{L}_{p_{2}}+d_{p_{3}} \\
& =384.9 \overline{a_{x}}+1924.5 \overline{a_{y}}+384.9 \overline{a_{z}}+558.62 \overline{a_{y}}+223.44 \overline{a_{z}} \\
& \quad+1413.71 \overline{a_{z}}
\end{aligned}
$$

$$
\begin{aligned}
\left.\begin{array}{l}
=384.9 a_{x}+11 \\
\\
\\
\hat{x}_{\overline{\sigma_{n c t}}}=384.9 \overline{a_{x}}+2483.12 \overline{a_{y}}+2022.05 \overline{a_{z}}
\end{array}\right]
\end{aligned}
$$

problemis
$\mathrm{S}_{\mathrm{E}}=2 \mathrm{onitm}$
$x 5 t+\infty$
The charge is distributed along the Z-axis from $Z=-5 \mathrm{~m}$ to $-\infty$, and $Z=+5 \mathrm{~m}$ to $+\infty$ with a charge density of $p_{l}=20 \mathrm{nC} / \mathrm{m}$. find $\frac{\mathrm{E}}{\mathrm{E}}$ at $(2,0,0) \mathrm{m}$. also express the answer in cylindrical Co -
ordinate.

Sohir

$$
\begin{aligned}
& E_{p}=\bar{E}_{P_{1}}+\bar{E}_{\bar{B}_{2}} v / m . \quad . \\
& d \overline{E_{p}}=\frac{d Q}{4 \pi \epsilon|\overrightarrow{O p}|^{2}} \overline{a_{0 p}}+\frac{d Q}{\left.u \pi \epsilon \mid \overrightarrow{Q_{n}}\right)^{2}} \overline{R_{p}} V / m
\end{aligned}
$$

$$
\begin{aligned}
& d Q=\rho_{l} d z \quad C_{0}^{0} a_{n}+(0-z) \overline{a_{z}} \\
& \overline{O p}=2 \overline{a_{x}}+\cos =2 \overline{a_{x}}-3 \overline{a_{2}} \\
& |\overrightarrow{O P}|=\sqrt{\theta+y^{2}} m=\sqrt{4+z^{2}} m . \\
& \overline{R P}=2 \overline{Q_{2}}+\overline{a_{z}} ; \quad\left|\overline{R_{P}}\right|=\sqrt{2^{2}+z^{2}} \\
& \text { (A) } \bar{a}_{x}+3 \bar{z} \bar{y}_{y}-\left|\overline{R_{p}}\right|=\sqrt{4+z^{2}} \cdot m
\end{aligned}
$$

Q^{0} net

$$
\begin{align*}
& \frac{\sigma_{p}}{\alpha_{p}}=\frac{\rho_{l}}{4 \pi \epsilon} \int_{z=5}^{\infty} \frac{d z}{\left(4+z^{2}\right)^{3 / 2}}\left(2 \overline{a_{x}}\right)+\frac{\rho_{l}}{4 \pi t} \int_{z=-\infty}^{-5} \frac{d z}{\left[4+z^{3 / 2}\right.}\left[2 \overline{a_{n}}\right] \\
& F_{q}=\frac{\eta_{l}}{\frac{1 \pi t}{1+a_{n}}}\left(2 \overline{a_{n}}\left[\int_{z=5}^{\infty} \frac{d z}{\left(4+z^{2}\right)^{3 / 2}}+\int_{z=-\infty}^{-5} \frac{d z}{\left[4+z^{2}\right]^{3 / 2}}\right]\right. \\
& =200 \times 9 \times 1 \phi 9 \times 2 \overline{a_{x}}\left[\begin{array}{l}
4 \\
-11
\end{array}\right]
\end{align*}
$$

Dept. of E\&CE., SVCE
put

$$
\begin{aligned}
& z=2 \tan \theta \\
& d_{3}=2 \sec ^{2} \theta d \theta
\end{aligned} \quad \begin{aligned}
& z=5 \Rightarrow \theta=68 \cdot 198 \\
& z=+\infty \Rightarrow \theta=+\pi / 2
\end{aligned}
$$

$$
\begin{aligned}
& \theta=68.198 \\
&=\int_{\theta=68.198}^{90^{\circ}} \frac{1}{2^{2} \sec \theta} d \theta=e^{0} \operatorname{Cos} \theta d \theta
\end{aligned} \quad=\frac{1}{4}\left[\left.\sin \theta\right|_{68.19} ^{90^{\circ}}\right]
$$

M

$$
\int_{z=-\infty}^{-5} \frac{d z}{14^{2}+z^{2} d^{3}} d
$$

$$
\begin{aligned}
& \text { 2 } 0.01789 \text { (dueto cymmitry i.e } \\
& =\int_{3=5}^{+\infty} \frac{d z}{\left(4^{2}+z^{2}\right)^{3 / 2}}=0.01789 \nless(6)
\end{aligned}
$$

voing (a) and (b) incqu (1)

$$
\begin{aligned}
& \frac{\Sigma_{p}}{E_{p}}=360 \overline{a_{x}}[0.01789+0.01789] \\
& \left.\overline{E_{p}}=12.884 \overline{a_{x}}\right] \text { v/m } \Rightarrow F_{x}=12.884 \mathrm{k} / \mathrm{m} \\
& E_{y}=E_{z}=0 \mathrm{~mm} . \\
& =\tan ^{-1}(9 / 2)=0^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } \quad E_{\rho}=E_{x} \cos \phi \Rightarrow \phi=\tan ^{-1}(y / x)=\tan ^{-1}(1 / 2)=0^{\circ} \\
& \therefore E_{j}=E_{x} \cos (1)=E_{x}=12.884 \mathrm{~d} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{z=5}^{\infty} \frac{d z}{\left(4+z^{2}\right)^{3 / 2}}=\int_{\theta=68.198}^{\left[\pi+4 \tan ^{2} \theta\right]^{3 / 2}} \frac{2 \sec ^{2} \theta d \theta}{\left[40^{\circ}\right.} \\
& =\int_{\theta=68.198}^{+90^{\circ}} \frac{2 \sec ^{2} \theta d \theta}{\left(4 \sec ^{2} \theta\right)^{3 / 2}}=\int_{\theta=68.198}^{+90^{\circ}} \frac{2 \sec ^{2} \theta}{\left(2^{2} \sec ^{3} \theta\right)} d .
\end{aligned}
$$

\bar{J}_{p} in cylindrical Lo ordinate System in $\overline{\mathcal{F}_{p}}=12.88 \overline{c_{p}}$ upton
A live charge density $\rho_{l}=24 n \mathrm{C} / \mathrm{m}$ is located in free space on the line $\mathrm{y}=1 \mathrm{~m}$ and $z=2 \mathrm{~m}$.
Find E at the point $P(6,-1,3)$.
is zero at P charge Q should be Located at $A(-3,4,1)$ to make y-component of total E
is zero at P.
Ans: i. $E=-172.56 a_{y}+86.28 a_{r} V / m ;$ ii. $Q=-4.4311 \mu C$
Sola:-
 $y=\operatorname{and} z=2 m=2 m$
$y=1 m, 2=2$

$$
\overline{F_{p}}=\frac{\rho_{l}}{2 \pi \epsilon|\overline{O P}|} \overline{a_{0 p}} \cdot A_{0} .
$$

$$
\bar{E}_{p}=\frac{\rho_{l} C \overline{O p} \mathrm{c} / \mathrm{m} .}{2 \delta^{\left.\overline{O p}\right|^{2}}}
$$

$\overline{o p}=-2 \cdot \overline{a_{y}}+\overline{a_{z}}$;

$$
\begin{aligned}
& \text { OP }=-2 \overline{a_{y}}+\overline{a_{z}} ; \\
& |\overline{O p}|=\sqrt{4+1}=\sqrt{5 \mathrm{~m}} \cdot \frac{\bar{L}^{\prime}}{\bar{p}}=\frac{24 \mu \times 18 \times 10^{6}}{(\sqrt{5})^{2}}\left[-2 \bar{a}_{y}+\overline{a_{z}}\right]
\end{aligned}
$$

ii)

$$
\bar{E}_{\text {nt }}=\bar{E}_{P_{1}}+\bar{E}_{P_{2}} \text { of }
$$

$$
\begin{aligned}
& F_{P_{2}}=\frac{Q^{A(-3,4,1)}}{\left.\langle\pi \epsilon| \overline{A P}\right|^{2}} \bar{a}_{A P} \text { Vim } \\
& \begin{array}{l}
\text { IE }|\overrightarrow{A p}| \\
\overline{A p}=9 \overline{a_{n}}-5 \overline{a_{y}}+2 \overline{a_{z}} ; \quad|\overline{A p}|=\sqrt{81+25}+4 \\
\sqrt{110} \mathrm{~m} .
\end{array} \\
& |\overline{A P}|=\quad \sqrt{110} \mathrm{~m} .
\end{aligned}
$$

i.e sum of 'y' componentin both cy \bar{y}. \bar{E} and (3) is

$$
\begin{aligned}
& \text { ie sum of } \quad \begin{array}{l}
\left.E_{\text {yut }}=-172.8-\frac{8 \times 9 \times 109}{(\sqrt{10})^{3}}\right)^{3}(5)
\end{array},
\end{aligned}
$$

$$
\Rightarrow-172.8=\frac{Q \times 9 \times \sqrt{0}}{\square+10)^{3}} \times 5
$$

$$
\begin{aligned}
& \theta=-4.430 \times 10^{-6} \mathrm{G} \\
& \theta=-4.430 \mu \text { cioulombin }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{F_{p_{2}}}=\frac{Q \times 9 \times 109}{(\sqrt{110})^{3}}\left[3 \overline{a_{x}}-5 \overline{a_{y}}+2 \overline{a_{z}}\right] v / m \\
& \text { given } \\
& \left.\overline{\Sigma_{y_{\text {net }}}}=\Sigma_{p_{y}}+E_{p_{g-y}}\right]=0 \Rightarrow E_{y_{\text {nut }}}=E_{p_{1-y}}+E_{p_{2-y}}=0 ; \sim 1_{\mathrm{m}}
\end{aligned}
$$

brablem17
$y=-5 m \rightarrow$ Two infinite sheets of uniform charge densities $\rho_{s}=\frac{1}{6 \pi} n c / m^{2}$ are located at $z=-5 \mathrm{~m}$ and
$\rightarrow(4,2.2)$ in if the line charge is at $y=0$ and $z=0 \mathrm{mn}$. $(u, 2,2) m$ Ans: $\rho_{t}=\frac{2}{3}$ n Chm. $\quad \begin{aligned} & \quad=0 \\ & y=0 \\ & =0\end{aligned}$

Sown.: \bar{F} due $\rho_{s}=\frac{-1}{6 \pi} \mathrm{ncm} m^{2}$ is $@ z=-5$ and $y=-5 \mathrm{~m}$

$$
\text { QR }=-5 \mathrm{~m} \rho_{s}=\frac{1}{6 \pi} \mathrm{n} 4 \mathrm{~m}^{2} O_{\bar{E}_{0}}^{6 \sigma^{2}}=3 \overline{a_{3}} \mathrm{v} / \mathrm{m}
$$

$$
\overline{\Sigma_{n u t}}=\overline{F_{s_{z=-3 m}}}+\bar{E}_{s_{y=-5 m}}=3 \overline{a_{z}}+3 \bar{a}_{y} \quad v f_{m}
$$

Find Secm

$$
\begin{aligned}
& E_{\rho_{z=-3}}=\frac{\rho_{s}}{2 t} \bar{a}_{n} \cdot h_{n+1} \\
& \left.=\frac{1}{8 y^{2}} \times 1 \times 0^{3} \times 1+\overline{a_{2}}\right) \\
& \bar{f}_{s_{z}=-3 m}=3 \overline{a_{3}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

radom $(S l=2 / 2 \mathrm{ndm}]$ (a) $666 \cdot 66$ Ppm $x=2, y=5 m$
$S_{\mathrm{L}} \mathrm{F}=\mathrm{Fom} 4 \mathrm{~m}$ in mind If the surface $x=4 m$ contains a uniform surface charge density of $\rho_{s}=18 \mathrm{nC} / \mathrm{m}^{2}$. At
E Aus: i. $\mathrm{E} \rho_{5}=-79.75 \mathrm{a}_{5}-359.51 \mathrm{a}_{y} \mathrm{~V} / \mathrm{m} ; E p_{5}=-1016.489 \mathrm{a}_{5} \mathrm{~V} / \mathrm{m}$
$x=-4 m, \quad$ ii. $x=2.88, y=5, z=0$ ie $(2.88,5,0)$

$$
\begin{aligned}
& =50 \mathrm{ndm} \\
& x=2 \text { andy }=5 \mathrm{~m}
\end{aligned}
$$

小

$$
\begin{gathered}
\overrightarrow{O P}=-\bar{a}-2 \bar{a} y ; \\
\end{gathered}
$$

$$
\begin{aligned}
& \vec{p}=-\overline{a_{x}}-2 \overline{a_{y}} ; \\
& |\overline{o p}|=\sqrt{1+4}=\sqrt{5} m \cdot{ }_{F}=\frac{504 \times 18 \times 10^{1}}{(\sqrt{5})^{2}}\left[-\overline{a_{x}}-2 a_{y}\right]
\end{aligned}
$$

$\overbrace{0} \frac{V_{p}}{}=180 \bar{a}$
ii) LOAder the point on $z=0$ plane is $p(x, y, 0)$.
${ }^{2}$ the fuel $E_{p_{1}}$ due to a line chage density io

$$
\begin{aligned}
& \left.\overline{o p}=(x-2) \overline{a_{x}}+y-5\right) \overline{a_{y}} . \\
& \bar{E}_{p_{1}}=?
\end{aligned}
$$

$$
\begin{aligned}
& |\overline{O p}|^{2}=(x-2)^{2}+(y-5)^{2} \\
& \delta_{p_{1}}=\frac{50 x\left(x \times 18 \times 1 \varnothing^{6}\right.}{(x-2)^{2}+(y-2)^{2}}\left[(x-2) \overline{a_{x}}+(y-5) \overline{a_{y}}\right] \text { elm. }
\end{aligned}
$$

the field $\mathrm{S}_{\mathrm{P}_{2}}$ due to shatchorge of $S_{s}=18 \mathrm{nlm}^{2}$ at
the total field seel to zero.

$$
\begin{aligned}
\Rightarrow \text { ie } \begin{aligned}
E_{\text {nut }} & ={\overline{E_{p}}}^{E E_{P_{2}}} \\
& =\frac{5 D \times 18}{(x-2)^{2}+(y-y)^{2}}[(x
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[(x-2) \overline{a_{x}}+(y-5) \overline{a_{y}}\right]-18 \times 18 \pi \overline{a_{x}} \cdot \bar{m} / m} \\
& =\bar{E}_{x} \overline{a_{x}}+\bar{E}_{y} \overline{a_{y}}
\end{aligned}
$$

$$
=E_{x} \overline{a_{x}}+E_{y} \overline{a_{y}}
$$

the 2 fo $^{\prime}$ Com ponent of nutfild
μ.

$$
\begin{aligned}
& \text { The } E_{x}=\left[\frac{50 \times 18(x-2)}{(x-2)^{2}+(y-5)^{2}}-18 \times 18 \pi\right]=0 \Rightarrow \frac{900(x-2)}{(x-2)^{2}}-324 \pi=0 \\
& E_{y}=\frac{50 \times 18(y-5)}{(x-2)^{2}+(y-5)^{2}}=0 \Rightarrow y=5 \quad \text { solve tor } x^{1} \\
& \underbrace{x=2.88419}
\end{aligned}
$$

\therefore the point on a $x y$ plane $i \cdot e ~ z=0$ pare at which the total field E in zero is

$$
\begin{aligned}
& x=4 \mathrm{~m} \text { is } \\
& \text { Ste } 18 \mathrm{nc/m}{ }^{2} \\
& x=4 \mathrm{~m} \text {. } \\
& L_{p_{2}}=\frac{\rho_{s}}{2 \epsilon} \bar{a}_{n} \\
& \bar{E}_{P_{2}}=18 n \times 18 \pi \times 10^{9}\left(-\overline{a_{x}}\right) \\
& E_{p_{2}}=18 \times 18 \pi\left(- \text { and }^{2}\right)
\end{aligned}
$$

problem19
Deternine the \mathbf{E} at a pointa Located a distance of 0.3 m and 0.4 m respectively from the charges Q_{1} and Q_{2} spaced 0.5 n apart. Q_{1} has charge of nC while $\mathrm{Q}_{2}=0.8 \mathrm{nC}$.
Aus $E=-99.7 \mathrm{a}_{x}-44.9 \mathrm{a}_{\mathrm{y}} \mathrm{V} / \mathrm{m} ;|E|=109.417 \mathrm{~V} / \mathrm{m}$ 介inc $<Q_{2}=0.8 \mathrm{nC}$
solu:-

$$
\stackrel{\ddot{\delta_{0}}}{\tilde{F}_{p}}=\bar{E}_{p}+\bar{E}_{p}
$$

$$
\overline{P D}=-0.3 \overline{c x} ;|\overrightarrow{P D}|=0.3 \mathrm{~m}
$$

$$
\overline{P O}=-0.3 \overline{R O}=-0.4 \overline{a_{g}} \quad\left|\overline{P_{0}}\right|=0.4 \mathrm{~m} .
$$

$$
\left.\overline{F_{0}}=\frac{1 n \times 9 \times 109}{(0.3)^{3}} 0.0 .3 \overline{a x}\right]+\frac{0.8 n \times 9 \times 10^{6}}{(0.4)^{3}}\left[-0.4 \overline{a_{y}}\right]
$$

$$
E_{0}+100 \overline{a_{x}}-45 \overline{a_{y}} \quad v / m
$$

$$
\overline{\mathcal{F}_{0}}=-100 \overline{a_{x}}-45 \overline{a_{y}} \quad v / m
$$

$$
\left|\bar{k}_{0}\right|=109.658 \mid \mathrm{v} / \mathrm{m}
$$

Problem 20
$\therefore S$ tet of citrange with $S_{S}=-40 \mu \mathrm{Cl}^{2}$ located at
XX $Z=-0.5 \mathrm{~m}$, tine charge of $\rho_{l}=-6 \mu c / m$ linecalong. y-axis, what is the net Flux chroming the surface
from low of a Cube of 2 m on an edge of Countered atorigin. (04m). $06 \mathrm{~J} / \mathrm{J} 2014$.

T flux due to linechorge from Gaurin Lacy total AR cloned Coulimbion

$A=4 m^{2}$. Careii flux $\left(\psi^{\prime \prime}\right)$ due shed dirge.

The net Flux ironing the cube is

$$
\begin{aligned}
\text { et Flux } & \text { Crowing } \\
& =\psi+\psi^{\prime \prime}=-12 \mu-160 \mu \\
& \times \Psi_{\text {total }}
\end{aligned}
$$

Dept. of E\&CE., SVCE
problem 21
$\quad \kappa_{l}=2 r c l m$
and $0.4 \mu \mathrm{C} / \mathrm{m}^{2}$ placed at $\mathrm{y}=+2 \mathrm{~m}$ plane Fi placed along x-axis and sheet charges of $0.2 \mu \mathrm{C} / \mathrm{m}^{2}$
and $0.4 \mu \mathrm{C} / \mathrm{m}^{2}$ placed at $\mathrm{y}= \pm 2 \mathrm{~m}$ plane. Find E at $P(-1,-3,4) \quad P(-1,-3,4) \mathrm{m}$

$\rightarrow \bar{E}_{s_{l}}$ due to line charge density placed along x-axis

$$
\begin{aligned}
\bar{E}_{\rho_{s_{1}}} & =\frac{\rho_{s_{1}}}{2 t} \overline{a_{n}} \\
& =0.2 \mu \times 18 \pi \times 10^{9}\left(-\overline{a_{y}}\right) \\
\overline{\bar{S}_{s_{1}}} & =-11309.733 \overline{a_{y}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

$\rightarrow F_{\Omega_{s_{2}}}$ due to shut charge density of $\rho_{s_{2}}=0.4 \mu \mathrm{~cm}$ m ard at $y=-2 m$.

$$
p(-1,-3 \sqrt{4}) .
$$

$\frac{1}{F_{\text {net }}}$ at $p(-1,-3,4)$ is

$$
\begin{aligned}
& \frac{V_{n+t}}{\mathcal{D}_{\text {nt }}} \overline{E_{\rho_{l}}}+\overline{E_{s_{1}}}+\bar{E}_{s_{s_{2}}} \\
& \hat{x} x=-4320 \overline{a_{x}}+5760 \overline{a_{y}}-11309.733 \overline{a_{y}}-22619.467 \overline{a_{y}} \\
& \overline{F_{\text {net }}}=-4.320 \overline{a_{x}}-28.1692 \overline{a_{y}} \mathrm{kv} / \mathrm{m}
\end{aligned}
$$

problem 22
DANKAN V GOWDA MTech., (PhD)
 along x -axis and uniform sheet charge with $\rho_{s}=25 \mathrm{n} \overline{\mathrm{C}} / \mathrm{m}^{2}$ over the plane $\rho_{l}=180 \mathrm{nC} / \mathrm{m}$ is
combined electric field intensity

soke: $\overline{\sigma_{p}}=\bar{E}_{\text {point }}+\bar{E}_{\text {line }}+\bar{E}_{\text {shat }} \cdot$ Vf m \quad I $=-1 m$.

$$
\rightarrow \bar{E}_{\text {point }}=?
$$

$$
\begin{aligned}
& \bar{F}_{\text {point }}=\frac{6 \mu}{4 \pi \epsilon \mid \overline{O p})^{3}}|\overline{o p}| v / e^{\circ} \\
& \bar{E}_{\text {point }}=\frac{\left.6 \mu \times 9 \times 10{ }^{0}+\sqrt{2} \bar{a}_{x}+5 a_{y}+\overline{a_{z}}\right]}{(\sqrt{27})} \\
& \mathcal{L}_{\text {point }}=384 \cdot 9 \overline{a_{x}}+1924.5 \overline{a_{y}}+384 \cdot 9 \overline{a_{z}} \mathrm{u} / \mathrm{m} \\
& \text { O(1,0,0) } \\
& \bar{\delta}_{\text {Line }}=\frac{P_{l}}{2 \pi \epsilon \mid \text { In } \mid} \bar{a}_{o p} v / m \text {. } \\
& \overline{o p}=5 \overline{a_{y}}+2 \overline{a_{z}} ; \quad|\overline{o p}|=\sqrt{2 \overline{5}+4} \\
& |\overrightarrow{0 p}|=\sqrt{2 q} m
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
y \quad \bar{E}_{\text {line }}=\frac{\rho_{l}}{2 \pi E|\overline{O p}|^{2}} \overline{\overline{O p} \mathrm{v}} \\
{\overline{F_{l}}}_{\text {line }}=\frac{180 \phi \times 18 \times 10 \phi)}{(\sqrt{29})^{2}}\left[5 \bar{a}_{y}+2 \bar{a}_{z}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{E}_{\text {line }}=111.724\left[5 \bar{a}_{y}+2 \bar{a}_{z}\right] \\
& \bar{F}_{\text {ane }}=558.62 \overline{a_{y}}+223.448 \bar{a}_{z} \text { vim. } \\
& \left.\bar{E}_{\text {line }}=558.62 \overline{a_{y}}+223.448 \overline{a_{z}}\right] \mathrm{v} / \mathrm{m} \\
& \rightarrow \bar{E}_{\text {stet }}=? \\
& \sigma^{\circ} \mathrm{O} \\
& \delta_{\text {ghat }}=\frac{\rho_{s}}{2 t} \bar{a}_{n} \mathrm{~V} / \mathrm{m} \\
& =25 n \times 18 \pi \times 10^{9}\left(+a_{3}\right. \\
& \rho_{S}=25 n / m^{2} . \\
& @_{Z}=-1 \mathrm{~m} . \\
& \bar{F}_{\text {sheet }}=1413.7166 \overline{a_{3}} \mathrm{of}
\end{aligned}
$$

$$
\begin{aligned}
& =384.9 \overline{a_{x}}+1924.5 \overline{a_{y}}+384.9 \overline{a_{z}} \\
& +558.62 \overline{a_{y}}+223.448 \overline{a_{z}}+1413.7166 \overline{a_{3}} \\
& \bar{F}_{\text {net }}=384.9 \overline{a_{x}}+2483.12 \overline{a_{y}}+2022.064 \overline{a_{z}} \mathrm{v} / \mathrm{m} \text {. } \\
& x_{n} \bar{E}_{\text {nut }}=0.3849 \overline{a_{x}}+2.483 \overline{a_{y}}+2.02206 \bar{a}_{3} \mathrm{kvem}
\end{aligned}
$$

problem 23.
$\rho_{t}=25 \mathrm{ncm}$.
Find the electic-field inteisity at a point $(2,3,15) \mathrm{m}$ dee to a uniform line charge density of $p_{t}=$
$25 \mathrm{nC} / \mathrm{m}$ is lies along $\mathrm{x}=-3 \mathrm{~m}$ and $\mathrm{y}=4 \mathrm{~m}$ in free space.
$25 n$ fim solu:-
 EEE J/J 2016.

$$
\begin{aligned}
& x=-3 m a n d \\
& y=-3 m \text { and } y=4 m \\
& \overline{\xi_{s l}}=\frac{\rho_{l}}{2 \pi \in \mid \sigma \overline{|c|}} \bar{a}_{o p} \quad g_{m} .
\end{aligned}
$$

$$
\bar{E}_{j_{l}}=\frac{\rho_{l}}{2 \pi E|\sigma|^{2}} \stackrel{\rho}{o p} .
$$

$$
\begin{aligned}
& =\sqrt{26} \mathrm{~m} \\
& \theta^{E^{2}} \bar{F}_{13}=\frac{25 x \times 18 \times 10^{9}}{(\sqrt{26})^{2}}\left[5 \bar{a}_{x}-\overline{a_{y}}\right] \\
& \bar{F}_{\rho_{e}}=17.3076\left[5 \overline{a_{x}}-\overline{a_{y}}\right] \quad \mathrm{y} / \mathrm{m} \\
& \bar{E}_{\rho_{e}}=86.538 \bar{a}_{x}-17.307 \bar{a}_{y} \quad \text { v/m } \\
& \text { xix }\left|\bar{E}_{g e}\right|=88.252 \mathrm{v} / \mathrm{m}
\end{aligned}
$$

problem2y.

$$
2=-4,6 \mathrm{ncm}^{2} \text { at } 2=1 \quad-8 \mathrm{nctm}{ }^{2} \quad 2=4 \mathrm{~m}
$$

$$
\text { Ans. }-56.5 \mathrm{a}_{\mathrm{a}} ; 283 \mathrm{a}_{\mathrm{a}} ; 961 \mathrm{a}_{4} ; 566.5 \mathrm{a}_{\mathrm{a}} \text { all } \mathrm{V} / \mathrm{m}
$$

$$
i_{n,-\infty} s,+\quad+
$$

[w.H.Hayt]

$$
\text { a) } \bar{F}_{A}=\bar{E}_{z=-4 m}+\bar{E}_{2} Q_{m}^{(N)} \bar{E}_{z=4 m} \quad \text { v/m }
$$

$$
\vec{A}_{A}=d_{2=-4 m}+\frac{\rho_{1}}{2 t}\left(-\overline{a_{3}}\right)+\frac{\rho_{2}}{2 t}\left(-\overline{a_{2}}\right)+\frac{\rho_{3}}{2 t}\left(-\overline{a_{2}}\right)
$$

$$
\begin{aligned}
& \bar{E}_{A}=\left(-\overline{a_{3}}\right)+\frac{102}{2 t}\left(-a_{3}\right)+2 t \\
& 6=3 \mu \times 1811\left(\overline{a_{3}}\right)+(6 p) 1811\left(-\overline{a_{2}}\right)+(-8 p)(18 \pi)\left(-\overline{a_{3}}\right) \\
& \bar{F}=[-3-6+8] 18 \pi \bar{a}_{3}=-18 \pi \overline{a_{3}} \mathrm{vm}
\end{aligned}
$$

$$
\overline{E_{A}}=[-3-6+8] 18 \pi \bar{a}_{3}=\underline{-18 \pi \overrightarrow{a_{3}}} \mathrm{~km}
$$

$$
\overline{F_{A}}=-56.548 \overline{a_{z}} \mathrm{v} / \mathrm{m}
$$

(b) $\bar{F}_{B}=3 \nmid \times 18 \pi \times 11^{9}\left(+\overline{a_{3}}\right)+6 \pi \times 18 \pi \times 19^{\phi}\left(-\overline{a_{3}}\right)-8 p\left(18 \pi \times 10^{6}\right)\left(\overline{a_{2}}\right)$

$$
\begin{aligned}
& \text { c) } \bar{F}_{c}=3 \not n \times 18 \pi \times 10^{\phi}\left(+\overline{a_{2}}\right)+6 \not p \times 18 \pi \times 1 \phi^{\phi}\left(+\bar{a}_{2}\right) \\
& -8 \not 2 \times 1 \phi\left(-\overline{a_{2}}\right) \times 18 \pi \\
& E_{c}=17 \times 18 \pi \overline{a_{z}}=961.327 \bar{a}_{z} \text { vo m } \\
& \bar{E}_{c}=961.327 \widehat{a_{z}} \mathrm{v} / \mathrm{m} \\
& \text { d) } \overline{\sigma_{D}}=3 \not 2 \times 18 \pi \times 10^{6}\left(+\bar{a}_{3}\right)+614 \times 1800\left(+\overline{a_{2}}\right) \\
& \left.-8 n \times 18 \pi \times 10()^{-1} a_{3}\right) \\
& =[9-8] \times 18 \pi(0) \\
& \bar{E}_{D}=56.548 \quad \overline{a_{2}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

\bar{E}.ede due to various charge dintribution.
Ountion. . sith as point charge, lineâi charge, surface charge and volume chaige

$$
[02-\text { June } \mid \text { July } 2011]
$$

- Soter $\xrightarrow{\longrightarrow}$ die to point charge.
the tild atapoint p due to $Q . C$ of charge at S ' P int O io

$$
\bar{E}_{p}=\frac{\theta}{4 \pi \epsilon|\hat{\mid o p}|^{2}} \bar{a}_{o p} \quad \text { orm }
$$

(大) $\overline{E_{p}}=\frac{Q}{4 \pi \epsilon 10^{3}} \overline{O p}$,
F. F chue to Lina corge Eonsidra intinite line chage of clorgedensity secm .

the $d \vec{E}_{p}$ due to $d Q$ at pointio is

$$
d \bar{E}_{p}=\frac{d \dot{Q}}{4 \pi \epsilon|\overline{o p}|^{2}} \overline{a_{o p}} v / m
$$

from defu of chargedinsity $S_{e}=\frac{d a}{d e} \cdot \varphi_{m}$

$$
d \overline{E_{p}}=\frac{\rho_{l} \cdot d l}{4 \pi \epsilon|\overline{O p}|^{2}} \overline{a_{o p}} \overline{d Q}=\rho_{l} \cdot d l
$$

$$
\left.\overline{E_{p}}=\int_{\langle\lambda\rangle} \frac{\rho_{l} d l}{4 \pi \in|\overline{o p}|^{2}} \overline{a_{o p}}\right] v / m
$$

I. I due to sheet sharge-

Eonsider a shetctorge of chorgedensity $\mathrm{S}_{\mathrm{S}} \mathrm{Clm}^{2}$
the $d \bar{E}_{p}$ due to $d Q$ at o is

$$
d \bar{E}_{p}=\frac{d q}{4 \pi E\left|\sigma_{p}\right|^{2}} \bar{a}_{o p} \quad \sigma_{m}
$$

from defe of surtace corgesanty $\rho_{S}=\frac{d Q}{d s} \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \text { Coulomb's }
\end{aligned}
$$

d. Edue vo vomme chooge dintribation? -consider a volume chage of chorge dersity sucm³. the $d E_{p}$ du to $d Q$ atio is

$$
d \overline{E_{p}}=\frac{d Q}{4 \pi \epsilon|\overline{O p}|^{2}} \overline{a_{o p}} 6 / m
$$

from defn of volume charge dimity $\rho_{U}=\frac{d Q}{d v} \operatorname{lm}^{3}$.
$\Rightarrow d Q=\rho_{V} d v$
$\Rightarrow d Q=\rho_{v} d v$ Coulomb:

$$
\begin{equation*}
\therefore d \overline{\delta_{p}}=\frac{\rho_{u} d v}{4 \pi \epsilon|\overline{o p}|^{2}} \overline{a_{0 p}} v / m \tag{o}
\end{equation*}
$$

problem 25
26 Derive an expression for the electric field intensity at a point on the axis of a charged circular ring. Hence show that the electric field at the center of the ring is zero. (08 Marks)
solu:-

Consider a uniform line charge density of Se cln . inthe form of a circular ring placed ry axis.
the potential at a pint p(0,0,3) in given

$$
\begin{aligned}
& P=\frac{d Q}{4 \pi \epsilon \sqrt{3^{2}+r^{2}}} \\
& \theta^{0} d Q=\rho e d l \\
& { }^{\prime} d v_{\rho}=\frac{\rho e d l}{4 \pi t \sqrt{2^{2}+r^{2}}} \text { colin and } d t=r d \phi \\
& d v_{p}=\frac{\rho e r d \phi}{4 \pi \epsilon \sqrt{3^{2}+\gamma^{2}}} \Rightarrow \bar{U}_{p}=\int_{\phi=0}^{2 \pi} \frac{\rho_{l} \gamma}{4 \pi \sqrt{3^{2}+\gamma^{2}}} d \phi \\
& \bar{V}_{p}=\frac{\rho_{e} \gamma}{4 \pi t \pi \sqrt{2^{2}+r^{2}}} \times 2 \alpha t=\frac{\rho_{e} \gamma}{2 \epsilon \sqrt{3^{2}+r^{2}}} \text { volt }
\end{aligned}
$$

\therefore the potentid at a point 'p' is

$$
\begin{equation*}
V_{p}=\frac{\rho_{l} r}{2 \epsilon \sqrt{3^{2}+r^{2}}} \text { voltin } \tag{a}
\end{equation*}
$$

from q "(a) V_{p} is a funtion of ${ }^{\prime}{ }^{\prime} \therefore$
using conupt of Gradient

$$
\begin{gathered}
f^{\prime} z^{\prime} \\
E
\end{gathered}
$$

$$
\begin{align*}
& \bar{F}=-\frac{\partial V}{\partial z} \bar{a}_{z} \psi / m \\
& =-\frac{\partial}{\partial z}\left[\frac{\rho l \gamma}{2 \in\left(z^{2}+r^{2}\right)^{2 / 2}}\right] \theta^{2} \\
& =-\frac{\rho e r}{2 \epsilon} \times\left(\sqrt[1]{6}+2^{2}+r^{2}\right)^{-1 / 2-1} \times 2 z^{\frac{1}{a_{3}}} \\
& E=+\frac{\rho_{1} \gamma z}{2 E\left(z^{2}+r^{2}\right)^{3 / 2}} \vec{a}_{z} \\
& \text { il ring i.e } z \rightarrow 0 \tag{b}\\
& \text { © the field at center of the ring i. }
\end{align*}
$$

$$
\therefore E=0 \quad 1 m
$$

\therefore Electric ficld at Eenter of the ring is zero.
problem 5. A uniform line charge of 16 nch is Located along the line defined by $y=-2, z=5$.
if $\epsilon=\epsilon_{0}$; a find E at $p(1,2,3)$
(b) Find E at that point in the $z=0$ plane wheres the direction of E in given by

$$
\frac{1}{2} \overline{a_{y}}-\frac{2}{3} \overline{a_{z}}
$$

problemb. An uniform line chorge $\rho_{l}=2 n c m$ lies along the x-axis in freeppace, while point charges of 8 nc Each ane boated at $(0,0,1) m$ and $(0,0,-1) m$ find
i. Find E at $(2,3,-4)$.
ii. To what value should le be changed to Faure E to be zero at $(0,0,3)$?
problem.
A uniform line charge of $2 \mu \mathrm{ctm}$ in located on the 2 -axis. Find E in cartesian coordinate, at $p(1,2,3)$. if the charge extends from a) $z=-\infty$ to $z=+\infty ;$ b) $z=-4$ to $z=+4$.
problumin A uniform line charge of infinite length with
$\rho_{l}=$ conctm, lies along the z-axis a find E at $(-2,2,8)$ in air.
problem 2. A Line charge of $2 n c m_{m}$ Lies along ty-axiD while surface charge densities of $0.1 \mathrm{nc}_{\mathrm{m}}{ }^{2}$ and - oinclm ${ }^{2}$ exist on the plane $z=3$ and $z=-4 m$ resputively. Find the E at $p(1,7,-2)$.
problem 3. A tine charge density $S_{l}=50 \mathrm{ncm}$
is Located along the line $x=0, y=5$ in free space. Find the magnitude and direction of the elutric field intensity at a point

$$
p(1,3,-4)
$$

problem 4 the (positive and negative) x and y axes in freespace. Find E at a) $P_{A}(0,0,4)$
b) $P_{B}(0,3,4)$.

Topic 1.3 dele prodemn
problem 11
A uniform Line charge density $\rho_{l}=25 \mathrm{ncfm}$, lies on the line $x=-3, z=4 m$ in Space. Find E in Cartesian Components at i. origin li. $p(2,15,3)$ ier. $Q\left(\rho=4, \phi=60^{\circ}, z=2\right)$.
problemlle.
Find \bar{E} at $p(1,5,2) \mathrm{m}$ in free space if a point charge of $6 \mu \mathrm{c}$ in Located at $(0,0,1) \mathrm{m}$, the uniform line Charge density $\rho_{e}=180 \mathrm{n} / \mathrm{m}$ along x-axis and uniform shut charge with $\rho_{S}=25 \mathrm{ndm}^{2}$ over the plane $z=-1 m$.
problem 24 , three Pifinite Uniform sheet of charge are Located in tree Space ie $3 \mathrm{ncm}^{2}$ at $z=-4 m, 6 \mathrm{ncm} \mathrm{m}^{2}$ at $z=1 \mathrm{~m}$ and $-8 \mathrm{nc/m}{ }^{2}$ at $Z=4 \mathrm{~m}$. Find \bar{E} at the point
a) $P_{A}(2,5,-5)$; b) $P_{B}(4,2,-3)$
c) $P_{C}(-1,-5,2)$ and $d>P_{D}(-2,4,5)$.

Topic 1.4 S Electric Flux Density (I).

$1.4 a$.
\rightarrow Definition of Electric Flux

* By def" Elutric F lx (ψ) originates or Positive charge and terminates on negative ofderge.

abc
* In the absence Cat infinity.

* Dy definition one coulomb of clutric the gives rise to one coulomb of Charge.
ie the amount of total flux hines [rowing of any closed Surface is equal to the total charge enclose. (173) mathematically $\psi_{\text {total }}=$ Qencloned Coulombin.
* Flux is a "Scalar quantity and Measured in Coulomb's.

Wb $\widehat{\text { Electric Flux density }(D): \cdots}$
DeM!
Electric flux density (\bar{D}) indicates an amount of. Flux $(d \psi)$-Creme the differential area $d s$, which in normal to the surface.
ie \bar{D} is flux Evening par unitarea. \rightarrow $\bar{D}=\frac{d \psi}{d s} \mathrm{~cm}^{2}$
(6) $\bar{D}=\frac{d \varphi}{d S}, 4 f_{m^{2}}$.
$104 C$
where \bar{a}_{n}-unit victor nagged to the sustace.
∞
D due to point charges -
[onside inner sphere of radius ' \dot{a} m and i \rightarrow an ofdysphere of radius b ' m with charge is of Gand - Q rusputively.
The path of clutric. flux (4) extending from the In er sphere to the outer sphere are indicated by the symmetrically distributed strambincs drawn radially from one sphere to the otter.

$$
\left.D\right|_{r=a}=\frac{Q}{4 \pi a^{2}} \operatorname{ar}\binom{\text { inner }}{\text { Sphere }}
$$

$$
\left.D\right|_{r=b m 0}=\frac{Q}{4 \pi b^{2}} \bar{a}_{r} \text { (outer } \text { Sphere) }
$$

at radial distance 'rim where $a \leq r \leq b m$ if inner radius $a \rightarrow 0 ?$

the \bar{D} at any radial distance ' r ' is
given by

 W.k.t the \bar{E} due to point cherge in givaby

$$
\vec{E}=\frac{Q}{4 \pi E r^{2}} \overline{a_{r}} v / n
$$

and \bar{D} due to point charge Qi by

$$
\bar{D}=\frac{Q}{4 \pi r^{2}} \overline{a_{r}}
$$

$$
\operatorname{cq}^{4}(2) / \varphi^{4}(1) \quad \frac{\bar{D}}{\bar{E}}=\epsilon
$$

$1.4 e$
居
\rightarrow D duere Infinite line charge density (fe lm)
O.k.t $E d u e$ to infinite Line clorge is

$$
\begin{equation*}
\bar{E}=\frac{\rho l}{2 \pi \epsilon \rho} \bar{a} \mathrm{k} / \mathrm{m} . \tag{3}
\end{equation*}
$$

$\alpha=\frac{\alpha \pi E S}{2 \pi} \bar{D}=E \bar{E} \mathrm{~cm}^{2} ; \varphi^{2}(3)$
ung the relation
berm

$$
\dot{x} \cdot \bar{D}=\epsilon \bar{E}=\frac{\rho_{l}}{2 \pi \rho} \pi_{\rho} \varphi_{m}{ }^{2}
$$

problemt
Giventhe

$$
=D=0.3 r^{2} \operatorname{ar} n q_{m}^{2} E E
$$

$$
\text { , } P\left(\gamma=2 m, \theta=25^{\circ}, \phi=90^{\circ}\right) \quad[02-J \mid J 2010] \text {. }
$$

Solvi-

$$
\bar{D}=0.3 r^{2} \overline{a r} \mathrm{ncm}{ }^{2} .
$$

$$
\text { in freespace } \epsilon=\epsilon_{0} \mathrm{Rlm} \text {. }
$$

$$
\bar{E}=\frac{\bar{D}}{\epsilon_{0}}=\frac{0.3 r^{2}}{\epsilon_{0}} \overline{a r} n v / m
$$

$$
\text { @ } \gamma=2 m
$$

$$
\begin{gathered}
@ r=2 m \\
\bar{E}=\frac{0.3(2)^{2}}{\epsilon_{0}} \overline{a r} n v / m \cdot
\end{gathered}
$$

$1.4 e$ in.
\bar{D} due to In finite Shect charge demity $\rho_{s} \varphi_{m}{ }^{2}$ -

$$
\begin{aligned}
& \bar{E}=\frac{\rho_{s} D}{D} a_{n} \mathrm{~lm} \\
& B E D=E \bar{D} \mathrm{~cm}^{2}
\end{aligned}
$$

kuprotepointr. Note': from relation $\bar{D}=G \bar{E} \mathrm{~cm}^{2}$

1. the \bar{D} and \bar{E} hare $\$$ ame unit vators: e bothare acto in the same diration.
※x.
2. $|\bar{D}|=\epsilon|\bar{E}|=\rho_{s} \mathrm{Cm}_{\mathrm{m}}{ }^{2}$
3. φ - slutric flux sualar quantity f Dept offeck sce - D- ductor quantity: Page 129
(176)

Co-orchinates at point $P(2,-3,6)$ produced by a uniform Linecloges $\rho_{l}=20 \mathrm{mc/m}$ on the x-axis.

 \qquad imanarks solvi- Doter Pagno-128.
froblem $2=$

- Colculate \bar{B} in rutengen Covdinatus at point $p(9,-3,6)$ produid by a unitom line chage $f l=20 \mathrm{~m} 4 \mathrm{~m}$ on the x-curis.
solu."

$$
\begin{aligned}
& \text { +3 } \\
& 0(2,00) \rightarrow y e_{0}^{x} \\
& x \text { a } p(2-3) P=\text { ? } \\
& \overline{D_{p}}=\frac{\rho_{i}}{2 \pi\left|\sigma_{p}\right|} \bar{a}_{o p} \mathrm{Cm}^{2} \\
& =\frac{\rho l}{2 \pi|\overline{o p}|^{2}} \overline{o p} \mathrm{cln}^{2} \\
& \overline{O P}=-3 \overline{a_{y}}+6 \overline{a_{z}} ; \quad|\overline{O p}|=\sqrt{9+36}=\sqrt{45} \mathrm{~m} \\
& \overline{D_{p}}=\frac{20 m}{2 \pi(45)}\left[-3 \overline{a_{y}}+6 \bar{a}_{z}\right] \\
& \overline{D_{P}}=-2.122 \times 10^{-4} \overline{a_{y}}+4.244 \times 10^{-4} \overline{a_{z}} \\
& \overline{D_{p}}=-212.20 \overline{a_{y}}+42.4 .413 \overline{a_{z}} \mathrm{\mu ch} 2
\end{aligned}
$$

troblem 3 Talculate \bar{D} in rectarguiar coodinaten at $P(2,-3,6)$ Produred by a point charge $Q=55 \mathrm{mC}$ Leated at Caleulate D in rectangulifoto ordinates at $P\left(2,3,3\right.$, Q_{2} produced by a point charge $Q=55 \mathrm{mc}$ $(-2,3,6)$ located at $(-2,3,6)$.

Soluir
(4m)

(ili Mrrks) [06-DedTan 2008]

क, $=55 \mathrm{mc}$

$$
\left.=-55 m C \quad \bar{D}(-2,3,6) \quad \frac{Q}{4 \pi\left|\overline{R_{P}}\right|^{2}} \overline{a_{R P}} \cdot Q \right\rvert\, m^{2}
$$

$$
\begin{aligned}
& \overline{R_{P}}=4 \overline{a_{x}}-6 \overline{a_{y}} ; \\
& \bar{D}=\frac{\theta}{4 \pi\left|\overline{R_{p}}\right|^{3}} \overline{R_{p}}
\end{aligned}
$$

$$
D=\frac{55 \mathrm{~m}}{(\sqrt{52})^{3} \times 4 \pi}[40
$$

$$
\bar{D}=46.688 \overline{a_{x}}-70.032 \overline{a_{y}} \mathrm{\mu} \mathrm{cln}^{2}
$$

$$
|\vec{P}|=84.1679 \mu \mathrm{H} / \mathrm{m}^{2}
$$

Topic lout Fluy dersity due to vanious chorge. dintributionth ENGINEERING ELECTROMAGNETICS (15EC36) MODULE-1

Qustion
Solu:- a] D due to point charge.

the fluydersity at a point ' P ' due to $Q C$ of cherge at ' O ' in

$$
\begin{aligned}
& \bar{D}_{p}=\frac{Q}{4 \pi|\overline{o p}|^{2}} \overline{a_{o p}} \\
& \left(\overline{D_{p}}=\frac{Q}{4 \pi|\overline{O p}|^{3}} \overline{o p}\right.
\end{aligned}
$$

[b. due to line chorge distribution ©tasider a line chelge of $\mathrm{sec} / \mathrm{m}$.
the $d \overline{D_{p}}$ dueto do, atfointion

$$
d \bar{D}_{p}=\frac{d Q}{4 \pi \mid \sigma p)^{2}} \frac{0}{0} \sigma_{m}
$$

$$
\overline{D_{p}}=\int_{\langle l\rangle} \frac{p_{1} d l}{4 \pi|\overline{0 p}|^{2}} \overline{a_{o p}} \varphi_{m}
$$

c) Adue ta treturge dintribation d due to volumecterge

$$
\begin{aligned}
& d \overline{D_{p}}=\frac{d Q}{4 \pi|\overline{o p}|^{2}} \overline{a_{0 p}} \\
& \text { ds } \rho_{S}=d Q / d s \Rightarrow d Q=\rho_{s} d s \\
& d \overline{D_{p}}=\frac{\rho_{s} d s}{4 \pi\left|\bar{O}_{p}\right|^{2}} \bar{a}_{o_{p}} \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& d \bar{D}_{p}=\frac{d Q}{4 \pi\left|\sigma_{p}\right|^{2}} \overline{a_{o p}} \varphi_{m^{2}} \\
& \rho_{u}=\frac{d \theta}{d v} \varphi_{m}{ }^{3} \Rightarrow d x=\rho_{u} \cdot d u \\
& d \overline{D_{p}}=\frac{\rho_{0} d v}{4 \pi \mid \overline{\left.O P\right|^{2}}} \overline{a_{o p}} \varphi_{m}{ }^{2} \\
& \frac{x_{x}}{\overline{D_{p}}}=\int_{\left\langle v_{0}\right\rangle} \frac{h_{u} d v}{\left.\langle\pi| D_{p}\right|^{2}} \overline{a_{0 p}}{ }^{\text {age }}{ }^{\text {ag3 }} / m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow d \overline{D_{p}}=\frac{\beta d e}{4 \pi|0 p|^{2}} \overline{a_{0 p}}
\end{aligned}
$$

problem 4.

DANKAN VGOWDA MTECh., (PhD)
Find \bar{E} and \bar{D} at the origin dem $Q_{1}=0.35 \mu \mathrm{C}$ at $(0,4,0) \mathrm{m}$ and $\theta_{2}=-0.55 \mu \mathrm{c}$ at $(3,0,0) \mathrm{m}$.
Find i. Electric field intensity and ii. Electric Flux density at the origin due to $Q_{1}=0.35 \mu C$ at $(0.4,0) \mathrm{n}$ and $\mathrm{Q}_{2}=-0.55 \mu C$ at $(3,0,0) \mathrm{m}$

Sola':
$\cdots \bar{a}_{R_{0}}\left\{\begin{array}{l}\left\{\begin{array}{l}3 \\ Q_{2}=-0.55 \mu \mathrm{C} \\ R(3,0,0) \mathrm{m}\end{array}\right. \\ =\overline{R_{P O}} \quad Q_{1}=0\end{array}\right.$

$$
\begin{aligned}
& \overline{E_{0}}=\frac{Q_{1}}{4 \pi E|\overrightarrow{P O}|^{3}} \overline{P_{0}}+\frac{\theta_{2}}{4 \pi E \mid(Q)^{3}} \hat{Q O} \mathrm{O} \\
& =\frac{0.35 \mu \times 9 \times 10^{9}}{(4)^{3}}-\frac{0.55 \mu \times 9 \times 10^{9}}{(3)^{3}}\left[-3 a_{x}\right] \\
& =-196.875 \overline{a_{y}}+550 \overline{a_{x}} \\
& \overline{\sigma_{0}}=550 \overline{a_{x}}-196.875 \overline{a_{y}} \quad \mathrm{vm} \\
& \left|E_{E_{0}}\right|=584.1744 \mathrm{k} / \mathrm{m} . \\
& \overline{D_{0}}=E \overline{E_{0}}=8.854\left[550 \overline{a_{x}}-196.875 \overline{a_{y}}\right] \mathrm{pcm}_{\mathrm{m}}{ }^{2} \\
& =4869.7 \overline{a_{x}}-1743.13 \overline{a_{y}} \mathrm{pclm}^{2} \\
& \overline{D_{0}}=4.8691 \overline{a_{x}}-1.74313 \overline{a_{y}} \mathrm{nctm}^{2} \\
& \left|\bar{D}_{0}\right|=5.1722 \mathrm{ncfm}^{2}
\end{aligned}
$$

problem 5
Find D in Cartesian coordinate system at point $p(6,8,-10)$ due to
i. point charge of 40 nC at the origin
i. A uniform live charge density of $40 \mu \mathrm{C} / \mathrm{m}$ on the z -axis
iii. A uniform sheet charge density of $57.2 \mu \mathrm{C} / \mathrm{m}^{2}$ on the plane $\mathrm{x}=12 \mathrm{~m}$.

Ans: i. $\mathrm{D}=6.7 \mathrm{a}_{\mathrm{x}}+9.0 \mathrm{a}_{\mathrm{y}}-11.25 \mathrm{a}_{\mathrm{y}} p \mathrm{p} / \mathrm{m}^{2} ;$ ii. $\mathrm{D}=0.38 \mathrm{a}_{\mathrm{x}}+0.5 \mathrm{a}_{\mathrm{y}} \mu \mathrm{C} / \mathrm{m}^{2}$;
iii. $\mathrm{D}=-28.6 \mathrm{a}_{\mathrm{x}} \mu \mathrm{C} / \mathrm{m}^{2}$
Solus- i.

$$
\begin{aligned}
& \overrightarrow{o p}=6 \overline{a_{x}}+8 \overline{a_{y}}-10 \overline{a_{z}} ; \quad|\dot{o p}|=\sqrt{200} \text { ma } \\
& \overline{D_{p}}=\frac{Q}{4 \pi|O p|^{3}} \cdot \overline{O p} \mathrm{Cm}^{2}
\end{aligned}
$$

ii: $t^{2} \operatorname{sech}^{2}$ EHonctm.

troblemb
 iniform sheet of charge equal to $25 n C / m^{2}$ lies in the $\mathrm{z}=0$ plane. Find

solur i>

$$
\bar{D}_{A_{Q}}=\frac{Q(0,0,0)}{4 \pi|\overline{0} A|^{2}} \bar{a}_{D_{A}} c_{m}^{2}
$$

$$
\bar{D}_{A_{Q}}=\frac{Q}{4 \pi|O A|^{3}} \overline{O A} \mu_{m}^{2}
$$

$\bar{D}_{A_{0}}=\frac{6 \mu}{4 \pi \pi(4)^{3}}\left[4 \bar{a}_{3}\right] \quad G_{0}^{0}=0.02984 \bar{a}_{3} \mathrm{ucf}_{\mathrm{m}}{ }^{2}$.

$$
\begin{aligned}
& G=0.02984 u_{3} \\
& \mathbb{D}_{a_{0}}=29.84 \bar{a}_{3} \mathrm{~nm}^{2}
\end{aligned}
$$

$$
D_{p_{2}}=\frac{180 n}{2 \pi(16)} \times 4 \overline{a_{2}}=7.1619 \overline{a_{3}} \mathrm{nc} \mathrm{~m}^{2}
$$

$$
\therefore\left(\overline{D_{A}} \pm 49.5 \overline{a_{3}}\right] n g_{m}{ }^{2}
$$

ii) \bar{D} at $B(1,2,4)$
± 0

$$
C_{D B}=2 \bar{a}+4 \overline{a_{z}}
$$

$O(1,0,0)$

$$
\begin{aligned}
& \text { 樍 } \overline{O B}
\end{aligned}
$$

$$
B(1,2,4) \rightarrow D_{B} \subset \frac{D_{B_{p l}}}{C}=\frac{\rho l}{2 \pi\left|\sigma_{B}\right|^{2}} \widehat{O B} d_{m}^{2}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\left\{\begin{array}{l}
\overline{a_{n}}=+\overline{a_{2}} \\
B(1,2,4)
\end{array}\right. \\
\{y
\end{array}\right. \\
& \left.\bar{D}_{B_{s}}=\frac{\rho_{s}}{2} \overline{a_{n}}=\frac{\rho_{s}}{2} \overline{a_{2}}=12.5 \overline{a_{2}} n d / 2\right)^{3} \\
& \overline{D_{B}}=\bar{D}_{B_{8}}+\bar{D}_{B_{f l}}+\bar{D}_{B_{s s}} \\
& \text { Hs }=25 n \mathrm{gm}_{\mathrm{m}} \mathrm{~m}_{\mathrm{D}} \\
& (185) \begin{aligned}
D_{B}= & 4.961 \overline{a_{x}}+9.9229 \overline{a_{y}}+19.845 \overline{a_{z}} \\
& +2.864 \overline{a_{y}}+5.729 \overline{a_{z}}+12.5 \overline{a_{z}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 6 \mathrm{HC}^{\mathrm{C}} \\
& O(0,0,0) \frac{\overline{a_{O B}}}{\left.\overline{O B}=\overline{a_{x}}+2 \overline{a_{y}}+4 \overline{a_{z}} ; \quad|\overline{O B}|=\sqrt{21} \mathrm{~m}, 2,4\right),} \\
& \bar{D}_{B_{B}}=\frac{6 \dot{\mu}}{4 \pi(\sqrt{21})^{3}}\left[\overline{a_{x}}+2 \overline{a_{y}}+4 \bar{a}_{z}\right] \\
& D_{B_{Q}}=4.961 \overline{a_{x}}+9.9229 a_{4}+0.845 \overline{a_{3}} \mathrm{nc} \mathrm{~m}^{2}
\end{aligned}
$$

∞

$$
\bar{D}_{B}=4.961 \overline{a_{x}}+12.7869 \overline{a_{y}}+38.074 \overline{a_{z}}{ }_{n} \mathrm{~m}^{2}
$$

Xif iii) The Elutric flux Leaving the Surtace of the sphere of rädive Centered at origin.
from Gaurintaw $\Psi_{\text {total }}=$ Qundard Coulonts's

$\gamma=4 \mathrm{~m}$ Sphere.
Coneii. Flup, beaving due to a line chorge of $\mathrm{Be}=180 \mathrm{n} \rho_{\mathrm{m}}$
, flace atong x oxis
(

$$
L=2 r=8 \mathrm{~m}
$$

$$
\begin{aligned}
& Q_{\text {Leving }}=Q_{\text {maln }}=\rho_{l} \times 1 \\
& \psi_{180}^{\prime \prime} \mathrm{nCl} \times 8
\end{aligned}
$$

$$
\psi_{\text {Learing }}^{\prime \prime}=1.44 \mu \mathrm{C}
$$

Dept. of E\&CE., SVCI:

Easeiii Fhx Leaving due to a shect borge of
$\rho_{S}=25 \mathrm{n} \mathrm{lm}^{2}$ at $z=0 \mathrm{~m}$ plare.

$$
\begin{aligned}
& =25 \mathrm{ndm}^{2} \\
& Q 2=0 \mathrm{~m} \text { lame. }
\end{aligned}
$$

Eluxheoving
\therefore the total, luy Leaving the Susface of the siphere of 4 m "urredius conterdd at origin is

$$
\begin{gathered}
\psi_{\text {total }}=Q_{\text {madoed }}=\psi^{\prime}+\psi^{\prime \prime}+\psi^{\prime \prime \prime} \\
=6 \mu+1.44 \mu+1.65 \mu \\
\psi_{\text {total }}=8.7006 \mu \text { Coalom } \text { B' }^{\prime \prime}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { only with }(2 \text { having } \\
\text { viws }
\end{array} \\
& A=\pi r^{2}=\pi(4)^{2} \\
& =16 \pi \mathrm{~m}^{2} \\
& A=161 \mathrm{~m}^{2}
\end{aligned}
$$

problemz
Find D in Cantesian co-ordinate yystem at point $p(6,8,-10)$ due 10
Assistant Professor, Depph. of E\&CE

iin. A uniform sheet charge density of $57.2 \mu \mathrm{C} / \mathrm{m}^{2}$ on the plane $\mathrm{x}=9 \mathrm{~m}$.
.

Solver i.
$x^{\overline{D_{p}}=5.064 \overline{a_{x}} 06.7523 \overline{a_{y}}-8.44 \overline{a_{z}} \mathrm{Qcm}^{2}}$
ii)

$$
x^{2}=40 \mathrm{cc} / \mathrm{m}
$$

$$
\overline{D_{p_{l}}}=\frac{\rho_{l}}{2 \pi \mid \sigma \overline{\left.o p\right|^{2}}} \overline{o p} .
$$

$$
\overline{\sigma p}=6 \overline{a_{x}}+8 \overline{a_{y}}
$$

$$
|\overline{O P}|=\sqrt{36+64}=\sqrt{100} \mathrm{~m}
$$

$$
\overline{D_{P_{S L}}}=\frac{40 \mu}{2 \pi(100)}\left[6 \bar{a} x+8 \bar{a}_{y}\right]
$$

(ov) $\int_{L_{s_{2}}}^{D_{P^{2}}}=0.3819 \overline{a_{x}}+0.5092 \overline{a_{y}} \mu_{\mathrm{cm}^{2}}$

$$
\begin{aligned}
& \overline{D_{p}}=\frac{Q}{4 \pi|O P|^{3}} \overline{O p} \int_{m^{2}} \\
& \overline{O P}=6 \bar{a} x+8 a_{y}-10 \bar{a}_{z} ; 10 p+136+64+100=\sqrt{200 \mathrm{~m}} \\
& \bar{D}_{p}=\frac{30 \mathrm{~m}}{4 \pi(\sqrt{200})^{3}}\left[6 a^{2}+a_{y}-10 \bar{a}_{z}\right]
\end{aligned}
$$

iii)

froblem8 $(4,0,3) \mathrm{m}-15.734 \mathrm{mc} \curvearrowleft(4,0,0) \mathrm{m} \approx 90427 \mathrm{mc} / \mathrm{m}$
Find \bar{D} at $(4,0,3)$ due to a point charge $-15,734 \mathrm{mC}$ at $(4,0,0)$ and a tine charge $9,427 \mathrm{mC} / \mathrm{malong} y$-axis. y-asin
Ans $D^{-240 a_{\mathrm{s}}+42 \mathrm{a}_{2} u \mathrm{C} / \mathrm{m}^{2}}$
Solu': $\quad \overline{D_{0}}=\overline{D_{Q}}+\overline{D_{\rho L}} \quad C_{m}{ }^{2}$

$$
\begin{aligned}
& Q=-15.734 \mathrm{mc} \\
& O(4,0,0) \mathrm{m}
\end{aligned} \overline{O P}=3 \overline{a_{z}} ;|\overline{O P}|=3 \mathrm{~m}
$$

$$
\begin{aligned}
& O(4,0,0) m \\
& D_{P_{B}} \\
& =\frac{Q}{4 \pi|O p|^{3}} \overline{O P}=\frac{-15.734 m}{4 \pi(3)^{3} \sigma} O_{0} \bar{a}_{3}
\end{aligned}
$$

$$
\overline{D_{P_{Q_{3}}}}=-139: 11 \bar{a}_{2}
$$

conein $\bar{D}_{P_{s e}}$ ie P^{D}

$$
D_{P_{x}}=\frac{\rho e}{2 \pi|\overline{O p}|^{2}} \overline{O P} \varphi_{n^{2}}
$$

$$
\begin{aligned}
& \overline{O p}=4 \overline{a_{x}}+3 \overline{a_{z}} \\
& \rho_{l}=9.427 \mathrm{mc} \rho_{\mathrm{m}} . \quad|\overrightarrow{O p}|=\sqrt{16+9}=5 \mathrm{~m} \\
& \overline{D_{p_{\rho l}}}=\frac{9.42 \pi}{2 \pi(5)^{2}}\left[4 \overline{a_{n}}+3 \overline{a_{z}}\right] \\
& 6.0014 \times 10^{-5} \\
& D_{p_{\rho e}}=240.056 \overline{a_{x}}+180.042 \overline{a_{3}} \mathrm{\mu c}_{\mathrm{m}}{ }^{2}
\end{aligned}
$$

the net Fluxidinsity (D) at point ' P ' is

$$
\begin{aligned}
& \overline{D_{\rho}}=\overline{D_{\theta}}+\overline{D_{\Gamma_{L}}} \cdots \\
& =-139.11 \overline{a_{2}}+240.056 \overline{a_{x}}+180.42 \overline{a_{z}} \mathrm{Mch}^{2} \\
& \text { 多 } \\
& \overline{D_{p}}=240.056 \overline{a_{x}}+41.31 \overline{a_{z}} \mathrm{uch} \cos ^{5} \\
& \sqrt{\left|\overline{D_{p}}\right|}=243.584 \mu \mathrm{~cm}^{2}
\end{aligned}
$$

Topicley problems
problems. Find \bar{D} in cartesian Coordinate system at point $p(6,8,-10)$ dee to
i. point charge of 40 nc at the origin.
ii. A uniform line charge density of $40 \mathrm{\mu cm}$ on the 2 -axis
iii. A uniform shat charge dinityty $57.2 \mu \mathrm{~cm}^{2}$ on the plane $x=12 m$.
problem b
A point charge of $6 \mu \mathrm{C}$ is Located at the origin, a uniform Lirectrge density of 180 ncm Lies along x-axis and uniform shat charge equal to . $25 \mathrm{ncm}^{2}$ lies in the $z=$ plane. Find
i. \bar{D} at $A(0,0,4)$.
$i \dot{9} \cdot \bar{P}$ at $B(1,2,4)$.
iii. Total elutric flux heaving the sustace of the sphere of 4 m radius Centred at origin.

2b. Define electric flux density. Find \vec{D} in Cartesian co-ordinate system at a point $p(6,8,-10)$ due to a point charge of 40 mC at the origin and a uniform line charge of $\rho_{\mathrm{L}}=40 \mu \mathrm{C} / \mathrm{m}$ on the z-axis.

Soln:-
Definitionof Elcutric Fluxdensity (D) e-
Elcetric flux density (D) indicates an amount of Fluy (dy) cromes the differntial area $d s$, which is nomal to the surtace.
i.e \bar{D} is flux croning par unit area.

$$
\begin{aligned}
& \bar{D}=\frac{d \psi}{d s} \int m^{2} \\
& \bar{D}=\frac{d \psi}{d s} \overline{a_{n}}
\end{aligned} \operatorname{lm}^{2}
$$

where \bar{a}_{n}-unif vator ${ }^{\text {n }}$ ornal tothe Surface

D due to point charge

$$
\begin{aligned}
& Q=40 \mathrm{mC} \widehat{O P} \widehat{a_{0 p}} \\
& \xrightarrow[(0,0,0)]{\text { Op Cop }} \underset{P(6,8,-10)}{D_{P_{Q}}}=\text { ? } \\
& \overline{o p}=6 \overline{a_{x}}+8 a_{y}-10 \overline{a_{z}} \text { - } \\
& \vec{Q}=\frac{\overrightarrow{O P}}{|\overrightarrow{D P}|} . \\
& |\overrightarrow{o p}|=\sqrt{200} \mathrm{~m} \text {. } \\
& \overline{D_{p_{B}}}=\frac{Q}{\text { uTा }|\overline{o p}|^{2}} \overline{a_{o p}} \mathrm{~cm}^{2} \\
& \overline{P_{P_{\theta}}}=\frac{Q}{u \pi|\overline{o p}|^{3}} \overline{O p}, \varphi_{m}{ }^{2} \\
& D_{P_{\theta}}=\frac{40 \times 10^{-3} /}{4 \pi(\sqrt{200})^{3}}\left[6 \overline{a_{x}}+8 \overline{a_{y}}-10 \overline{a_{z}}\right] \\
& D_{P_{Q}}=\left[1.12539 \times 10^{-6}\right]\left[6 \overline{a_{x}}+8 \overline{a_{y}}-10 \overline{a_{z}}\right] \\
& D_{P_{Q}}=6.7523 \overline{a_{n}}+9.0031 \overline{a_{y}}-11.2539 \overline{a_{z}} \mu \mathrm{~g}_{m^{2}} \\
& =6.752 \overline{a_{x}}+9.003 \overline{a_{y}}-11.2539{\overline{a_{z}}}_{z}{ }^{\prime} \mu \mathrm{c}_{m^{2}}
\end{aligned}
$$

the net \bar{D} at a point $P(6,8,-10) \mathrm{m}$ due to point and linecharge is givenby

$$
\begin{aligned}
& \overline{D_{P_{n c t}}}=\overline{P_{p_{o}}}+\overline{D_{p_{p e}}} c \ln ^{2} \\
& =\left[6.7523 \overline{a_{x}}+9.0031 \overline{a_{y}}-11.2539 \bar{a}_{z}\right] \mu{c_{m}}^{2} \\
& +\left[0.3819 \overline{a_{x}}+0.5092 \overline{a_{y}}\right] \mathrm{cem}^{2} \\
& \left.\bar{P}_{P_{n+t}}=7.1342 \overline{a_{x}}+9.5123 \overline{a_{y}}-11.2539 \bar{a}_{2}\right] \mu \mathrm{cm}_{m}{ }^{2} \\
& \left|{\overline{D_{P_{\text {net }}}}}\right|=\sqrt{7.1342^{2}+9.5123^{2}+11.2539^{2} \mu \varphi_{m}{ }^{2}} \\
& \left|\bar{D}_{P_{\text {net }}}\right|=16.3716 \mathrm{\mu cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{D_{P_{l}}}=\frac{\rho_{l}}{2 \pi|O p|} \overline{a_{o p}} \varphi_{m}{ }^{2} \\
& \overline{D_{\rho_{l}}}=\frac{\rho_{l}}{2 \pi \mid\left(\left.p p\right|^{2}\right.} \overline{\sigma_{p}} \varphi_{m^{2}}
\end{aligned}
$$

Module-1
ra. List of Symbols

1. Eharge $(Q) \rightarrow$ Unit. Coulombin (C)
2. Force $(F) \longrightarrow$ Noutoris (N)
3. Force (F)
4. distance $(r) \longrightarrow$ meter (m).
5. Line charge density $(\mathrm{Se}) \rightarrow \mathrm{Am}$
6. Surtare charge density $(\mathrm{S}) \geq \mathrm{Lm}^{2}$
7. Volume charge density (SV) $\rightarrow \mathrm{Clm}^{3}$
8. Elatric field intensity. (E) $\rightarrow V / m \circlearrowleft N / C$
9. Elutric ffex $(\psi) \rightarrow$ Coulombis (G)
10. E-Wtricthex density $(\bar{D}) \rightarrow \mathrm{Cm}^{2}$.
$\nabla \square \cdot \vec{D}=\rho_{y}$ cl 3 ...point form of Gaumin Law.
(or) Maxurli', firafequation.
(slutrostatic).
11. relationahip ble \bar{P} and \bar{E}

$$
\bar{D}=E E \quad \mathrm{~lm}^{2}
$$

12. $\quad|\bar{p}|=\rho_{s} \varphi_{m}{ }^{2} \ldots$ Surtace chergedensity.
13. Gaurin Law

$$
\psi_{\text {total }}=\oint_{\langle s\rangle} \bar{D} \cdot \overline{d s}=Q_{\text {enelowed }}
$$

Coulomb's
14. Divugence theorem.

$$
\oint_{\langle s\rangle} \bar{D} \cdot \overline{d s}=\int_{\langle v 01\rangle} \nabla \cdot \bar{p} d v
$$

15. $\epsilon=\epsilon_{0} \epsilon_{Y} H_{n}$ Pormetivity of the

$$
\epsilon_{0}=8.854 \times 10^{2}=\frac{10^{-9}}{36 \pi} \mathrm{Fl}_{m} \ldots .
$$

$\epsilon_{r}=1$, relative pornitfivily (in air(O) Vacum melium)
B. List of Formulae 1 .

1. Experionental Law of Coulomb.

The Force of atfrcition (or) repulsion paturen any two point charges Q_{1} and Q_{2} in proportional to the product of the charges and invorscly proportional to the square. of the distance blu them.
ie. $F=\frac{\theta_{1} \theta_{2}}{r^{2}}: N$ (or) $F=\frac{\frac{K \theta_{1} \theta_{2}}{r^{2}}}{} \mathrm{~N}$

$$
\bar{F}=\frac{Q_{1} Q_{2}}{u \pi \epsilon r^{2}} \bar{a}_{r} \hat{N}
$$

Note:- $\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{~m} / \mathrm{F}$-rad
$\epsilon=\epsilon_{0}=8.854 \times 10^{-12} \mathrm{flm}$...infreespace(A)
Vacuum musicum.
2. Force on a point charge due to n-multiple point charges

$$
F=\frac{Q^{2}}{\varphi \pi t_{0}} \sum_{i=1}^{n} \frac{\overline{a_{i 0}}}{\left|\overline{R_{i 0}}\right|^{2}}
$$

$$
N: \text { if } Q_{1}=\theta_{2}=8 C
$$

3. Elatric Fild intensity $(\bar{E}) \rightarrow \mathrm{V} / m$
E is the Force per unit charge.

$$
\bar{E}=\frac{\overline{F_{t}}}{Q_{t} \mid c}=\frac{Q}{u \pi \epsilon r^{2}} \overline{a_{r}} \quad v / m \text { (a) } N c_{c}
$$

E due to muttiple point charges

$$
\left.\bar{E}=\frac{\theta}{4 \pi E_{0}} \sum_{i=1}^{n} \frac{\overline{a_{i p}}}{\left|\overline{R_{i p}}\right|^{2}} \right\rvert\, v / n O N / c
$$

4. Eharg distribution Tuhniques

$$
\begin{array}{r}
\rightarrow \text { line charge densty }\left(\delta_{l}\right)=\frac{\text { total charge spread }}{\text { Length ofthe hine }} \rho_{m} . \\
\quad \rho_{l}=\frac{d Q}{d l} \lim _{m} \text { (O) } Q=\int_{\langle\mu} \rho_{l} \cdot d l
\end{array}
$$

(O) $\rho_{l}=\frac{Q}{L} \mathrm{~cm}_{m}$ and $Q=\rho_{l} L$

$$
\rightarrow \text { Surtace charge dimity }\left(\rho_{S}\right)=\frac{\text { totalcharge Sprced }}{\text { Araogthe Surferce }} \operatorname{cm}^{2}
$$

$$
\rho_{s}=\frac{d \theta}{d s} c_{m}^{2}
$$

(ब) $d Q=\rho_{s} \cdot d s$

$$
C
$$

$$
Q=\int_{s s} \rho_{s} \cdot d s \text { Coulombin }
$$

$$
\rho_{S}=\frac{Q}{S} c_{m}{ }^{2} \text { and } Q=\rho_{S} \cdot S \text { coulmbin }
$$

$$
\text { Volume charge density }(\rho v)=\frac{\text { total cologe ip read in }}{\text { total volume }}
$$

$$
\rho_{v}=\frac{d Q}{d v} l_{n} 3 \text { and } d Q=l_{v} d v \text { Coulombs }
$$

5. File (\vec{E}) due to infinite line chargedensity

$$
\bar{L}=\frac{\rho_{l}}{2 \pi \in \rho} \frac{\square}{a} \text { vim (o) } N l_{c}
$$

where $\}$ \& distance from infinite Linecherge to the desired point where we measure the

- Hived Intensity.

$$
\text { Note: } \frac{1}{2 \pi \epsilon_{0}}=18 \times 10^{9} \mathrm{~m} / \text { Freed }
$$

6

$$
\bar{E}=\frac{\rho_{s}}{2 t} \bar{a}_{n} \mathrm{v} / \mathrm{m} \text {. (8) } \mathrm{N} / \mathrm{C}
$$

where $\overline{045}$-unit normal vapor which is \mathcal{E} to plane containing a infinite shut charge.
7. Electric Flux (ψ) i-

Elutric flux (φ) is a scalar quantity, by def u Elutric flux originates at positive charge and terminates at negative charge.

$$
\Psi=Q \text { Coulombs. }
$$

8. Elutric Flux density $-(\bar{D})$

$$
\bar{D}=\frac{d \psi}{d s} \bar{a}_{n} \mathrm{clm}^{2}
$$

ie an anoint of thur $(d \varphi)$
Eronot ticterntial arcads. whit h is normal to $\overline{a_{n}}$.

- Relationship brucine D^{D} and $\bar{E}_{\text {is given by }}$

$$
\bar{D}=E \mathrm{E} \mathrm{~m}^{2}
$$

- \bar{D} due to port charge $\bar{D}=\frac{Q}{u \pi r^{2}} a_{r} \varphi_{m}{ }^{2}$
$D D^{D}$ due to in finite line charge $\bar{D}=\frac{\beta_{1}}{2 \pi j} \bar{a}_{\rho} \ln ^{2}$
- D due to infinite shut charge

$$
\bar{D}=\frac{\rho_{s}}{2} \bar{a}_{n} \mathrm{~cm}^{2}
$$

Module -2

Part-A

Gauss's law and Divergence: Gauss' law, Divergence. Maxwell's First equation (Electrostatics), Vector Operator $\overline{\mathrm{V}}$ and divergence theorem.

Part-B

Energy, Potential and Conductors: Energy expended in moving a point charge in an electric field, The line integral, Definition of potential difference and potential, The potential field of point charge, Current and Current density, Continuity of current.

Part A

Topics:

2.1 Gauss's Law
2.2 Gaussian Surface and its characteristics
2.3 Applications of Gauss's Law
2.4 Limitations of Gauss's Law

Solved Problems
2.5 Vector operator and concept of Divergence \& Divergence in all 3 co-ordinate systems
2.6 Maxwell's First Equation(Electrostatics)/[point form of Gauss's Law]
\checkmark Solved Problems
2.7 Divergence Theorem
\checkmark Solved Problems

Part B

Topics:

2.8 Energy expended in moving a point charge in an electric field.
\checkmark Solved Problems
2.9 The line integral
\checkmark Solved Problems
2.10 Definition of potential difference and potential
2.11 The potential field of point and system of charge
a. Potential due to point charge
b. Potential due to system of charges
c. Potential field of a ring of uniform line charge density
d. Potential due to infinite line charge

\checkmark Solved Problems
2.12 Current and Current density
2.13 Continuity of current
\checkmark Solved Problems
Miscellaneous Topics
2.14 Potential Gradient
2.15 Gradient in all 3 coordinate systems
\checkmark Solved Problems
2.16 Energy density in an electrostatic field.
\checkmark Solved Problems

Summary

- List of Symbols
- List of Formulae

Topic 201 Gausgis Law.

1. Gauss's Law
2. Gauss's Law

Dept. ofECE, B.M.S.I.T \& M
 Issistant Profersor. De'pt of EdCE Enafi:dombch.ecequrcengg.rom

3 State and prove Gauss theorem.

5 Stane ared prove Gauss s law.

Darskon t'Gowarf Mrech.epi.Di
9 Buban mav Ganss sas

Email:drnkandenasseng.com

10-Dec/san 2015

fhe llarke

$$
\text { of - Jan } 2008
$$

- 10 - June /July 2015

11 Sine ond prove Gams lan.
$02 \mathrm{~J} / \mathrm{T} 8010$,
Question'ㅇState and prove GaurinLaw/Gaum thoorm.
(21.) State and frove Gawin Law for pointchorge. $10.10 \mid 52015$

$$
\text { [06-Ded2010, 02-Dee-2010, 02-Jan 2009, 06-Jan 2012, } 10 \text {-Jan 2012,' }
$$

Statement: - The Elatric Flux (ψ) paning through any . [losed surface is equal to the total charge enclosed by that surtace".

proof in Carriedout in two stepin
stepl. $\quad \psi_{\text {total }}=\oint D \cdot \sqrt{s} C i$
Dept. of E\&CE., SVCE
Page 144
Step 2

Step 1.
Let a positive charge $Q_{1} C_{i}$ isenlosed by a cloned surface of any shape.
 at point ' P ' consider an. ditetrential element of Surface $d S$ and Let \bar{D} rakes an angle θ with $\overline{d s}$ as shown in fig.

$$
\overline{d s}=d s \bar{a}_{n}
$$

the chifterntial flux (d ψ) coming out of differential surface $(d s)$ is given by

$$
\text { (5) } \begin{aligned}
& d \psi=\text { Flux Crossing } d s \\
&=D_{\text {normal }} d s \\
& d \psi=D \cos \theta \cdot d s \\
& d \psi=D d s \cos \theta \quad \text {... using dot product concept } \\
& \bar{A} \cdot \bar{B}=A B \cos \theta \\
& \text { (01) } \\
& d \psi=\bar{D} \cdot \overline{d s} \quad \text { Culantio }
\end{aligned}
$$

the total flux $\left(\psi_{\text {total }}\right)$ Croming the closed Surtan is
$\times 1$

$$
\psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s} \text { Eoulombin }
$$

voter $\oint_{\langle s\rangle}$ mar Flosed Surface integral.

Step 2. Consider a positive charge of ' $Q \in C$ situated at the center of an imaginary Sphere of radius ' γ '.

Since-charge 'Q@ orrin, the total
Flux crowing the sphere is given by
x jig $\Psi_{s p h e r v i d i u s t r}^{\text {coming }} m$.

$$
\begin{equation*}
\psi_{\text {total }}=\oint_{c>} \bar{D} \cdot d \bar{s} \tag{1}
\end{equation*}
$$

w.k. \bar{D} due to point charge

$$
\text { Lek. } \bar{D} \quad \bar{D}=\frac{Q}{4 \pi r^{2}} \text { Cr } C / m^{2}
$$

and the differential Surface vutor $(\overline{d s})$ for $r=k$ sphere

$$
\overline{d s}=r^{2} \sin \theta d \theta d \phi \overline{a_{r}}
$$ $P(\gamma, \theta, \phi)$ $d V \quad \frac{V_{r}}{\gamma} d \theta{ }_{r \sin \theta d \phi}$

$$
\begin{align*}
& \overline{d s}=r^{2} \sin \theta d \theta d \phi \overline{a_{r}} \\
& \begin{aligned}
d S & =r^{2} \sin \theta d \theta d \\
\therefore \psi_{\text {total }} & =\oint_{\langle S\rangle} \frac{Q}{4 \pi r^{2}} \overline{a r} \cdot r^{2} \sin \theta d \theta d \phi \hat{a r} \text { ak: sphere. }
\end{aligned} \\
& =\oint_{\langle s\rangle} \frac{Q}{4 \pi r^{2}} \cdot r^{2} \sin \theta d \theta d \phi \text { ar } \hat{\operatorname{ar}} \\
& =\left.\frac{Q}{4 \pi} \int_{\theta=0}^{\pi} \sin ^{2} \theta d \theta\right|_{0} ^{2 \pi} d \phi=\frac{Q}{4 \pi} \times 4 \pi=Q C \tag{3}\\
& =\phi \frac{Q}{4 \pi r^{2}} \cdot r^{2} \sin \theta d \theta d \phi \text { ar } \operatorname{an}^{\circ} \cdot 1
\end{align*}
$$

(total $=$ Qenioned Couconto's
(4)
 the total charge enclosed.

Keynote:.
$\left(\bar{D}_{3}\right) \quad[a b c d]$

4
 CBCS- Scthemes.
(65 Marks)
Coportionot ${ }^{6}$ State and explain Gaus law as aplied to an eloctric field
\square (or)

02- June 7July Zons
(Applicationl),
probloml
state Gauss's law. Using Gauss's law obtan an expression for ctectric lied intensity E due
 z (or) - $\rho_{\mu} c_{m}^{-7}$ 06-June /fuly 2012
8 State Gans hatr and use it to determane electric field intorsity due wan intigitely Dong line 2014 charse. (08 Marks)
Solvi- E due to infinite Line charge using Gawnis Law.
A 2 linecorage demity
Csectm.

$p(1, \phi, 3)$ the total charge encloved by ds pad da a lungth ' α ' m is
$\bar{D}=D_{\rho} \bar{a}_{\rho} \varphi_{m}{ }^{2}$

$$
\begin{equation*}
D=\rho_{l} \times L \tag{}
\end{equation*}
$$

Surface. $(\rho=k$ ginhau)

$$
\begin{aligned}
& a-\rho d \phi d z^{2 \rho} \quad Q=\rho_{l} L \\
& =y
\end{aligned}
$$

using Gaun'n Law
the total flus coning out of a Gainian surfae in knothing but the chage
condoned bythat Surtare

$$
\begin{aligned}
& \text { condoned bythat Surtace } \\
& \text { i.e } U_{\text {total }}=\oint_{C S\rangle} \bar{D} \cdot \overline{d s}=Q_{\text {endued }}=\rho_{i} L \text { Coulombio } \\
& \rho_{i} \cdot \alpha=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=\oint_{\langle S\rangle} \overline{D_{s}} \cdot \overline{d s} \\
&=\oint_{\langle S\rangle} D_{\rho} \overline{a_{\rho}} \cdot \rho d \phi d_{2} \overline{a_{j}}
\end{aligned}
$$

$$
\begin{align*}
\rho_{l} \alpha & =D_{\rho} \oint_{\alpha s\rangle} \rho d \phi d_{z} \bar{a}_{\rho} \tau_{\rho}^{\prime} \\
& =\rho D_{\rho} \int_{\phi=\phi}^{2 \pi} d \phi \int_{z=0}^{\alpha} \phi z \\
\rho_{l} \alpha & =\rho D_{\rho} \times 2 \pi \times \nLeftarrow \\
D_{\rho} & =\frac{\rho_{l}}{2 \pi \rho} 4 m^{2} \tag{1}
\end{align*}
$$

Coulombr
the Flus dinsity \bar{D} in nomal tothe Gaurion Surfaue

$$
\bar{D}=D_{f} \overline{a_{y}} \quad C_{m}^{2}
$$

using eq 0
and F-lutric Field intensity ($\overline{\mathcal{F}}$) attany point is given by $\bar{F}=\frac{B}{\epsilon}$ ufm.

$$
\therefore \overline{F=\frac{\rho_{e}}{2 \pi \epsilon \rho} \bar{a} \quad v / n} \underset{\bar{D}=E \bar{E} \mathrm{~cm}^{2}}{ }
$$

x. Gaurnicen Suftace and its charaterixties:- E JJ 2016

Gacsian Surface:- The Surface over which the Gaursibaw is applied is called "Gawnian Sustare".

$$
\psi_{\text {total }}=\oint_{\langle S\rangle} \bar{B} \cdot \overline{d S}=Q_{\text {ended }} C
$$

Characteristics.

1. The surface must be closed.
2. at Each point of the surface \bar{D} must be normal (\perp^{\sum}) to the Surface.
3. The Electric Flux density D is Constant over the surface at which \bar{D} is normal.
4. The surtene may be irregular but must be closed.

Tropic 204
Limitations of Gaurs Laws-

1. Valid only for Eloped surteves.
2. valid only for where \bar{D} must be $1^{\text {\& }}$ to the differential (Gainian) surface.
3. valid for only Gaunion Surtaxes where D is Constant throughout the surface.
4. it can be applied only if the surface encloses the Volume Completely.

Solve problem
Problemg (Application 2)
Splurial
radius $a^{\prime}{ }^{10}$.
12 A charge is unifumily disribuived over a spherical surface of rididic 'a'. Determine electric thedintensity everywhere in spate. Use Gauss lath.
A charge of $B^{\prime} C$ in
un.formly dintributed.
(E)
the fiuld intensity Every where inspace
$\Rightarrow \operatorname{cosi} . \quad r>a m$.
casii. $r<a m$
canii. $\gamma=a m$
case: F outridathe sptere i.e $r>a_{m}$.
$\psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=Q_{\text {cind }} \Rightarrow$ using Gaus Law
\bar{D} - in radially out $\therefore \bar{D}=D_{r} \overline{a_{r}} \varphi_{m}{ }^{2}$.

$$
\begin{aligned}
& \left.\overline{d S} \cdots \begin{array}{r}
r=k \text { sustace } \\
i \cdot e \text { ream }
\end{array}\right\} \overline{d s}=r^{2} \sin \theta d \theta d \phi \overline{a_{r}} . \\
& Q_{\text {ene }}=\int_{\langle S\rangle} D_{r} \overline{a_{r}} \cdot r^{2} \sin \theta d \theta d \phi \overline{a_{r}} \\
& =\left.D_{r} r^{2}\right|_{\theta=0} ^{\pi} \operatorname{sfn} \theta d \theta \int_{0}^{2 \pi} d \phi \quad \overline{a_{r}} / \bar{a}_{r}^{1} \\
& Q=\frac{D_{r} r^{2} \times 2 \times 2}{D=D_{r} \overline{a r}_{r} \mu_{m^{2}}} \Rightarrow D_{r}=\frac{Q}{4 \pi r^{2}} d_{m}^{2} \\
& \therefore \bar{D}=\frac{Q}{4 \pi r^{2}} \overline{a r} \mathrm{~cm}^{2}
\end{aligned}
$$

and $\bar{E}=\frac{\bar{D}}{\epsilon}=\frac{Q}{4 \pi \epsilon r^{2}} \overline{a_{r}} \quad 0 / m \ldots r>a_{m}$.

$$
Q=\int_{\left\langle v_{0} 1\right\rangle} \int_{v} d v=\int_{\left\langle v_{01}\right\rangle} f_{y} r^{2} \sin \theta d r d \theta d \phi
$$

$$
=\rho_{v} \int_{r=0}^{a_{r} r^{2} d r \times \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{\phi=0}^{2 \pi} d \phi=l_{v} \frac{4}{3} \pi a^{3}{ }_{C}+a^{3}}
$$

$$
\left.\begin{array}{l}
\therefore \bar{E}=\frac{\rho_{v} \frac{4}{3} \pi a^{3}}{4 \pi \in r^{2}}=\frac{a^{3} \rho_{v}}{3 \epsilon r^{2}} \overline{a r} \\
\text { and } \overline{D=E \bar{E}=\frac{a^{3} \rho_{v}}{3 r^{2}} \bar{a}_{r}} a_{m}^{2}
\end{array}\right\}
$$

Caseii. \bar{E} and \bar{D} at $r=a \mathrm{~m}$.
put $r=a$ in the above sti of cq'o

$$
\begin{array}{ll}
& \text { put } r=a \text { in the } \\
\therefore \bar{E}=\frac{\rho_{v} a}{3 \epsilon} \overline{a_{r}} v / m & \text { and } \overline{D=E E}=\frac{\rho_{v} a}{3} a_{r} \\
\therefore m_{m}^{2}
\end{array}
$$

Conerii . Fild Inside the sphere ie $r<a m$.

$$
\begin{aligned}
& Q_{\text {in }}=\oint_{\langle S\rangle} \bar{D} \cdot \overrightarrow{d S}=\int_{\langle S\rangle} D_{r} \overrightarrow{a_{r}} \cdot r^{2} \sin \theta d \theta d \phi=\left.D_{r} \int_{\theta=0}^{\pi r} \sin \theta d 0^{x}\right|_{\phi=0} ^{2 \pi} d \phi \times r^{2} \\
& =D_{r} \times 2 \times 2 \pi \times r^{2}=D_{r}\left(4 \pi r^{2}\right) \\
& D_{r}=\frac{Q}{4 \pi r^{2}} d_{m}{ }^{2} \ldots r<a m \\
& \therefore \bar{D}=D_{r} \overrightarrow{a r}=\frac{Q}{4 \pi r^{2}} \text { ar } C_{m}^{2}=\frac{\left\langle u_{0}\right\rangle^{2} d v}{4 \pi r^{2}} \text { ar } \mathrm{clm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}=\left\{\begin{array}{l}
\frac{a^{3} \rho_{y}}{3 \epsilon r^{2}} \bar{a}_{r} ; r>a m \\
\frac{\rho_{v a}}{3 \epsilon} \bar{a}_{\gamma}-r=a m
\end{array} \text { and } \frac{\rho_{y} r}{3 \epsilon} a_{r} \quad r>a m .\right. \\
& \text { 02-DEC2008/jan } 2009
\end{aligned}
$$

Evaluate the amount of electric flux that passes through the portion bounded by $-1 \leq y \leq 2$ and $0 \leq z \leq 4$ in the $x=3$ plane.
Sole:- $0 \leq \overline{2} \leq 4$ 正 $x=3$ plan.

$$
\begin{aligned}
& \text { W back }_{x=\text { plane }} \\
& \overline{d s}=d_{y} d_{3}\left(-\bar{a}_{x}\right) \\
& \text { of } \\
& \quad-1 \leq y \leq 2 \\
& 0 \leq z \leq 4\} \text { and } x \leq 3 \text { plane. }
\end{aligned}
$$

(front plane) $x=3$ plane nothing but Front surface
using Gawnin Law $\psi=\oint_{\langle s\rangle} \bar{D} \cdot \overline{d s}$ Coulomtio

$$
\psi_{\text {front }}=\int_{\langle S\rangle} \bar{D}_{x} \cdot \overline{d s}=\int_{\langle s\rangle} 2 x y \overline{a_{x}} \cdot d y d z \overline{a_{x}}
$$

$$
\begin{aligned}
& \text { Ytront }_{x=3 \text { pare }}=2 x \int_{y=-1}^{2} y d y \int_{z=0}^{4} d z \bar{a}_{y} \frac{\lambda^{1}}{a_{x}} \\
& \text { put } x=3 \\
& =\left.f(3) \cdot \frac{y^{2}}{x}\right|_{-1} ^{2} \times 4 \\
& =3\left[(2)^{2}-(-1)^{2}\right] \times 4 \\
& \psi_{\text {front }}=3[4-1] \times 4=3 \times 3 \times 4
\end{aligned}
$$

20

$$
\varphi_{\text {front }} \equiv 36 \text { Coulombin }
$$

Flutric flux that paris through the portion bounded by $-1 \leq y \leq 2$ and $0 \leq z \leq 4$ in the $x=3$ plane is ∞ $\psi_{\text {front }}=36$ Coulombín
ky Note: $>\quad \psi_{\text {top }}=\psi_{\text {bottom }}=0 \quad$ when $A_{2}=0 \mathrm{~cm}^{2}$.
(4) $\psi_{\text {top }}+\psi_{\text {bottom }}=0$; when $D_{z} \neq f^{n}(z)$
$\Rightarrow \psi_{\text {font }}=\psi_{\text {back }}=0$; when $D_{x}=0 \mu_{m^{2}}$
f $\psi_{\text {font }}+\psi_{\text {back }}=0$; when $D_{x} \neq f^{\prime \prime}(x)$.
3) $\psi_{\text {left }}=\psi_{\text {right }}=0$; when $D_{y}=0 . \mathrm{cm}^{2}$
$f \psi_{\text {rf }}+\psi_{\text {right }}=0$; when $D y \neq f^{n}(y)$.
Dept orEXCE; SVCE same kind of rovilt' one aba valid in ${ }_{1}^{\text {Page } 153}$
Note:- My the same kind of rout one invalid in Eylintrical 389 and Spherical C.S.Curdinate siple is
problem 4

- $\kappa^{u m} \quad \frac{20 x^{5}}{5} a_{x} \mathrm{Cm}^{2}$ 06 - June /July 2012
A cube of 4 m centered at origin with edges parallel to the coordinate axes of Cartesian co-ord system. If $\overline{\mathrm{D}}$ (electric flux density) $=\frac{20 x^{5}}{5}$ ax $\mathrm{C}_{\mathrm{m}}{ }^{2}$, what is the total charge

solus: :

$$
\begin{aligned}
& \left.\Psi_{\text {front }}\right|_{x=+2 \text { plane }} \text { and }
\end{aligned}
$$

Given $\bar{D}=\frac{20 x^{2}}{5} \hat{a}_{x} \mathrm{Cm}^{2}$

Since in given $\bar{D}, \quad D_{y}=D_{3}=0$

$$
\psi_{\text {Lat t }}=\psi_{\text {right }}=\psi_{\text {top }}=\psi_{\text {bottom }}=0 .
$$

$$
\begin{aligned}
\Psi_{\text {tront }} & =\int_{\langle s\rangle} \overline{D_{x}} \cdot d s=\int_{\langle s\rangle} 4 x^{5} \overline{a_{x}} \cdot d y d_{z} \overline{a_{x}} \\
& =4 x^{5} \int_{y=-2}^{2} d y \int_{z=-2}^{2} d_{z}-\left.\overline{a_{x}} \cdot \overline{a_{x}}\right|_{x=2 \text { plane }} \\
& =4(2)^{5} \times 4 \times 4=2048 \text { Coulombp }
\end{aligned}
$$

$$
\psi_{\text {tront }}=2048 \text { Coulombin }
$$

$$
\psi_{\text {total }}=\psi_{\text {tont }}+\psi_{\text {back }} \Rightarrow \psi_{\text {total }}=2048+2048
$$

(大) We $\psi_{\text {total }}=4096$ Coulomino
$2^{\text {nd }}$ mettod using divergence theorm; $D=4 x^{5} a_{x} \bar{c}_{m}{ }^{2}$

$$
\begin{aligned}
& \Psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d S}=\int_{\left\langle v_{0}\right\rangle}(G \cdot \bar{D}) d v \text { Cioulontion } \\
& \nabla \cdot \bar{D}=20 x^{4} y_{m 3} \Rightarrow \psi_{\text {total }}=\int_{\langle v\rangle} 20 x^{4} d x d y d z \\
& =20 \int_{-2}^{2} x^{4} d x \int_{-2}^{2} d y \int_{-2}^{2} d z=20 \times 12.8 \times 4 \times 4=4096 \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Psi_{\text {bact }}\right|_{x=-2 \text { plane }}=\int_{\langle s\rangle} \bar{D}_{x} \cdot d s=\int_{\langle s\rangle} 4 x^{5} \bar{a}_{x} \cdot d y d z(\overline{-a}) \\
& =-\left.4 x^{5} \int_{y=-2}^{2} d y \int_{z=-2}^{2} d z a^{\frac{1}{a}}\right|_{x=-2} \text { plone } \\
& =-4(-2)^{5} \times 4 \times 4=+2048 \text { Coulombin } \\
& \psi_{\text {back }}=2048 \text { Cioulonb'n }
\end{aligned}
$$

Find the total charge in a volume defined by six planes for which $1 \leq x \leq 2.2 \leq y \leq ?$. $3 \leq \varepsilon \leq 4$. if $\vec{D}=\left(4 \times \vec{a},+3 y^{2} \hat{a}_{y}+2 z^{2} \vec{a},\right)$ Coulomb/m ${ }^{2}$.
(06 Marks)
Soly': Method-I:- using Gauriohew

$$
\begin{aligned}
& \text { Soly: Method-I :- woing GaurioLaw } \\
& \psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d S}=\psi_{\text {top }}+\psi_{\text {bottom }}+\psi_{u_{y t}}+\psi_{\text {inght }}+\psi_{\text {front }}+\psi_{\text {back }} .
\end{aligned}
$$

$$
\begin{aligned}
&\left.P_{\text {bottom }}\right|_{2=3 \text { plone }} \int_{S S} \bar{D}_{3} \cdot \overline{d s}=\int_{<S>} 2 z^{2} \overrightarrow{a_{3}} \cdot\left(-d x d y \overline{a_{3}}\right) \\
&=-2 z^{2} \int_{x=1}^{2} d x \int_{y=2}^{3} d y \overline{a_{3}} \overrightarrow{a_{z}}=-2(3)^{2}(1)(1)=-18 \text { coulombs } \\
& \Psi_{\text {bottom }}=-18 c
\end{aligned}
$$

$\left.\psi_{L+4}\right|_{y=\text { 2plane }\langle S\rangle} \overline{D_{y}} \cdot \overline{d s}=\int_{\langle S\rangle} 3 y^{2} \overline{B_{y}} \cdot d x d_{z}\left(-\overline{a_{y}}\right)$

$$
=-\left.3 y^{2} \int_{x=1}^{2} d x\right|_{y=3} ^{4} d z a_{y} \lambda_{y}^{\prime}=-3(2)^{2}(1)(1)=-12 \text { Coulant }
$$

$$
\begin{aligned}
& \left.\psi_{\text {right }}\right|_{y=\text { 3plane }}=\int_{\langle s\rangle} \overline{D_{y}} \cdot \overline{d s}=\int_{\langle s\rangle} 3 y^{2} \overline{a_{y}} \cdot d x d z\left(+\overline{a_{y}}\right) \\
& =3 y^{2} \int_{x=1}^{2} d x \int_{z=3}^{4} d z \quad a_{y} \tilde{a}_{j}^{1} \cdot a_{y}=3(3)^{2}(1)(1)=27 \text { Coulontin } \\
& \left.\Psi_{\text {front }}\right|_{x=2 \text { plane }}=\int_{\langle S\rangle} \overline{D_{x}} \cdot \overline{d s}=\int_{\langle s\rangle} 4 x \overline{a_{x}} \cdot d y d z \overline{a_{x}} \\
& \Psi_{\text {right }}=27 c \\
& =4 \times \int_{y=2}^{3} d y \int_{z=3}^{4} d_{z} \bar{a}_{x} \cdot \cdot \frac{1}{a_{x}}=4(2)(1)(1)=8 \text { Coulontín } \\
& \text { Yfont }=8 \\
& \left.\psi_{\text {back }}\right|_{x=1 \text { plane }}=\int_{\langle S\rangle} \bar{D}_{2} \cdot \overline{d s}=\int_{\langle s\rangle} 4 x \bar{a}_{x} \cdot d y d_{3}\left(-\bar{a}_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{\text {totat }}=32-18-12+27+8-4=33 \text { Coulom b' } n
\end{aligned}
$$

(o) 4 total $\doteq 33$ Cioundí?
(or) $2^{\text {nd method }}$ - using divergenutheorm i.e $\oint_{\langle s\rangle} \bar{D} \cdot \overline{d s}=\int_{\langle w D} \nabla \cdot \bar{D} d v$

$$
\begin{aligned}
& \bar{\nabla} \cdot \bar{D}=\frac{\partial D_{2}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=[4+6 y+4 z] \\
& \int_{\langle\text {vol }}[4+6 y+4 z] d x=\int_{\langle\text {vol }} 4 d v+\int_{\langle u 01\rangle} 6 y d x+\int_{\langle u-1\rangle} 4 z d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left.4 \int_{x=1}^{2} d x \int_{y=2}^{3} d y\right|_{z=3} ^{4} d z+\left.6 \int_{x=1}^{2} d x\right|_{y=2} ^{3} y d y \int_{z=3}^{4} d z+\left.\left.4 \int_{x=1}^{2} d x\right|_{y=2} ^{3} d y\right|_{z=3} ^{4} z d z \\
& =4(1)(1)(1)+6(1)(2.5)(1)+4(1)(1)(3.5) \\
& =4+15+14=33 \text { coulombio } \\
& \dot{\phi} \quad \psi_{\text {total }}=\phi_{\Delta S} \bar{D} \cdot d \Delta=\int_{\left\langle w_{0}\right\rangle} \sigma \cdot \bar{D} d x=33 \text { Cioulombis }
\end{aligned}
$$

problem $6 \cdot \bar{D}=\left(2 y^{2} z-8 x y\right) \overline{a_{n}}+\left(4 x y z-4 x^{2}\right) \bar{a}_{y}+\left(2 x y^{2}-4 z\right) \bar{a} \bar{a}^{2}{ }^{2}$
10 June/July 2016
Let $\vec{D}=\left(2 y^{2} z-8 x y\right) \hat{h}_{x}+\left(4 x y z-4 x^{2}\right) \hat{a}_{y}+\left(2 x y^{2}-4 z\right) \hat{k}_{2}$. Deterimine the total charge within

(0 SMarks)
Solui:

$$
Q_{\text {totel }}=\text { ? }
$$

$$
v=10^{-14} m^{3}-p(1,-2,3) .
$$

Maxall' firat q^{4}

$$
\nabla \cdot \bar{D}=\rho_{u} \varphi_{m^{3}}
$$

total charge $Q_{\text {trat }}=\int_{\text {u }} \cdot($ Volume $)$. Coulombin

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z} \cdot C_{m}^{3} \\
& \left.\bar{D}=\left(2 y^{2} z-8 x y\right) \overline{a_{x}}+\left(4 x y z-4 x^{2}\right) \overline{a_{y}}+\left(2 x y^{2}-4 z\right) \overline{a_{z}} c_{m}\right] \\
& D_{x}=2 y^{2} z-8 x y ; D_{y}=4 x y z-4 x^{2} ; D_{z}=2 x y^{2}-4 z \\
& \frac{\partial D_{x}}{\partial x}=-8 y ; \quad \frac{\partial D_{y}}{\partial y}=4 x z ; \frac{\partial D_{z}}{\partial z}=-4 \\
& \nabla \cdot \bar{D}=[-8 y+4 x z-4] C_{m}^{3} \\
& \left.\nabla \cdot \bar{D}\right|_{0} ;(1,-2,3)
\end{aligned}
$$

$$
\therefore \quad S_{v_{@ p}}=24 \mathrm{~cm}^{3}
$$

the total charge $\left(Q_{t}\right)$ within the whume $v=10^{-14} \mathrm{~m}^{3}$

$$
\begin{aligned}
& \text { total charge }\left(Q_{t}\right) \text { Nithin the } \\
& \text { is } Q_{t}=S_{1} \times \text { volume }=24 \times 10^{-14} \text { Coulombin. } \\
& Q_{4}=240 \times 10^{-15}=240 f G \quad f=\text { ando }=1 \times 10^{-15}
\end{aligned}
$$

Topic2.5
Vector operator and concept of Divergence \& Divergence in all 3 co-ordinate systems
Vector decrator (V)?-

- ∇ operator is a vator opecator it can be opurate on scalar aourel as vector.
\Rightarrow 'vetor

$$
\bar{\nabla} \times \bar{A}=[u+1
$$

$$
\Rightarrow \text { "Scater" }
$$

$$
\Rightarrow \text { vator. }
$$

$\forall \nabla$ in all three corpdinates system.
[artesian $C \cdot S=P(x, y, z)$

$$
d x x^{2} d y d z
$$

$$
\dot{x} \nabla=\frac{\partial}{\partial x} \overline{a_{x}}+\frac{\partial}{\partial y} \bar{a}_{y}+\frac{\partial}{\partial z} \bar{a}_{z} m^{-1}
$$

$\rightarrow \nabla$ in Eylincrical $C \cdot S:-p(f, \phi, z)$
\dot{y}

$$
\begin{aligned}
& \nabla=\frac{\partial}{\partial \rho} \bar{a}_{\rho}+\frac{1}{\rho} \frac{\partial}{\partial \phi} \bar{a}_{\phi}+\frac{\partial}{\partial z} \bar{a}_{z} \mathrm{~m}^{-1}
\end{aligned}
$$

$\rightarrow \nabla$ in Spherical [o. System $\rho-p(r, \theta, \phi)$

$$
\nabla=\frac{\partial}{\partial r} \overline{a_{\gamma}}+\frac{1}{\gamma} \frac{\partial}{\partial \theta} \bar{a}_{\theta}+\frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \phi} \bar{a}_{\phi} m^{-1}
$$

(7)
2.5a. Concept of Divergence:-

Lt us-Eonsider Ferric Flux density (\bar{D}) in general form

$$
\bar{D}=D_{x} \overline{a_{1}}+D_{y} \overline{a_{y}}+D_{z} \overline{a_{z}} C_{m z}
$$

soke from Gaunin Law

$$
\begin{align*}
& \oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=Q=\left[\frac{\partial D_{x}}{\partial x}+\frac{\partial \dot{D}_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}\right] \Delta x \Delta y \Delta z \\
& \oint_{\langle\bar{D}\rangle} \bar{d} \cdot \overline{d s}=Q=\left(\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}\right) \Delta \dot{v} \tag{a}
\end{align*}
$$

charge inclond in volume $\Delta v=\left(\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}\right) \times$ volume from eq (a)

$$
\begin{aligned}
& \text { from cq } @ \\
& \frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\frac{\oint_{s x} D \cdot{ }^{3}}{\Delta v}=Q / \Delta v
\end{aligned}
$$

when volume shinto to zero ie $\lim _{\Delta v \rightarrow 0}$
\pm

$$
\int \frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\lim _{\Delta v \rightarrow 0} \frac{\oint_{\bar{D}} \cdot \overline{d s}}{\langle s\rangle}=\rho_{u} d \mathrm{~cm}^{3}
$$

\therefore The Divergnce of \bar{D} is defined as
Wiki Divergence of $\bar{D}=\operatorname{div} D=\lim _{\Delta u \rightarrow 0} \frac{\oint^{3} \bar{D} \cdot d s}{\Delta v} \operatorname{cm}^{3}=\delta v \varphi_{n^{3}}$
 of flux from a Small closed surface per unit volume as the volume Shrink to zero.
physical meaning of a Divergence (contd)? -
the Divergence of \bar{D} at a given point is a measure of tow much the fired repricinted by D diverges $(o r)$ converges from that point.

1. $\bar{\nabla} \cdot \bar{D}>0$ ie $\nabla \cdot \bar{D}=+v e$ if the fred is diverging at point P of viator field \vec{D} as shown in the figa. Then divergence of \bar{D} at point P is positive. the field is Spreading out from point P.
2. $\bar{\nabla} \cdot \bar{D}<0$ i.e $\nabla \cdot \bar{B}=-v e$. If the fred is converging at the point p as shawn in the figs, then the divergence of $\frac{D}{}$ at the point P is negative.
3. $\nabla \cdot \vec{D}=0$. whatever field is converging -same is diverging then the divergence of \bar{D} at point p in zero.

Diverging.

$$
\rightarrow \rightarrow \cdot \rho \rightarrow \rightarrow
$$

$$
\rightarrow \rightarrow \rightarrow \rightarrow
$$

$$
\nabla \cdot \bar{D}=0
$$

fired flow.

Diverging. Converging
(si) Divergence in all three Coordinate Systems P,
a system.

1. Eartesion Coordinate system.

$$
\begin{aligned}
& \quad \begin{array}{l}
p(x, y, z) \\
d x^{\swarrow} \\
d y
\end{array} d_{z}
\end{aligned}
$$

$$
\dot{\otimes} \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z} \mathrm{Cm}^{3}
$$

$$
\bar{D}=D_{x} \overline{a_{x}}+D_{y} \overline{a_{y}}+D_{z} \overline{a_{z}} C_{m}^{2}
$$

3. Maxuell's First Equation(Electrostatics)[point form of Gauss's Law] Grumse Law is Aifterntialform 02-DEC2008/Ian 2009 02 - June /July 2011 2 When Withisuar botations obtam differential fom of Gauss'staw, i.e, $v, \overline{\mathrm{~B}}=\mathrm{p}_{\mathrm{v}}$.
4. Derive Maxwell's first equation in electrostatics.
5. Eylindrical Eo-ordinate System.
suln-refer Page NO- 163
\qquad
\qquad

\qquad
6. Eylindrical

$$
d x=\int d d p d z
$$

$$
\bar{D}=D_{\rho} \bar{a}_{\rho}+D_{\phi} \bar{a}_{\phi}+D_{z} \bar{a}_{3} \varphi_{m}{ }^{2}
$$

$$
\bar{\nabla} \cdot \bar{D}=\frac{1}{\rho} \frac{\partial\left(\rho \cdot D_{j}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi}+\frac{\partial D_{z}}{\partial z} \quad \varphi_{n^{3}}
$$

3. Spherical $/$ polarc (o.ordinate system:-
$D_{D}=D_{r} \overline{a r}+D_{\theta} \bar{a}_{\theta}+D_{\phi} \bar{a}_{\phi} d m^{2}$

$$
\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} D_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta D_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial D_{\phi}}{\partial \phi} d d_{n}=
$$

$$
\begin{aligned}
& d u=r^{2} \sin \theta d r d d \phi
\end{aligned}
$$

lopic 2.6
(8) Derivermax urlitarthrat q^{4} in elutrostatios.

Maxpell'o first equection (Elutrostatics) point form fi Gaurin Law:-

$$
\bar{D} \cdot \bar{D}=\rho \times C m^{3}
$$

from Gaunindaw $\oint_{\langle S\rangle} \bar{D} \cdot \overrightarrow{d S}=Q \quad$ Corlombn.

$$
\frac{\oint \bar{D} \cdot d}{\Delta v}=Q / \Delta u
$$

as volume strinks fo zero $\lim _{\Delta u \rightarrow 0} \frac{\phi \frac{\partial \cdot d \Delta}{\Delta v}}{\Delta v}=\lim _{\Delta v \rightarrow 0} Q / \Delta v \propto$ (2).
using \neq

from dufn of vadem chargedinsity $f_{u}=d \theta / d v=\lim _{\Delta x \rightarrow 0} Q / \Delta v \mathrm{~cm}^{3}$

$$
\nabla \cdot \bar{D}=\frac{\partial D x}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\lim _{\Delta v \rightarrow 0} \oint_{s z} \bar{D} \cdot \sqrt{s}{ }^{\Delta v}=\lim _{4 u \rightarrow 0} Q / \Delta v=\rho_{v} C_{m}^{3}
$$

"it statsothat the Elutric Rlux per unt volume Leaving a vanishingly Small volume unit is exactly equal to the volume charge density $(\mathrm{Su})^{n}$.
\qquad

$$
\begin{align*}
& \text { } \omega \cdot k+\text { from concept } \& \text { divergence (} \infty \\
& d_{\| D}=\nabla \cdot \bar{D}=\lim _{\Delta v \rightarrow 0} \frac{\oint_{\Delta\rangle} \bar{D} \cdot \sqrt{d g}}{4 v}-\operatorname{cm}^{3} . \\
& \nabla \cdot \vec{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\lim _{\Delta v \rightarrow 0} \frac{\oint_{s} \bar{D} \cdot \overline{d s}}{\Delta v} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \text { 10-pegjo } 0^{2}=16 \text {, } \\
& 15 \text { 日et }[\tan -2017] \\
& \text { (BBCssiteme) }
\end{aligned}
$$

roteis
Gounshaw rlats the fiex heaving any losed Surtave to the charge enclosed and Maxulef's fintequation makes an dentival Statiment on a per unit volume basin for - - - a Vaniohingly small volume.

$$
\bar{D}=2 \sin \phi \overline{a_{\rho}}+\rho \sin \phi \overline{a_{z}} c_{m}^{2} \text {. } \quad[10-D e c-\operatorname{san} 20
$$

Solut: $\bar{D}=\bar{a}$. $\bar{a}(10-D e c-\tan 2016)$
Solut:

$$
\begin{array}{r}
\bar{D}=\bar{z} \sin \phi \bar{a}_{\rho}+f \\
p\left(1,30^{\circ}, 2\right)
\end{array}
$$

given \vec{D} is in Cylindrical $\begin{gathered}\text { Cordinate system } \\ 70\end{gathered}$

$$
\begin{aligned}
& \therefore \nabla^{\prime} \cdot \bar{D}=\frac{1}{\rho} \frac{\partial\left(\rho \cdot D_{s}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi}+\frac{\partial D_{2}}{\partial z} \rho_{m}{ }^{3}=\rho_{v} . \\
& D_{\rho}=2 \sin \phi, \quad D_{\phi}=0, \quad D_{z}=\rho \sin \phi . \\
& \nabla \cdot \vec{D}=\rho_{V}=\frac{1}{\rho} \frac{\partial}{\partial \rho}[\rho \rho \sin \phi]+\frac{\partial}{\partial z}[\rho \sin \phi] \\
& =\frac{z \sin \phi}{\rho} \frac{\partial}{\partial \rho}(s)+>^{\prime}+0 \\
& \nabla \cdot \vec{D}=\rho_{v}=\frac{z \sin \phi}{\rho} \\
& \bar{\nabla} \cdot \bar{D} @ P\left(1,30^{\circ}, 2\right) \quad \rho=1, \phi=30^{\circ}, z=2 \\
& \nabla \cdot \bar{D}=\int_{V_{P}}=\frac{(2) \sin \left(30^{\circ}\right)}{(1)}=2 \times 1 / 2=2 \operatorname{cm}^{3}
\end{aligned}
$$

± 0 $f_{u_{p}}=1 \quad$ m 3 volume charge dinsity at $P\left(1,30^{\circ}, 2\right)$

Determine the volume charge density, if the feld is $\bar{D}=\frac{10 \cos 0 \sin \phi}{\mathrm{r}}$ a a : $\mathrm{m}^{\text {: }}$ (0. Marks)
Solu:-

$$
\bar{D}=\frac{10 \cos \theta \sin \phi}{\gamma} \operatorname{ar}_{r} q_{m}^{2} .
$$

$$
D_{r}=\frac{10 \cos \theta \sin \phi}{r} ; \quad D_{\phi}=0, \quad D_{\theta}=0 \ln ^{2}
$$

$\nabla \cdot \bar{D}$ in spherical coordinate system is

$$
\begin{aligned}
& S_{u}=\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} D r\right]+\frac{1}{\gamma \sin \theta} \frac{\partial(\sin \theta \theta \theta)}{\partial \theta}+\frac{1}{\partial \sin \theta} \frac{\partial D_{\phi}}{\partial \phi} \\
& =\frac{1}{\gamma^{2}} \frac{\partial}{\partial \gamma}\left[\gamma^{2} \frac{10 \cos \theta \sin \phi}{\partial}\right] \\
& J_{\psi}=\nabla \cdot \nabla \cdot \frac{1}{\gamma^{2}} 10 \cos \theta \sin \phi \frac{\partial \gamma}{\partial \gamma} .
\end{aligned}
$$

Viblume charge dinsity bu

$$
f_{u}=\nabla \cdot \bar{D}=\frac{10 \cos \theta \sin \phi}{\gamma^{2}} \int \mathrm{~m}^{3}
$$

Pooblemq $\rightarrow \overrightarrow{e^{\prime}} \bar{D}=\frac{1}{z^{2}}\left[\operatorname{loryz} \overline{a_{n}}+5 x^{2} z \overline{a_{y}}+\left(2 z^{3}-5 x^{2} y\right) \overline{a_{z}}\right] \mathrm{cm}^{2}$.

$$
\bar{D}=5 z^{2} a_{\rho}+10 \rho z \bar{a}_{z} \text { at } p(3,-4,5 ; 5) \text {. }
$$

Calculate the divergence of vector D at the points specified using eartesian, cylindrical and spherical coordinates:
Hant

$[10-\mathrm{Jon} 2012]$
$\left[\begin{array}{ll}{[\omega \cdot H \cdot H \text { Hayt }]}\end{array}\right.$
iii) $\bar{D}=2 r \sin \theta \sin \phi \overline{a_{r}}+r \cos \theta \sin \phi \overline{a_{\theta}}+r \cos \phi \overline{a_{\phi}} \varphi_{m}{ }^{2}$

$$
\text { at } P\left(3,-45^{\circ}-45^{\circ}\right)
$$

soly.:-

$$
i \cdot \bar{D}=\frac{1}{z^{2}}\left[10 x y z \overline{a_{x}}+5 x^{2} z \overline{a_{y}}+\left(2 z^{3}-5 x^{2} y\right) \overline{a_{z}}\right] \rho_{m}^{2}
$$

$$
D_{x}=10 \frac{x y}{z} ; \quad D_{y}=\frac{5 x^{2}}{z} ; \quad D_{z}=2 z-\frac{5 x^{2} y}{z^{2}}
$$

$$
\nabla \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\rho_{x} c_{m^{3}}
$$

$$
\frac{\partial D_{x}}{\partial x}=10 y / 3, \quad \frac{\partial D_{y}}{\partial y}=0 ; \quad \frac{\partial D_{z}}{\partial z}=2+\frac{10 x^{2} y}{z^{3}}
$$

$$
\nabla \cdot \bar{D}=S_{u}=\frac{10 y}{3}+0+2+\frac{10 x^{2} y}{3^{3}}
$$

$J_{U} @ p(2,3,5) \quad x=2, y=3$ and $z=5$.

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\int_{u_{p}}=\frac{10(3)}{5}+2+\frac{10(2)^{2}(3)}{(5)^{3}}=6+2+0.96 \\
& X^{\prime} \phi \nabla \cdot \bar{D}=f_{u_{p}}=8.96 \mathrm{~cm}^{3}
\end{aligned}
$$

ii) $\bar{D}=5 z^{2} \overline{a_{\rho}}+105 z \overline{a_{z}}$ at $p\left(3,-45^{\circ}, 5\right)$

$$
\begin{aligned}
D_{\rho} & =5 z^{2}, \quad D_{\phi}=0 . \quad D_{z}=10 \rho \mathrm{z} \\
\nabla \cdot \bar{D} & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho D_{\rho}\right)+\frac{1}{5} \frac{\partial D \phi}{\partial \phi}+\frac{\partial D_{z}}{\partial z}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\rho_{v} \\
&=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \cdot 5 z^{2}\right)+0+\frac{\partial}{\partial z}(109 z) \\
&=\frac{5 z^{2}}{\rho}+109 ; p\left(3,-45^{\circ}, 5\right) \\
& \nabla \cdot \bar{D}=\rho_{u_{p}}=\frac{5(5)^{2}}{3}+10(3)=7106666 \mathrm{~cm}^{3} \\
& \nabla \cdot \bar{D}=\rho_{u_{p}}=71.67 \mathrm{~cm}^{3}
\end{aligned}
$$

$\left\{i i^{\circ}\right\rangle \bar{D}=2 r \sin \theta \sin \phi \overline{a_{r}}+r \cos \theta \sin \phi \overline{a_{\theta}}+r \cos \phi \bar{a}_{\phi} c m_{m}^{2}$. at $p\left(3,-45^{\circ},-45^{\circ}\right)$

$$
\begin{equation*}
\text { Dept. or EZCE, SVCE }=6(1 / \sqrt{2})(1 / \sqrt{2})+0-1=6(1 / 2)-1=3-403 \tag{25}
\end{equation*}
$$

$$
\begin{aligned}
& D_{r}=2 r \sin \theta \sin \phi ; \quad D_{r}=r \cos \theta \sin \phi, \quad D_{\mu}=r \cos \phi . \\
& \nabla \cdot \bar{D}=\rho_{V}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} D_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta D_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial D_{\phi}}{\partial \phi} \varphi_{m^{3}} \\
& \frac{\partial\left(r^{2} D r\right)}{\partial r}=\frac{\partial}{\partial r}\left[r^{2} \cdot 2 r \sin \theta \sin \phi\right]=6 r^{2} \sin \theta \sin \phi . \\
& \frac{\partial\left(\sin \theta D_{\theta}\right)}{\partial \theta}=\frac{\partial}{\partial \theta}[\sin \theta r \sin \phi \cos \theta]=\frac{1}{2} r \sin \phi \frac{\partial}{\partial \theta}[\sin (2 \theta)] \\
& =\frac{r \sin \phi}{2} \cdot \cos (2 \theta) \cdot \psi=r \sin \phi \cos (2 \theta) \\
& \frac{\partial D \phi}{\partial \phi}=\frac{\partial}{\partial \phi}[r \cos \phi]=-r \sin \phi . \\
& \nabla \cdot \bar{D}=\rho_{v}=\frac{1}{x^{2}} 6 x^{2} \sin \theta \sin \phi+\frac{1}{\partial \sin \theta}[x \sin \phi \cos (2 \theta)]+\frac{1}{\partial \sin \theta}[-x \sin \phi- \\
& =6 \sin \theta \sin \phi+\frac{\cos (2 \theta)}{\sin \theta} \sin \phi-\frac{\sin \phi}{\sin \theta} \\
& \nabla \cdot \bar{D}=\int_{\rho\left(3,-45^{\circ}-4,5^{\circ}\right)} \quad 6 \sin \left(-45^{\circ}\right) \sin \left(-45^{\circ}\right)+\frac{\cos \left(90^{\circ}\right)^{\circ} \sin \left(-45^{\circ}\right)}{\sin \left(-45^{\circ}\right)}-\frac{\sin \left(45^{\circ}\right)}{\sin \left(45^{\circ}\right)}
\end{aligned}
$$

$$
\nabla>\nabla \cdot \bar{D}=S_{U_{p}}=2 \mathrm{c} m^{3}
$$

problemio $\rightarrow \bar{D}=5 \sin \theta \bar{a}_{\theta}+5 \sin \phi \overline{a_{\phi}} \mathrm{cm}^{2}$.
10-June /luly 2012

Soly:- $\vec{D}=5 \sin \theta \bar{a}_{\theta}+5 \sin \phi \bar{a}_{\phi} \overline{\varphi m}^{2}{ }_{\left(0.5 m, \frac{\pi}{4}, ~ T / 4\right) . ~}^{\text {. }}$

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial\left(x^{3} D_{0}\right)^{0}}{\partial r}+\frac{1}{\gamma \sin \theta} \frac{\left.\partial D_{\theta} \sin \theta\right)}{\partial \theta}+\frac{1}{\gamma \sin \theta} \frac{\partial 0_{\phi}}{\partial \phi} \ln ^{3} \\
& D_{r}=0 ; \quad D_{\theta}=5 \sin \theta ; \quad D_{\phi}=5 \sin \phi \\
& \nabla \cdot \bar{D}=\rho_{v}=\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}[5 \sin \theta \sin \theta]+\frac{1}{r \sin \theta} \frac{\partial(5 \sin \phi)}{\partial \phi} \\
& =\frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \theta}\left(5 \sin ^{2} \theta\right)+\frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \phi}(5 \sin \phi) \\
& =\frac{5}{r \sin \theta} \times 2 \sin \theta \cos \theta+\frac{1}{\gamma \sin \theta} 5 \cos \phi \\
& \nabla \cdot \bar{D} @ P(0.5 \mathrm{~m}, \pi / 4, \pi / 4) \\
& \theta=\phi=\pi / 4 \\
& \nabla / \cdot \bar{D}=\left.\right|_{U_{p}}=\frac{5}{(0.5) \sin \pi / 4} \times 2 \sin / /_{4} \cos \pi / 4+\frac{5}{(0.5)} \frac{\cos (\pi 14)}{\sin (1) 4)} \\
& =20(1 / \sqrt{2})+10 \frac{(1 / \sqrt{2})}{(x / \sqrt{2})}=24.142 \varphi_{n^{3}} \\
& \nabla \nabla_{C D}=f_{u_{p}}=24.142 \quad \varphi_{\mathrm{m}^{3}}
\end{aligned}
$$

Solu:-

$$
\bar{D}=5 r^{2} \bar{a}_{r} \mathrm{~m} \int_{\mathrm{m}}{ }^{2} ; r \leq 0.08 \mathrm{~m}
$$

$$
{ }^{0} \mathrm{bl}_{22} D_{\theta}=0
$$

Casi. $\quad D_{r}=5 r^{2} \mathrm{mc} / \mathrm{m}^{2}$ for $r \leqslant 0.08$
caneii.

$$
D_{r}=\frac{0.205}{r^{2}} \mathrm{mcm}^{2} \text { for } r \geq 0.08
$$

$$
\begin{aligned}
& \rho_{v}=\nabla \cdot \frac{\partial}{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot 5 r^{2}\right] \quad \mathrm{mcm}_{\mathrm{m}}{ }^{3} \\
& =\frac{5}{\gamma^{2}} \frac{\partial}{\partial r}\left[\gamma^{4}\right]=\frac{5}{\gamma^{2}} \cdot 4 \gamma^{3} \mathrm{mem}^{3} \\
& f_{N}=\nabla \cdot \overrightarrow{0}=20 \gamma \mathrm{mcm}^{3} ; \gamma \leqslant 0.08 \mathrm{~m} \\
& \rho_{v}=20(0.06)=1.2 \mathrm{mcm}^{3} ; r=0.06 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{D}=\frac{0.205}{r^{2}} \text { ar } \mu \mathrm{c} / \mathrm{m}^{2} \text { for } r \geq 0.08 \mathrm{~m} \\
& \left.\delta_{v}=\bar{\nabla} \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} D_{r}\right]+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \theta \theta \sin \theta\right] \\
& +\frac{1}{r \sin \theta} \frac{\partial D \phi}{\partial \phi}>0 \text { be } D \phi=0 \text {. } \\
& S_{v}=\nabla \cdot \bar{D} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} D_{r}\right] \quad \varphi_{m} 3
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{y}=\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot \frac{0.95}{r^{ \pm}}\right] \mathrm{m} / \mathrm{m}^{3} \\
& =\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}[6.205] \ldots m f_{m}{ }^{0} . \\
& \rho_{v}=\bar{V} \cdot \bar{D}=0 \quad \mathrm{mcm}_{\mathrm{m}}{ }^{3} ; \gamma>0.08 \mathrm{~m} \\
& f_{U} @ r=0.1 \mathrm{~m} \text { io } \\
& \infty \\
& \left.\rho_{v}\right|_{r=0.1}=\square . \bar{D}=0 \mathrm{mcm}^{3} \\
& \nabla \cdot \bar{D}=f_{4}=20 \mathrm{~V} ; 8 \leq 0.08 \mathrm{~m} \\
& \text { Q27> solu1- } \\
& \rho_{v_{@ r=0.06 m}}=1.2 \mathrm{nfl}^{3} \\
& \sigma \cdot \bar{D}=\rho_{4}=0 ; \gamma>0.08 m . \\
& \text { and } \\
& \rho_{y_{\text {er }}=0.1 \mathrm{~m}} \frac{e}{2} \nabla_{0} \bar{D}=0 \mathrm{mcm}{ }^{3}
\end{aligned}
$$

problem 12 $\Rightarrow \bar{D}=r \overline{a r}+\sin \theta \overline{a_{0}}+\sin \theta \cos \phi \overline{a_{y}} 4_{m}^{2}$

$$
\leftarrow\left(4 m, 45^{\circ}, 60^{\circ}\right) \cdot 10 \cdot \text { Ine / Jullz } 2015
$$

Find the volume charge density at $\left(4 \mathrm{~m}, 45^{\circ}, 60^{\circ}\right)$. If the electric nux density is given by, $\hat{\mathrm{D}}=\left(\hat{a_{r}}+\sin \theta \hat{a}_{a}+\sin \theta \cos \hat{\hat{a}_{\phi}}\right) \mathrm{C} / \mathrm{m}^{2}$.
Solu:-

$$
\begin{aligned}
\bar{D}= & r\left(\hat { a _ { 1 } + \operatorname { s i n } \theta \hat { a } _ { 0 } + \operatorname { s i n } \theta \operatorname { c o s } \phi \hat { a _ { \theta } }) } \left(\operatorname{cm} m^{2}\right.\right. \\
& p\left(4,45^{\circ}, 60^{\circ}\right)
\end{aligned}
$$

$$
\begin{gathered}
P(4,45,60) \\
D_{r}=\gamma d_{\mathrm{m}}{ }^{2} ; D_{\theta}=\sin \theta \mathrm{mm}^{2} ; D_{\phi}=\sin \theta \cos \phi \mathrm{cm}^{2} .
\end{gathered}
$$

$$
\rho_{u}=\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot D_{r}\right]+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta^{\prime}}\left[\sin \theta \cdot D_{\theta}\right]
$$

$$
+\frac{1}{r \sin \theta} \frac{\partial D \phi}{\partial \phi} \leq \frac{?}{0}
$$

$$
\rho_{v}=\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot \frac{r}{}\right]^{r^{3}}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}[\sin \theta \cdot \sin \theta]
$$

$$
+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}[\sin \theta \cos \phi]
$$

+

$$
f_{y_{p}}=\nabla \cdot \vec{D}=3.1369 \mathrm{gm}^{3}
$$

$$
\begin{aligned}
& \rho_{v}=\nabla \cdot \vec{D}=\frac{1}{\gamma^{2}} \cdot 3 \gamma^{2}+\frac{1}{r \sin \theta} 2 \sin \theta \cos \theta+\frac{1}{r \sin \theta} \sin \theta(-\sin \phi) \\
& \rho_{V}=\bar{V} \cdot \vec{D}=3+\frac{2 \cos \theta}{\gamma}+\frac{(-\sin \phi)}{\gamma} \\
& r=4 \mathrm{~m} ; \theta=45^{\circ}, \phi=60^{\circ} \\
& =3+\frac{2 \cos \left(45^{\circ}\right)}{4}-\frac{\sin \left(60^{\circ}\right)}{4} \\
& =3+0.3535-0.2165=3.1369 \mathrm{~cm}^{3}
\end{aligned}
$$

opic 2.7 Divergence theorem.

- © Divergence-Theorem
, 02-Junifjuly-2012, 06-J/J 2009,
$10-\mathrm{J} / \mathrm{J} 2016,06-\mathrm{J} \mid \mathrm{J} 20 \mathrm{~B}, 06 \mathrm{Jan} 2013 \mathrm{~J}$.
State and prove divergence theorem.
(or)

Stare and prove Gauss's Divergence theorem.
(06 Marks)
(o)

02 - June / July 2012 \qquad
State and prove Gauss divergence theorem, hence arrive at Poisson s equation.
(i) Marks) 06- June / July 2009

\qquad

Dankan IV Gouda MIch, (P lug) Assistant Professor, Dept. of E\&CE Email:Hankan.eceã sucengg.com

Statement:." The Divergence theorem state that the total: Flux craning the closed surface is equal to the volume integral of the divergence of the fluxdensity throughout the enclosed volume".
proof:-

from Gausin Law

$$
\psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overrightarrow{d S}=Q_{\text {en. }} \quad \text { Coulomb's }<0
$$

the volume charge dinsity $\rho_{v}=\frac{d g}{d v} 9 \overline{m^{3}}$

$$
\Rightarrow \begin{align*}
d Q & =\rho_{u} d v \\
Q & =\int_{\text {Luov }} \rho_{u} d u \tag{G}
\end{align*}
$$

equating $q^{u(1)}$ and $q^{u}(2)$

$$
\begin{aligned}
& \oint_{\langle s\rangle} \bar{D} \cdot \overline{d S}=Q=\int \rho_{u} d v \quad \text { Cuoulombis } \\
& \left.<u_{0}\right\rangle
\end{aligned}
$$

using Maxpotiotint quation (elutrostatic) i.e $\delta v=\nabla \cdot \bar{D} \varphi_{m^{3}}$

$$
\oint_{\langle S\rangle} \frac{\rho_{D}}{i \cdot e} \overline{d s}=Q=\int_{\left\langle\mu_{01}\right\rangle} \rho_{1} d v=\int_{\left\langle u_{0}\right\rangle}(\nabla \cdot \bar{D}) d v
$$

xix:

Note:This relation in true for any gencral vector \bar{A}. Divergence theorem. Coulombin

$$
\begin{gather*}
\hline \text { Dept of ERCE, SVCE } \tag{31}\\
i \cdot e
\end{gather*} \oint_{S} \widetilde{A} \cdot \overline{d S}=\int(\nabla \cdot \vec{A}) d v .
$$

poimonin eq4..
from noxwich firsteg"

$$
\begin{aligned}
\nabla \cdot \bar{D} & =\rho_{v} \mathrm{c}_{m^{3}} \\
\nabla \cdot(\epsilon \bar{E}) & =\rho_{v} \\
\in \nabla \cdot \bar{E} & =\rho_{v} \\
\nabla \cdot \bar{E} & =f_{v} / \epsilon \quad Q_{n^{2}}
\end{aligned}
$$

using potential gradiunt

$$
\begin{align*}
& \text { ie } \bar{E}=-\nabla V v / m . \\
& \nabla \cdot(-\nabla v)=\rho v / \epsilon \\
& \nabla^{2} v=-\rho_{v / E} V / m^{2} \tag{a}
\end{align*}
$$

qe(a) called poimohh cqu derived from poinbfom of Gounin Law.

Hast problem $13 \quad \bar{D}=2 x y \overline{a_{x}}+x^{2} \quad \overline{a_{y}} \mathrm{~cm}^{2} \quad 10$. Dec $/$ Jan 2016.
6. Verify bot sides of Gauss Divergence theorem if $\vec{D}=2 x y \overrightarrow{a x}+x^{2} \overrightarrow{a y} \quad \mathrm{c} / \mathrm{m}^{2}$ present in the region bounded by $0 \leq x \leq 1,0 \leq y \leq 2,0 \leq z \leq 3$
$0 \leq x \leq 1$, th $\leq y \leq 3,0 \leq z \leq 3$
Gamin Divergence theorem

$$
\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=\int_{\langle v 0\rangle\rangle}(\vec{\nabla} \cdot \bar{D}) d \ddot{v}
$$

R.H.S.

$$
D_{x}=2 x y ; \quad D_{y}=x^{2} ; \quad D_{z}=0
$$

$$
\nabla \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{j}}{\partial y}+\frac{\partial D_{z}}{\partial_{z}}
$$

$$
=\frac{\partial}{\partial x}(2 x y)+\frac{\partial}{\partial y}\left(x^{2}\right)=2 y+0=2 y \mathrm{~cm}^{3} .
$$

$$
\nabla \cdot \bar{D}=2 y \rho^{3}
$$

$$
\begin{aligned}
& \int(\nabla \cdot \bar{D}) d x=\int_{\left.\left\langle u_{0}\right\rangle\right\rangle} 2 y d x d y d_{z} \\
& \quad=2 \int_{x=0}^{1} d x \int_{y=0}^{2} y d y \int_{z=0}^{3} d z=2 \times 1 \times 2 \times 3=12 C_{i}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad \int_{\langle v o i\rangle}(\nabla \cdot \bar{D}) d v=12 \text { Coulontin } \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { L.H.S. } \\
& \text { Yuyt } \\
& 0 \leq x \leq 1 \\
& 0 \leq y \leq 2 \\
& 0 \leq z \leq 3 \\
& \psi_{\text {total }}=\oint_{\Delta>} \bar{D} \cdot \overline{d S} \text { Cioutomitio } \\
& \psi_{\text {fornt }} \bar{D}_{x} \psi_{\text {boteom }}\left(\bar{D}_{3}\right) \\
& \overline{d S}=d y d z\left(+\overline{a_{x}}\right) \\
& \psi_{\text {top }}=0 \mathrm{c} ; \quad b_{c_{2}} D_{2}=0 \mathrm{~cm}^{2} \text { and } \psi_{\text {Botforo }} 0 ; b_{1} D_{2}=0 \text {. } \\
& \left.\psi_{\text {Lett }}\right|_{y=0}=\int_{\langle s\rangle} \overline{D_{y}} \cdot d x y=\int_{\langle s\rangle} x^{2} \overline{a_{y}} \cdot d x d z\left(-\overline{a_{y}}\right)=-\int_{x=0}^{1} x^{2} d x \int_{z=0}^{3} d_{z} \\
& =-1 / 3=-1 \mathrm{C}: \varphi_{L_{4}=-1 c}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\psi_{\text {font }}\right|_{x=1}=\int_{\langle s\rangle} \overline{D_{2}} \cdot \overline{d s}=\int_{\langle s\rangle} 2 x y \overline{a_{x}} \cdot d y d_{z}\left(+\overline{a_{1}}\right) \\
& =2 x^{1} \int_{y=0}^{2} y d y \int_{z=0}^{3} d_{z}=2 \times 2 \times 3=12 c_{i} . \\
& \left.\Psi_{\text {bark }}\right|_{x=0}=\int_{\langle S\rangle} \bar{D}_{x} \cdot \overline{d S}=\int_{\langle S\rangle} 2 a y \bar{a}_{x} \cdot d y d_{z}\left(-\bar{a}_{x}\right) \\
& =-2 \prod^{0} \int_{y=0}^{2} y d y \int_{z=0}^{3} d z=-2(0) \times 2 \times 3=0 C . \\
& \therefore \psi_{\text {total }}=0+0+(-1)+\left(1+12+0=12 c_{1}\right. \\
& \text { L.H:S } \varphi_{\text {total }}=\$ \bar{D} \cdot d s=12 C<(2)
\end{aligned}
$$

problem $14, \bar{D}=2 x y z \overline{a_{x}}+3 y^{2} z \bar{a}_{y}+x \bar{a}_{z} \mathrm{~cm}^{2}$.
OE-DEC2008/san 2009

$\vec{D} 2 x y 2 \vec{a}_{x}+3 y^{2} \varepsilon \vec{a} \vec{y}_{y}+x \vec{n}_{z}\left(c / m^{2}\right)$. the region is defined $b y-1 \leq x, y, z \leq 1$ (m). (07Marks)
Solut Divergence theorem

$$
\overrightarrow{-1}_{1} \leq x, y, z, \leq 1 m .
$$

$$
\oint_{\langle S\rangle} \vec{D} \cdot \overline{d S}=\int_{\left.\left\langle u_{0}\right\rangle\right\rangle} \bar{\nabla} \cdot \bar{D} d v
$$

RHS. $\bar{D}=2 x y z \overline{a_{x}}+3 y^{2} z_{3} \overline{a_{y}}+x \bar{a}_{z} 4_{m^{2}}$

Note:-

$$
\begin{aligned}
& \int f(x) d x=0 \\
& -a \text {. } f f(x) \text { ioan } \\
& \text { odd } f(x)=-f(x) \\
& \text { ie } f(-x)=-f o t e r n
\end{aligned}
$$

$$
=8(2)(0)(0)^{-1}=0 \text { Coulomb's }
$$

LHS Gausiohaw $\oint \bar{D} \overline{d s}=\psi_{\text {total }}$

$$
\psi_{\text {total }}=\psi_{\text {top }}+\psi_{\text {bottom }}+\psi_{\text {Laft }}+\psi_{\text {right }}+\psi_{\text {tront }}+\psi_{\text {back }} \text { Ciodonth? }
$$

$$
\begin{align*}
& \nabla \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z} \\
& =2 y^{3}+6 y^{3}+0 \\
& \bar{\nabla} \bar{D}=8 y^{2} \mathrm{~cm}^{3} \\
& \int_{\langle\text {voi }\rangle} \nabla \cdot \bar{D} d v=\int_{\langle\text {vol }} 8 y^{2} d x d y d z \\
& =\left.8\right|_{-1} ^{+1} d x \int_{-2}^{+1} y d y \int_{-1}^{+1} z d z \\
& \int(v, \vec{p}) d v=0 \text { Cioulombin } \tag{a}
\end{align*}
$$

$$
\bar{D}=2 x y z \overline{a_{x}}+3 y^{2} z \overline{a_{y}}+x \overline{a_{z}} \varphi_{m}^{2} \text {. }
$$

$$
\psi_{\text {right }}=0
$$

$$
=+3(1)^{2} \times 2 \times 0 \times 1=0 \text { Calombin. }
$$

$$
\text { Dept. of } 2 \text { Yb e. SVCE }=0 \text { Park } \quad \text { Page } 178
$$

$$
\begin{aligned}
& =2(1) \times 0 \times 0 \times 1=0 C_{,}, P_{\text {font }}=0 C
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{\text {bottom }}=0^{-1} \mathrm{Cl}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{L_{H t}}=0 \mathrm{C}
\end{aligned}
$$

$$
\therefore \psi_{\text {total }}=O G=\phi_{s s} D \cdot d s \leftarrow(B)
$$

$\varphi^{-1}(a)=q^{4}(B)$ ie $\alpha H S=R H S \quad \therefore$ Divergence theremin lin

$$
\frac{r=2, z=5}{\gamma=2,2} 55 \mathrm{~m} .(\overrightarrow{0}) \vec{D}=30 e^{-\gamma} \widehat{a}_{1}-22 a_{z} \operatorname{cm}^{2}
$$

Given that $\tilde{A}=30 e^{-5} \hat{a}_{4}-2 z \hat{a}_{c}$. Evaluate both sides of the divergence theorem for the volume enclosed by $r=2, z=0$ and $z=5$.
(o)

volume crctoset by, $r=2,=-5$,

(Dz) $\psi_{\text {top }} \neq 3$ radius $\gamma=2 \mathrm{~m}$ and height $z=5 \mathrm{~m}$.
$\overline{d S}=\operatorname{rdrdd}\left(+a_{3}\right)^{2} \quad \begin{aligned} & r=2 m \\ & \rightarrow \\ & \rightarrow\end{aligned}$

$$
\operatorname{Side} d s=r d \phi d_{3}\left(+\overline{a_{r}}\right)
$$

$$
\begin{equation*}
(r=k \text { surface }) . \tag{D}
\end{equation*}
$$

$\dot{x}^{-} \quad \psi_{\psi_{\text {SoHom }}} d s=r d$
(0) $2=0 \mathrm{~m}$.

$$
\overline{d s}=d s \bar{a}_{n}
$$

Divergence theorem

$$
\oint_{\langle S\rangle}^{\phi} \bar{D} \cdot \overline{d s}=\int_{\langle v a i\rangle} \nabla_{0} \bar{D} d v \quad \text { Coulombs }
$$

L.H.S

$$
\psi_{\text {total }}=\oint_{\langle s\rangle} \overline{0 \cdot d s}=\left.\psi_{\text {top }}\right|_{2=5 \mathrm{~m}}+\left.\psi_{\text {bottom }}\right|_{2=0 \mathrm{~m}}+\left.\psi_{\text {side }}\right|_{r=2 \mathrm{~m}}
$$

(大) Fluxdensity $D=\frac{\psi}{\text { Arca }} \mathrm{cm}^{2}$

$$
\begin{aligned}
& \Rightarrow W=D \cdot A \\
& \Psi_{\text {top }}=D_{2} \cdot A=-23 \times \pi r^{2}=-2(5) \pi(2)^{2}=-40 \pi C
\end{aligned}
$$

A -araof top circle.

$$
\begin{aligned}
\text { Pbottom }_{z=0 m} & =\int_{S \lambda} \bar{D}_{z} \cdot d s=\int_{<s\rangle}-2 z \bar{a}_{z} \cdot r d r d \phi\left(-\overline{a_{z}}\right) \\
& =+\left.2 z \int_{r=0}^{2} r d r \int_{0}^{2 \pi} d \phi \bar{a}_{z} \sqrt{a_{z}}\right|_{z=0 n s u t a c e} .
\end{aligned}
$$

$$
=2(0)(2)(2 \pi)(1)=0 \text { Coulombio }
$$

$$
\psi_{\text {bottom }}=0 \mathrm{Ci}
$$

(Or) $\quad \psi_{\text {bottom }}=D_{3} \cdot A=-23 \times \pi r^{2}=-2(0) \times \pi(2)^{2}=0 C$
$z=0$ on bottom cirle.

$$
\begin{aligned}
& \bar{D}=30 e^{-r} \bar{a}_{r}-23 \bar{a}_{3} \mathrm{~cm}^{2} \text {. } \\
& 0<\gamma \leq 2 m \text {. } \\
& 0<3 \leq 5 \mathrm{~m} \\
& \left.\psi_{\text {top }}\right|_{z=+5\rangle}=\int_{\left.s_{z}\right\rangle} \overrightarrow{D_{z}} \cdot \overrightarrow{d s}=\int_{\langle s\rangle}-2 z \overline{a_{z}} \cdot \underline{r d r d \phi\left(+\overline{a_{z}}\right)} \\
& =-\left.23 \int_{r=0}^{2} r d r \int_{0}^{2 \pi} d \phi \bar{a}_{3} \cdot \vec{a}_{z}^{1}\right|_{z=5 \mathrm{~m}} \text {. Sutace } \\
& =-2(5)(2)(2 \pi)(1)=-40 \pi \text { Cicuton } \% \\
& \psi_{\text {top }}=-40 \pi \mathrm{C}
\end{aligned}
$$

$$
\begin{align*}
& =30 e^{-r}(2) \times 2 \pi \times 5=600 e^{-2} \pi \text { Coulombis } \\
& \psi_{\text {side }}=600 e^{-2 \pi} \mathrm{G} \\
& \psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=\psi_{\text {top }}+\psi_{\text {bottom }}+\psi_{\text {side }} \\
& =-40 \pi+0+600 e^{-2} \pi=41.201 \pi \mathrm{Ci} \\
& =30 e^{-r} 2 \pi r z \\
& =30 e^{-2} 2 \pi(2) \times 5 \\
& =600 e^{-2} \pi C^{2}
\end{align*}
$$

$Y_{\text {total }}=129.437$ Cioulombin
R.H.S

$$
\begin{aligned}
& \begin{aligned}
\int_{\langle v\rangle} \nabla \cdot \bar{D} d v & =2 \quad D_{r}=30 e^{-r}, \quad \bar{D}=30 e^{-r} \bar{a}_{r}-22 \cdot \widetilde{a_{2}} .4 m^{2}
\end{aligned} \\
& \begin{array}{l}
D_{r}=30 e^{-r}, D_{3}=-22
\end{array}
\end{aligned}
$$

divugence in cyindrical E0ondinate system.

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{r} \frac{\partial\left(r \cdot D_{1}\right)}{\partial r}+\frac{1}{r} \frac{\partial D \phi}{\partial \phi}+\frac{\partial D_{3}}{\partial z} \\
& =\frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot 30 e^{-r}\right)+\frac{\partial}{\partial z}(-2 z)=\frac{30}{\gamma} \frac{\partial}{\partial r}\left(r e^{-r}\right) 2(1) \text {. } \\
& =\frac{30}{\gamma}\left[-e^{-r}+e^{-r}\right]-2=\left[-30 e^{-r}+\frac{30 e^{-r}}{\gamma}-2\right] \\
& \nabla \cdot \bar{D}=30 e^{-r}\left[\frac{1}{r}-1\right]-2, \quad \lim ^{3} \quad d v=r d r d \phi d z \\
& \int_{\left.\left\langle V_{0}\right\rangle^{\prime}\right\rangle} \nabla \cdot D \cdot d r=\int_{\left\langle 0_{0}\right\rangle} \frac{30 e^{-r}}{x} \cdot x d r d \phi d z-\int_{\langle\text {VOD }} 30 e^{-r} r d r d \phi d z-2 \int_{\left\langle u_{0}\right\rangle} r d r d \phi d z \\
& =\left[\int_{r=0}^{2} 30 e^{-r} d r-\left.30\right|_{r=0} ^{2} e^{-r} d r-\left.2\right|_{r=0} ^{2} r d r\right] \int_{\phi=0}^{2 \pi} d \phi \int_{3=0}^{2 n} d z \\
& =[(25.94)-17.82-4](2 \pi)(5)=41 \cdot 2 \pi \text { Coulambor } \\
& \int_{\left\langle v_{01}\right\rangle}(\nabla \cdot \bar{D}) d v=41.2 \pi G=129.437 \text { Coulontin }
\end{aligned}
$$

problem la

$$
\bar{D}=5 a_{r} c_{m}^{2}
$$

0 Given $\overline{\mathrm{D}}=\mathrm{jar} \mathrm{d}^{2}$, prove divergence theorem for a shell region enclosed by spherical surfaces al $r=a$ and $r=b(b>a)$ and centred at the origin.

$$
r=a, \quad r=b(b>a)
$$

Solute $\quad \begin{aligned} & r=a, \\ & \text { given } \\ & \left.\quad \begin{array}{l}r=b \\ D\end{array}=5>a\right) \\ & a_{r}\end{aligned} \mathrm{~cm}^{2}$.

$$
D_{r}=5 \mathrm{~cm}^{2}
$$

$$
p(r, \theta, \phi)
$$

$d r \underset{\sim}{d} d \theta \underset{\sim}{\downarrow}$
innersptrere

$$
\begin{aligned}
& \text { Miner }\left.\right|_{r_{a} a}{ }^{\text {comtant sphere }} \\
& \frac{t^{\prime}}{d s}=r^{2} \sin \theta d \theta d \phi\left(-\overline{a_{r}}\right)
\end{aligned}
$$

Sphere with
$(b>a)$

Gaurictivergence theorem

$$
\begin{equation*}
\left.\oint_{\langle S\rangle} \overparen{D} \cdot \overline{d S}=\int_{\left\langle u_{01}\right\rangle}\left(\nabla^{\prime} \cdot \bar{D}\right) d v\right] \tag{1}
\end{equation*}
$$

CoHoS

$$
\psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=\Psi_{\text {outer }}^{\text {sphere }}| |_{r=b m}+\left.\Psi_{\text {inner spare }}\right|_{r=a m}
$$

$\psi \underset{\substack{\text { outer } \\ \text { sphere }}}{ }=\int_{r=b m} \overrightarrow{D_{r}} \cdot \overrightarrow{d s}=\left.\int_{\langle S\rangle} 5 \overrightarrow{a_{r}} \cdot r^{2} \sin \theta d \phi d \overrightarrow{a_{r}}\right|_{r=b m}$

$$
\begin{aligned}
& \text { Shot ut }-r^{2} \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{\phi=0}^{2 \pi} d \phi a \cdot \cdot \overline{a r} \\
&=5(b)^{2}(-2)(2 \pi) \\
&=20 \pi b^{2} C
\end{aligned}
$$

$$
\begin{align*}
& \left.\psi_{\substack{\text { innur } \\
s p h a r e}}\right|_{r=a_{m}}=\left\langle\overline{D_{r}} \cdot \overline{d s}=\left.\int_{\langle S\rangle} 5 \overline{a_{r}} \cdot\left[r^{2} \sin \theta d \phi d \theta\left(-\overline{a_{r}}\right)\right]\right|_{r=a_{m}}\right. \\
& \begin{aligned}
= & -5 r^{2} \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{\phi=0}^{2 \pi} d /\left.\phi \operatorname{arp}_{0} \frac{1}{a r}\right|_{r=a} \cdots \cdots \\
& =-5 a^{2}
\end{aligned} \\
& =-5 a^{2}(2)(2 \pi)(1)=-20 \pi a^{2} \text { Coulomb: } \\
& 40 \pi a^{2} \quad \psi_{\text {innur }}=\operatorname{Dr} \times A ; A \text {-antinnirsphere } \\
& \psi_{\text {inner }}=-20 \pi a^{2} \\
& \psi_{\text {total }}=\oint_{\langle s\rangle} \bar{D} \cdot d s=\psi_{\substack{\text { outer } \\
\text { sptere }}}+\underset{\substack{\text { innerer } \\
\text { spher }}}{\left.\psi_{i} b^{2}-20 \pi a^{2}\right] G .} \\
& \psi_{\text {total }}=\oint \bar{D} \cdot \overrightarrow{d s}=20 \pi\left(b^{2}-a^{2}\right) \text { Coubombio } \tag{a}
\end{align*}
$$

RHS: $\int_{\left\langle u_{0}\right\rangle} \nabla \cdot \bar{D} d v=? \quad d v=r^{2} \sin \theta d r d \theta d \phi$ divergence in Spherical Coordinate System is

$$
\begin{aligned}
& \begin{aligned}
\nabla \cdot D & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot D_{r}\right]+\frac{1}{r \sin \theta} \frac{\gamma}{\partial \theta}\left[\hat{\sin \theta D_{\theta}}\right]+\frac{1}{r \sin \theta} \frac{\partial \hat{D}_{\phi}^{0}}{\partial \phi} \\
\nabla & =1
\end{aligned} \\
& \nabla \cdot \bar{D}=\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}\left[5 \gamma^{2}\right]=\frac{5}{\gamma^{2}} \times 2 \gamma=10 / \gamma C / \mathrm{m}^{3} \\
& \int_{\left\langle v_{01}\right\rangle} \frac{i}{V} \cdot \frac{1}{} d v=\int_{\langle\mu \cdot 1\rangle} \frac{10}{x} \cdot r^{2} \sin \theta d r d \theta d \phi \\
& =\left.10\right|_{r=a} ^{b} r \cdot d r \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{\delta=0}^{2 \pi} \alpha_{\phi} \\
& =\left.10 \frac{r^{2}}{x}\right|_{a} ^{b} \times 2 \times 2 \pi=5\left[b^{2}-a^{2}\right] \times 4 \pi=20 \pi\left(b^{2}-a^{2}\right. \\
& \prod_{\langle\text {vol }}(v \cdot \bar{D}) \mathrm{dre}=20 \bar{\pi}\left(b^{2}-a^{2}\right) \text { Coulotation } \leftarrow \text { (b) }
\end{aligned}
$$

probblemly

$$
\bar{D}=\frac{5 r}{3} \overline{a r} \quad r \leq a
$$

\therefore Prove that the divergence theorm for the given region $r \leq a$ (spherical coordinate system).
hating llux dersity. $\bar{D}=\frac{5 r}{3} \pi_{1}^{3}$.
Dankan V Gowda sTech.ifh. D,
Assistant Professor, Depl. of E\&CE
Email:dankan ecenowengo

Goum divergence

cm^{2}. dv rdo rined theorm.
fig. sphere with
radius acm. Loft.sinedod $\left(+\overline{a_{r}}\right)$

$$
\Psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overrightarrow{d s}=\frac{20}{3} \pi a^{3} \text { Coulantio }
$$

(or)

$$
\begin{aligned}
& \psi_{\text {owter }}=D_{r} \cdot A ; \quad \text { Atrea of autersphere. } \\
& =\frac{5 r}{3} \cdot 4 \pi r^{2}=\left.\frac{20}{3} \pi r^{3}\right|_{r=a m}=\frac{20}{3} \pi a^{3} \text { Coulants, } \\
& \psi_{\text {oudr }}=\frac{20}{3} \pi a^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\langle S\rangle} \overline{D_{r}} \cdot d s=\int_{\langle S\rangle} \frac{5 r}{3} \cdot a_{r} \cdot r^{2} \sin \theta d \theta d \phi\left(+\overline{a_{r}}\right) \\
& =\left.\frac{5 r^{3}}{3} \int_{\theta=0}^{\pi} \sin _{\theta}^{1} \theta_{\theta} d \theta \int_{0}^{2 \pi} d \phi \quad \operatorname{ar} \cdot \int_{0}^{1} \cdot \overline{a r}\right|_{\substack{r=a m \\
\text { Sphere }}} . \\
& =\frac{5(a)^{3}}{3} \times 2 \times 2 \pi \times 1=\frac{20}{3} \pi a^{3} \text { Coulomio }
\end{aligned}
$$

RHS

$$
\int_{\left\langle u_{0}\right\rangle} \nabla \cdot \bar{D} d r e=\int_{\left\langle\mu_{0}\right\rangle} 5 \quad r^{2} \sin \theta d r d \theta d \phi
$$

$$
\begin{gathered}
=5 \int_{r=0}^{a} r^{2} d r \theta_{\theta=0}^{\pi} \sin \theta d \theta \int_{\phi=0}^{2 \pi} \nmid \phi \\
5 \cdot r^{3} 1^{a} \times 2 \times 2 \pi
\end{gathered}
$$

$$
\begin{align*}
& =\left.5 \cdot \frac{r^{3}}{3}\right|_{0} ^{a} \times 2 \times 2 \pi \\
& =\frac{5}{3}\left[a^{3}-0\right] \times 4 \pi=\frac{20 \pi}{3} a^{3} \text { Coulomb'; } \\
\therefore & \int_{\langle\text {VOD }} \nabla_{1} \bar{D} d v=\frac{20}{3} \pi a^{3} \text { Coulombi }<\text { (b) } \tag{b}
\end{align*}
$$

$q^{u}(a)=q^{u}(b) \quad \therefore$ divergence theorem is ventid.

$$
\begin{aligned}
& \int_{\langle v 01\rangle}(\nabla \cdot \bar{D}) d v=? \\
& b_{y} D_{\theta}=0 \quad b_{c_{1}}=0 \\
& \nabla \cdot \vec{D}=\frac{1}{-r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot D_{r}\right]+\frac{1}{r \sin \theta} \frac{\partial\left[\sin ^{0} \theta D_{\theta}\right]}{\partial \phi}-\frac{1}{r \sin \theta} \frac{\partial \phi_{\phi}}{\partial \phi} \varphi_{n^{3}} \\
& D_{r}=\frac{5 r}{3} \cdot c_{m}{ }^{2} \\
& \bar{\nabla} \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot \frac{5 r}{3}\right]=\frac{5}{3 r^{2}} \frac{\partial}{\partial r}\left(r^{3}\right) \\
& =\frac{5}{3 r^{2}} \cdot 3 x^{2}=5 \mathrm{~cm}^{3}
\end{aligned}
$$

problem is
$23 \rightarrow \underset{D}{ }=\frac{10 r^{3}}{4}$ or cm^{2}
Given $\vec{D}=\frac{10 r^{3}}{4} \hat{a}$. in cylindrical coordinates, evaluate both sides of the divergence theorem
for the volume enclosed by the cylinder with $\mathrm{r}=2 \mathrm{~m}, \mathrm{z}=0$ to 10 m . $r=2 m, z=06010 \mathrm{~m}$. (10 Marks)
Solu:-

$$
\bar{D}=\frac{10 r^{3}}{4} \overline{a_{r}} f_{m}{ }^{2} \quad P(r, \phi, 3)
$$

Gaius divergence theorem

$$
\Rightarrow \psi_{\text {total }}=\oint_{<s\rangle} \bar{D} \cdot \overline{d s}=\left.\psi_{\text {side }}\right|_{r=2 m}
$$

$$
\text { Pride }_{r=2 n}=\left.\right|_{\langle s\rangle} \overline{D_{r}} \cdot \overline{d s}=\left.\int_{\langle s\rangle} \frac{10 r^{3}}{4} \overline{a_{r}} \cdot r d \phi d_{z}\left(+\overline{a_{r}}\right)\right|_{r=2 m}
$$

$$
=\left.\frac{10 r^{3}}{4} \cdot \gamma\right|_{\phi=\phi} ^{2 \pi} d \phi \quad \int_{z=0}^{10}+\left.z \quad \overline{a_{r}} \cdot \frac{1}{a_{r}}\right|_{r=2 m} .
$$

$$
=\frac{\frac{10(2)^{3} \times 2}{4} \times 2 \pi \times 10 \times 1=800 \pi}{\overline{\text { Dept. of ERCE, SVCE }} \times \text { Coulombs }}
$$

$$
\begin{equation*}
\psi_{\text {total }}=\oint_{\langle s\rangle} \bar{D} \cdot \overline{d s}=\psi_{\text {side }}=800 \pi \quad \text { Coulanbio } \tag{4}
\end{equation*}
$$

Shorl wht

Crumitinu $2 \pi r$
$r=2 m$; contant

$$
\psi_{\text {side }}=D_{r} A=\frac{10 r^{3}}{4} \times 2 \pi r 3
$$

$$
\begin{aligned}
& r=2 n \\
& 4 z=10
\end{aligned}
$$

$$
+z=10
$$

huight

$$
\omega \omega_{L \text { side }}=800 \pi C
$$

R.H.S:- $\int_{\langle\text {VOID }} \nabla \cdot \bar{D} d v=$?
 is Viented. cutd $\begin{gathered}423 \\ \text { date }\end{gathered}$

$$
\begin{align*}
& \nabla \cdot \bar{D}=\frac{1}{r} \cdot \frac{\partial}{\partial r}\left(r \cdot D_{r}\right)+\frac{1}{r} \frac{\partial \partial_{0} \partial_{0}}{\partial \phi}+\frac{\partial D_{2} \partial^{\circ}}{\partial z} 0^{b_{2}} D_{2}=0 \\
& D_{r}=\frac{10 r^{3}}{4} \mathrm{~cm}^{2} \\
& \nabla \cdot \bar{D}=\frac{1}{r} \frac{\partial}{\partial r}\left[\gamma \cdot \frac{10 r^{3}}{4}\right]=\frac{10}{4 r} \frac{\partial}{\partial r}\left[r^{4}\right]=\frac{10}{41 x^{2}} \cdot 4 r^{\gamma^{2}} \\
& \nabla \cdot \bar{D}=10 \mathrm{r}^{2} \mathrm{~cm}^{3} \\
& \int_{\left\langle w_{0}\right\rangle} \nabla \cdot D d v=\left.\right|_{\left\langle u_{0}\right\rangle} 10 r^{2} \cdot r d r d \phi d z=\left.10\right|_{r=0} ^{2} r^{3} d r \int_{\phi=0}^{2 \pi} d \phi \int_{z=0}^{10} d z \\
& \begin{array}{r}
=10 \times\left.\frac{\gamma}{4}\right|_{0} ^{2} \times 2 \pi \times 10=\frac{10}{4}\left[2^{4}\right] \times 20 \pi \\
=800 \pi \mathrm{C}
\end{array} \\
& \int_{\langle v o l\rangle}(\nabla \cdot \vec{D}) d r=800 \pi C \tag{5}
\end{align*}
$$

problem 19
Given $\bar{D}=5 \mathrm{rar} \mathrm{lm}^{2}$, prove divergence theorem for a shell region enclosed by spherical Surface at $\gamma=a$ and $r=b(b>a)$ and centered at the origin.

$$
\left.\psi_{\text {totap }}=\oint_{\langle s\rangle} \bar{D} \cdot \overline{d s}=\int_{\left\langle\omega_{0}\right\rangle}(\nabla-\bar{D}) d v=800 \pi\right] \text { Coulontio }
$$

Given $\vec{D}=5 \mathrm{r}_{\mathrm{a}} \mathrm{c}^{\prime} \mathrm{m}^{2}$, prove divergence thenem for a shell region enclosed by spharival surfices at $r=a$ and $r=b(b>a)$ and centered anthe or
Solv:-

(Di)

$$
\text { Youtr }\left._{\text {Spher }}\right|_{r=b m} ^{D} \Rightarrow d s=r^{2} \sin \theta d \theta d \phi\left(+\dot{a_{r}}\right)
$$

$$
p(r, \theta, \phi)
$$

$$
d r^{\ell} \underset{r d o}{b} \underset{r i_{i}}{ }
$$

$$
\left.\Psi_{\substack{\text { innir } \\ \text { sphere }}}^{(\bar{D} r}\right|_{r=a m} \Rightarrow \bar{d}_{s}=r^{2} \sin \theta d \theta d \phi\left(-\bar{a}_{r}\right)
$$

divergence therem $\oint_{\langle S\rangle} \bar{D} \cdot \overrightarrow{d S}=\int_{\left\langle v_{0}\right\rangle}\left(\operatorname{ci}_{0} \bar{D}\right) d v \leftarrow(1)$
L.H.S

$$
\Psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=\underset{\text { spherer }}{\psi_{r=b m}}+\left.\underset{\text { sphor }}{ }\right|_{r=a_{m}}
$$

$$
\underset{\substack{\psi_{\text {outar }} \\ \text { sphr }}}{\left.\right|_{r=b m}=\int_{\langle S\rangle} \overline{D_{r}} \cdot \overline{d s}=\int\left\langle\delta \overline{a_{r}} \cdot r^{2} \sin \theta d \theta d \phi\left(+\overline{a_{r}}\right)\right.}
$$

$$
\begin{aligned}
& =\left.\left.5 r^{3} \int_{\theta=0}^{\pi} \sin \theta d \theta\right|_{\phi=0} ^{2 \pi / \phi} \overline{a y} \cdot \prod_{r}^{1}\right|_{r=b m} \\
& =5 b^{3} \times 2 \times 2 \pi=20 \pi b^{3} \text { Coulomb's }
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{\substack{\text { outer } \\
\text { splece }}}^{\psi_{0}} \text { (o) } \psi_{\text {outr }}=\left.D_{r} A\right|_{r=b m} \\
& =5 r \times 4 \pi r^{2}=20 \pi r^{3} \\
& \therefore \quad Y_{\text {oudr }}=20 \pi b^{3} G^{r=b m} \\
& \text { C }
\end{aligned}
$$

$$
\begin{aligned}
\left.\psi_{S p h a r}\right|_{r=a m} & =\int_{\left\langle s^{2}\right.} \bar{D} \cdot \overline{d s}=\int_{\Delta\rangle} 5 r \overline{a_{r}} \cdot r^{2} \sin \theta d \theta d \phi\left(-\overline{a_{r}}\right) \\
& =-\left.5 r^{3} \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{\phi \phi=0}^{2 \pi} d_{\phi} \overline{a_{r}} \overline{a_{0}}\right|_{r=a m} ^{1} \\
& =-5 a^{3} \times 2 \times 2 \pi \times 1=-20 \pi a^{3} \text { Cioulombin }
\end{aligned}
$$

$$
Q_{\text {inner }}=-20 \pi a^{3}
$$

spher

$$
\text { (o) } \psi_{\text {inat }}=-D_{r} \cdot A_{r} \cdot r_{r}=a m
$$

$$
=-\frac{5 r \times 4 \pi r^{2}}{3}=-20 \pi r^{3}
$$

$$
Y_{n n-1}=20 \pi a^{3} C
$$

$$
\psi_{\text {total }}=\oint_{\text {ss }} \bar{D} \cdot \overline{d s}=\psi_{\text {outr }}+\psi_{\text {rinns }}=20 \pi b^{3}-20 \pi a^{3}-G
$$

$\dot{x_{x}} \underset{\psi_{\text {total }}}{ }=\oint_{\langle s\rangle} \bar{D} \cdot d s=20 \pi\left(b^{3}-a^{3}\right)$ Coulombis
R.H.S:

$$
\begin{aligned}
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot 5 r\right]=\frac{5}{\gamma^{2}} \times \frac{3 r^{2}}{\nabla_{0}}=15 \mathrm{~cm}^{3} \\
& \nabla \cdot \bar{D}=154 \mathrm{~m}^{3} \\
& \int_{\langle\text {Uus }}(\nabla, \bar{D}) d v=\int_{\langle 00\rangle\rangle} 15 r^{2} \sin \theta d r d \theta d \phi \\
& =15 \int_{r=a}^{b} r^{2} \cdot d r \int_{\theta=0}^{\pi} \sin \theta d \theta \int_{\phi=0}^{2 \pi}>2 \pi \\
& =\frac{\frac{15}{3}}{3}\left[b^{3}-a^{3}\right] \times 2 \times 2 \pi=20 \pi\left(b^{3}-a^{3}\right) \text { Coulombs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Divergent } n \text { visitld }\langle v i\rangle \text {. }
\end{aligned}
$$

- Given that $\bar{D}=\frac{5 \gamma^{2}}{4} \overline{a_{r}} \mathrm{~cm}^{2}$ in Spherical [a-ordinates. Evaluate both sides of the divergence theorem for the volume enclosed by $r=4 \mathrm{~m}$ and $\theta_{0}=\pi / 4 . \quad$ [Sham's outline].

Tolu:-

$$
\bar{D}=\frac{5 r^{2}}{4} \overline{a_{r}} q_{m}^{2} .
$$

$$
D_{r}=\frac{5 r^{2}}{4} \mathrm{~cm}^{2}, \quad D_{\theta}=D \phi=O \mathrm{~cm}^{2} .
$$

L.H.S

$$
=\frac{5 r 4}{4,} \int_{\theta=0}^{\min \theta d \theta} \int_{\phi=0}^{2 \pi} d \phi \quad \overline{a r} /\left.\frac{1}{a r}\right|_{\gamma=4 m}
$$

$$
\text { (he } \frac{5(4)^{4}}{4} \times 0.29289 \times 2 \pi \times 1=588.8902 \text { Coulomb i }
$$

$$
\left.\begin{array}{|}
\Psi_{\text {outer }}^{\text {sphere }} \tag{Ci}
\end{array}\right|_{r=4 m}=\psi_{\text {total }}=\oint_{\text {sc t }} \bar{D} \cdot \overline{d s}=588.8902
$$

R.H.S

$$
\int_{\left\langle v_{0}\right\rangle}(\nabla \cdot \vec{D}) d v=?^{2} \quad d v=r^{2} \sin \theta d \theta d \theta d \varphi
$$

$$
\begin{aligned}
& { }^{\text {Sphene }}
\end{aligned}
$$

divergence in Spherical co.ordinate. Syptem io Dept.of ECE, B.M.S.I.T \& M

$$
\int_{\left\langle v_{0}\right\rangle} \nabla \cdot \bar{D} d v=\int_{\left\langle v_{0}\right\rangle} 5 \gamma \cdot r^{2} \sin ^{2} \theta \theta^{2} d \theta d \phi
$$

$$
=5 \times 54 \times 0.29289 \times 2 \pi=588.89028 \text { Coulombin }
$$

qu(a) $\operatorname{cq}^{4}(b) \therefore$ divergence theorem is Venficed.

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot D_{r}\right]+\frac{1}{r \sin \theta} \frac{\partial\left(\sin ^{0} \theta D_{\theta}\right)}{\partial \phi}+\frac{1-D_{0} \quad D_{\phi} D_{\phi}}{r \sin \theta / \sigma \phi} \Phi_{m}^{3} \\
& \overline{D_{r}}=\frac{5 r^{2}}{4} c \operatorname{lm}^{2} \\
& \nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[\gamma^{2} \cdot \frac{5 \gamma^{2}}{4}\right]=\frac{5}{4 r^{2}} \frac{\partial}{\partial r}\left[r^{4}\right] \\
& =\frac{5}{4 r^{2}} \times 4 r^{3}=5 r \mathrm{~cm}^{3} \\
& \nabla \cdot \bar{D}=5 \mathrm{r} \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Given that $\bar{D}=10 r^{3} / 4 \bar{a}^{\prime} \mathrm{dm}^{2}$ in cylindrical Co-ordinate Systiem.
Evaluate bothsides of the divargence theorem for the vedueme
cinclored by $\gamma=1 \mathrm{~m}, \gamma=2 \mathrm{~m}, z=0$ and $z=10 \mathrm{~m}$.
[Schaum'noutline]
Solu!- $\vec{D}=\frac{10 r^{3}}{4} \overline{o r}_{m}{ }^{2} \ldots$ in cylindrical C.S

$$
D_{r}=\frac{10 r^{3}}{4} 4_{m}^{2}, \quad D_{\phi}=D_{2}=0 .
$$ $d{ }^{4} \quad \gamma d \phi \quad d_{z}$

Divergence theorem

$$
\oint_{\langle s\rangle} \bar{D} \cdot \overline{d s}=\int_{\langle w\rangle}(\nabla \cdot \bar{D}) d v
$$

$$
b_{1_{2}} P_{3}=0
$$

L.H.S

$$
d_{s}=\operatorname{cod}^{2} \dot{a_{2}}\left(+\bar{a}_{r}\right)
$$

$$
\left.\psi_{\text {outed }}\right|_{r=2 m}=800 \pi
$$

$$
\begin{aligned}
& \text { Pinnd }_{\left.\right|_{r=1 m}}=\int_{\leq S} \overline{D r}_{r} \cdot \overline{d s} \\
& \square d s=\gamma d \phi d z\left(-\overline{a_{r}}\right)
\end{aligned}
$$

Dept. of ECE, B.M.S.I.T \& M

$$
\int_{\left\langle v_{0}\right\rangle} \nabla \cdot \bar{D} d v=\sum_{i} \quad d v=r d r d \phi d z
$$

$$
\varphi^{u}(a)=\varphi^{u}(3) \quad r \text { divergence theormis vinfed. }
$$

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{\gamma} \frac{\partial}{\partial r}\left[\gamma \cdot 10 \gamma^{3} / 4\right]=\frac{10}{4 \gamma} \times 4 \gamma^{\gamma^{2}}=10 \gamma^{2} c_{m}^{3} \\
& \int_{\left\langle v_{0}\right\rangle}(\nabla \cdot \bar{D}) d v=\int_{\left.\left\langle v_{0}\right\rangle\right\rangle} 10 r^{2} \times r d r d \phi d z=\left\{10 r^{3} d r d \phi d z\right. \\
& \left.=\left.\left.10\right|_{r=1} ^{2} r \int^{3} d r \int_{\phi=0}^{2 \pi} d \phi\right|_{z=0} ^{10} d z\right\} \quad \int_{\left\langle v_{0}\right\rangle}^{\mid(v, \bar{D}) d v=750 \pi G,} \\
& \begin{array}{l}
\text { Cepl of ERCE. SVCE } \\
=10 \times 3.75 \times 2 \pi \times 10=750 \pi \text { Coulomb's }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\psi_{\text {innui }}\right|_{r=1 m}=\left.\int_{\langle s\rangle} 10 \frac{\gamma^{3}}{4} \overline{a_{r}} \cdot \gamma d \phi d_{z}\left(-\overline{a_{r}}\right)\right|_{\gamma=1 m} \\
& =\left.\frac{-10 r^{4}}{4} \int_{\phi=0}^{2 \pi} \int_{0}^{2 \pi} \int_{z=0}^{10} d z \quad \bar{a} \bar{a}_{r} \prod_{0}^{1} a_{r}\right|_{r=1 m} \\
& =\frac{-10(1)^{4}}{4} \times 2 \pi \times 10 \times 1=\underline{-50 \pi \text { Coulombing }} \\
& \left.\psi_{\text {innei }}\right|_{r=1 \mathrm{~m}}=-50 \pi G
\end{aligned}
$$

$$
\begin{aligned}
& \text { i.e. } \oint_{s>} \bar{D} \cdot \overline{d s}=75 \phi \vec{y} C
\end{aligned}
$$

Dept. of ECE,B.M.S.I.T \& M
prom Given that $\bar{D}=\frac{10 x^{3}}{3} \bar{a}_{x} \mathrm{dm}^{2}$, Evaluate bathsidero of the
22 divergence theorem for the volume of a Cube 2 m on ansdge.
Entered at the origin and with Edges parallel to the axes.
Sole':- given $\bar{D}=\frac{10 x^{3}}{3} \overline{a_{n}} \varphi_{m}{ }^{2}$.

$$
D_{x}=\frac{10 x^{3}}{3} \mathrm{~cm}^{2}, \quad D_{y}=P_{z}=0 \varphi_{m^{2}}^{2}
$$

$$
\alpha \cdot H \cdot s
$$

$$
\left.\psi_{\text {front }}\right|_{x=+ \text { iplane }}=\int_{\langle s i} \overline{D_{x}} \cdot \overline{d s}=\left.\int_{\langle s\rangle} \frac{10 x^{3}}{3} \overline{a_{x}} \cdot d y d_{z}\left(+\overline{a_{x}}\right)\right|_{x=+1}
$$

$$
=\left.\frac{10 x^{3}}{3} \int_{y}^{+1} d y \int_{3=-1}^{+1} \bar{a}_{-1}^{+1} \cdot \overline{a_{x}} \cdot \overrightarrow{a_{x}}\right|_{x=+1 \text { plane }}
$$

$=\frac{10(1)^{3}}{3} \times 2 \times 2 \times 1=\frac{40}{3}$ Coulombin

$$
\begin{aligned}
& +\left.\psi_{\text {ont }}\right|_{x=+1}+\left.\psi_{\text {bark }}\right|_{x=-1}
\end{aligned}
$$

R.H.S

$$
\int_{\langle\text {〈u・リ }}(\nabla \cdot \bar{D}) d v=? \quad d v=d x d y d z
$$

divergence in [artesian $\left[\cdot S \quad b_{C_{2}} D_{y}=D_{z}=0\right.$

$$
\begin{align*}
& \nabla \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial O \hat{A}^{0}}{\partial y}+\frac{\partial \hat{p}_{z}^{0}}{\rho_{z}} \\
& \cdots=\frac{\partial}{\partial x}\left[\frac{10 x^{3}}{3}\right]=\frac{10}{3} \times 3 x^{2}=10 x^{2} \varphi_{m^{3}} \\
& \int_{\langle\text {<uot }}(\nabla \cdot \bar{D}) d x=\int_{\left\langle u_{0}\right\rangle} 10 x^{2} d x d y d z \\
& =10 \int_{x=-1}^{+1} x^{2} d x \int_{y \neq-1}^{+1} d y \int_{2}^{+1} d 2 . \\
& =10 \times 2 / 3 \times 2 \times 2 \times 2 \text { Coulomitin } \\
& \therefore \int_{\langle v 01\rangle}(\overline{0}) d u=\frac{80}{3} \text { Coulomb' }
\end{align*}
$$

\because stoumat $\nabla \cdot E=O$ for the ficld of
i) point charge.
ii) a uniform Line charge.

Solui- i. $\nabla \cdot \vec{E}=0$ due to pointcharge
N.K.t Fdue to point charge in spherial $C \cdot S$

$\cdots \quad$ be $E_{\theta}=E_{\phi}=0$.
ii. L.k. E due to, infinite line cherge is
$\bar{F}=\left(\frac{\rho \rho}{2 \pi \in \rho} \bar{E}_{\rho} \bar{a}_{\rho} \mathbb{N}_{\text {mo }}\right.$ whichin in Cylindrial C.S $\therefore \nabla \cdot \bar{E}$ inmy Mindrical $C \cdot S$ is

$$
\nabla \cdot \bar{E}=0 \cdot 6 / m^{3}
$$

The Divergence of E for this charge configuration is z page Everywhere Except at $\rho=0$, where the exprin ion is indetengrusute

$$
\begin{aligned}
& \nabla \cdot \overline{E_{0}} \cdot \frac{E_{0}}{\rho} \frac{\partial\left(E_{\rho} \cdot \rho\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial E_{\phi}^{0}}{\partial \phi}+\frac{\partial \varepsilon_{2}}{\partial \sigma_{3}} \\
& \nabla \cdot E=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\delta \cdot \frac{\rho_{e}}{2 \pi \xi \rho}\right]=\frac{1}{\rho} \frac{\partial}{\partial \rho}[\text { contant }] \\
& \therefore \nabla \cdot \bar{E}=\frac{1}{\rho} \times 0=0
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot E=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} E_{r}\right]+\frac{t}{r \sin \theta} \frac{\partial\left(\sin ^{0} \theta E_{\theta}\right)}{\partial \theta}+\frac{1}{\gamma \sin \theta} \frac{\partial E_{\phi}}{\partial \phi} \\
& \therefore \nabla \cdot \bar{E}=\frac{1}{\gamma^{2}} \frac{\partial}{\partial \gamma}\left[\gamma^{2} \cdot \frac{Q}{4 \pi \epsilon \mathcal{X}^{2}}\right] \\
& =\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}\left[\frac{\theta}{4 \pi}\right]=\frac{1}{\partial^{2} \theta^{2}} \theta^{2}+(\text { cometant } \\
& \therefore \nabla_{\square} \bar{E}=0 \text { efm }{ }^{3}
\end{aligned}
$$

duf.
Roblem : show that $\nabla \bar{D}=0$ for the filld of a 24. i> point charge.
ii) unifom dine charge.
solu!- i> point charge
\bar{D} due to point charge is $\overline{0}=8 \alpha^{D_{r}}$ it insphericales

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cdot D r\right) \\
&=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[\gamma^{2} \cdot \frac{Q}{\left.4 \pi \gamma^{2}\right]}=\ln ^{3} \frac{\partial}{\partial} \not Q / 4 \pi\right] \\
& \therefore \nabla \cdot \bar{D}=0
\end{aligned}
$$

ii) \bar{D} due to uniform (Fike)chorge dinsity is

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{s_{1}, \frac{1}{\theta} \cdot}\left[\rho-D_{\rho}\right]=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \cdot \frac{\rho_{L}}{2 \pi \rho}\right] \\
& \nabla \cdot \bar{D}=\frac{1}{\rho} \frac{\partial}{\partial f}[\text { comstent }]=0 \mathrm{~cm}^{3} \\
& \bar{\nabla} \cdot \bar{D}=0 \mathrm{~cm}^{3}
\end{aligned}
$$

proved
pableng5 Given $\bar{D}=e^{-y}\left[\cos x \bar{a}_{x}-\sin x \bar{a}_{y}\right]$ din Deptfofd ECE,B.M.S.S.T \& M

$$
\begin{aligned}
& \bar{\nabla} \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{3} \lambda_{0} \quad b_{c_{2}}}{\partial / 2} \quad D_{2}=0 . \\
& D_{x}=e^{-y} \cos x \varphi_{m}{ }^{2} ; \quad D_{y}=-e^{-y} \sin x \varphi_{m}{ }^{2} \\
& \frac{\partial D_{x}}{\partial x}=-e^{-y} \sin x \varphi_{m^{3}} ; \quad \frac{\partial D_{y}}{\partial y}=+e^{-y} \sin x \varphi_{m^{3}} \\
& \bar{\nabla} \cdot \bar{D}=-e^{-y} \sin x+e^{-y} \beta \sin x=0 \operatorname{cm} 3
\end{aligned}
$$

problem26 $\nabla \cdot \bar{D}=0 \mathrm{~cm}^{3}$
Given $\bar{D}=x^{2} \bar{a}_{x}+y z \overline{a_{y}}+x y \overline{a_{z}}=D_{m} 2$ find $\nabla \cdot \bar{D}$.

$$
\begin{aligned}
\nabla \cdot \bar{D} & =\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{3}}{\partial x_{2}} \varphi_{n} \\
& =\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial y}\left(y_{3}\right)^{3}+\frac{\partial}{\partial z}(x y) \\
& =2 x+3 \cos ^{0}
\end{aligned}
$$

problem 27

$$
\begin{gathered}
\quad \begin{aligned}
&\left.\Delta_{1} \frac{1}{2}+y^{2}\right)^{-1 / 2} \overline{a_{x}} \text { find } \nabla \cdot \widetilde{D} \text { at }(2,2,0) \\
& \therefore \nabla \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}=\frac{\partial}{\partial x}\left[x^{2}+y^{2}\right]^{-1 / 2} \\
&=-\frac{1}{2}\left[x^{2}+y^{2}\right]^{-3 / 2} \times 2 x .
\end{aligned} .
\end{gathered}
$$

(a) $(2,2,0)$ i.e $x=2, y=2$ \& $2=0$ $\nabla \cdot \bar{D}=-88.388 \times 10^{-3} \mathrm{~cm}^{3}$ Dept. of E\&CE., SVCE

$$
\left.\bar{\square} \cdot \bar{D}\right|_{(2,2,0)}=-8.84 \mathrm{mc}_{\mathrm{m}}{ }^{3}
$$

- Given $\bar{D}=r \sin \phi \overline{a_{r}}+2 r \cos \phi \overline{a_{\phi}}+2 z^{2} \overline{a_{z}} \mathrm{cmm}^{2} 7 \operatorname{lid} \overline{\mathrm{D}}$

Soly:- given \vec{D} is in Cylindrical $C \cdot S$

$$
\begin{aligned}
& \therefore \nabla \cdot \bar{D}=\frac{1}{\gamma} \frac{\partial}{\partial r}[\gamma \cdot O r]+\frac{1}{\gamma} \frac{\partial D \phi}{\partial \phi}+\frac{\partial \theta_{g}}{\partial g} \varphi_{m^{3}} \\
& =\frac{1}{\gamma} \frac{\partial}{\partial r}[\gamma \cdot \gamma \sin \phi]+\frac{1}{\gamma} \frac{\partial}{\partial \phi}(2 \gamma \cos \phi)+\frac{\partial}{\partial z}\left(22^{2}\right) \\
& =\frac{\sin \phi}{\not \gamma} \cdot 2 y+\frac{2 \phi}{\gamma} x-\sin \phi+2 x \\
& =2 \sin \phi-2 \sin \phi+433-42 \mathrm{~cm}^{3}
\end{aligned}
$$

problung9 $\nabla \cdot \bar{D}=43 \varphi_{m^{3}}$
\therefore Give $\bar{D}=10 \sin ^{2} \phi \overline{a_{1}}+\gamma \overline{a_{\phi}}+3^{2} / \gamma \cos ^{2} \phi \overline{a_{2}} d m^{2}$
find $\nabla \cdot \cos _{\operatorname{tat}}(2, \phi, 5)$.
Solu::

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{\gamma}\left[\gamma \cdot D_{r}\right]+\frac{1}{\gamma} \frac{\partial D_{\phi}}{\partial \phi}+\frac{\partial D_{z}}{\partial z} c_{m} 3
\end{aligned}
$$

$$
\overline{\nabla D}=\frac{10}{\gamma} \sin ^{2} \phi+\frac{\cos ^{2} \phi}{\gamma} \times 23
$$

@ $p(2, \phi, 5) \quad \gamma=2, z=5$

$$
\begin{aligned}
& \text { (a) } p(2, \phi, 5) \quad \gamma=2, z=5 \\
& =\frac{10 \sin ^{2} \phi+\frac{\operatorname{con}^{2} \phi}{2} \times 10=5\left[\sin ^{2} \phi \hat{+} \cos ^{2} \phi\right]=54 r^{3}}{\text { Dept.of }}=1
\end{aligned}
$$

Dept. of E\&CE., SVCE
(59)
\because Given $\bar{D}=\frac{5}{r^{2}} \overline{a_{r}}+\frac{10}{\sin \theta} \bar{a}_{\theta}-r^{2} \phi \sin \theta \bar{a}_{\phi}$ Dept. of ECE, B.M.S.I.T \& M
problem 30
Solut.: given $\bar{D} \ldots$ in Spherical $C \cdot S$
problem31

$$
\nabla \cdot \bar{D}=-\gamma \quad \rho_{m^{3}}
$$

- Given that $\bar{D}=\rho_{0} \sum_{\operatorname{la}, a_{2}}$ in the region $-1 \leq z \leq+1$ in Cantesian Coordinafes and $\bar{D}=\frac{\rho_{0} z}{|z|} \overline{a_{z}}$ elscuthere, find

Fhotur density.
Solu:-
[Schaumin outline].

$$
\text { 隹 } \quad-1 \leq z \leq+1
$$

$$
\nabla \cdot \vec{D}=S_{v}=\frac{\partial D_{z}}{\partial z} \varphi_{n^{3}} \quad b c_{z} \bar{D} \text { thas only } D_{z} \text { component }
$$

$$
=\frac{\partial}{\partial z}\left(\rho_{0} z\right)=\rho_{0}(1)=\rho_{0} \varphi_{m^{3}}
$$

$$
\nabla \cdot \bar{D}=\rho_{U}=\rho_{0} \iint_{m^{3}} \text { in the region }-1 \leq z \leq+1
$$

$$
\begin{aligned}
& \therefore \nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} D_{r}\right]+\frac{1}{r \sin \theta} \frac{\partial\left[\sin \theta D_{\theta}\right]}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial D \phi}{\partial \phi} \varphi_{m}{ }^{3} \\
& =\frac{1}{\gamma^{2}} \frac{\partial}{\partial \gamma}\left[x^{2} \cdot 5 / x^{2}\right]+\frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \times \frac{10}{\sin \theta}\right] \\
& +\frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \phi}\left[-\gamma^{2} \phi \sin a_{i}\right]^{4} \\
& =0+0+\frac{1}{\gamma \sin \theta} \times-\gamma^{2} s \cos ^{\prime}=-\gamma \ln ^{3}
\end{aligned}
$$ and $\bar{D}=\frac{\rho_{0} z}{|z|} \overline{a_{3}} \ldots$ elswhere

$$
|z|=\left\{\begin{array}{l}
+z ; \quad z \geq 0 \\
-z ; \quad z<0
\end{array} \quad \therefore \bar{D}=\left\{\begin{array}{l}
+\rho_{0} \overline{a_{2}}-3 \geq 0 \\
-f_{0} \overline{a_{z}} ;-z<0
\end{array}\right.\right.
$$

$\stackrel{\text { Ingeneral }}{D}= \pm \rho_{0} \overline{a_{2}} \mathrm{Cm}^{2}$

$$
\begin{aligned}
& h_{e}=\bar{V} \cdot \bar{D}=\frac{\partial D_{3}}{\partial z}=\frac{\partial}{\partial z}\left(\pm \rho_{0}\right) \\
& \text { problem32 } h_{e}=0 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Given that $\bar{D}=\frac{10 r^{3}}{4} a_{r}\left(A^{2}\right)^{\prime} ; i$ the region $0 \leq r \leq 3 m$ in Gylindrical Coordinator find $\bar{D}=\frac{810}{4 \gamma}$ ar $4 m^{2}$ elowhere,

Find the chorgey density.
Solu:- D i.e $D_{\phi}=D_{2}=0$.

$$
\begin{aligned}
& =\frac{10}{4 r} \times 4 r^{32}=10 r^{2} \mathrm{~cm}^{3} . \\
& S_{V}=10 r^{2} c m^{3} \ldots \quad 0 \leqslant r \leq 3 m
\end{aligned}
$$

and $f_{4}=\nabla \cdot D=\frac{1}{\gamma} \frac{\partial}{\partial \gamma}\left[\frac{810}{4 \gamma}\right]=\frac{810}{4 \gamma} \times D=0 f_{m^{3}}$

$$
f_{v}=\nabla \cdot \bar{D}=0 \mathrm{c} / \mathrm{m}^{3}
$$

problem 33
\therefore Given that $\bar{D}=\frac{Q}{\pi r^{2}}[1-\cos 3 \gamma] \overline{a_{r}}$ in Dept. of EGE $[$ B.M.M.I.I.T\& \& M
Find the charge density.
Sole: \bar{D} ias only D_{r} Component. $D_{\theta}=O_{\phi}=0$.

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\rho_{U}=\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}\left[\bar{r}^{2} \cdot D_{r}\right] \quad \rho_{m}^{3} \\
& =\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}\left[\mathscr{D}^{2} \cdot \frac{Q}{\pi \gamma^{2}}[1-\cos 3 r]\right] \\
& =\frac{1}{r^{2}}\left[\frac{\partial}{\partial r}\left(\frac{Q_{0}}{\pi}\right)-\frac{\partial}{\pi} \frac{\partial}{\partial r}[\cos 3 \gamma]\right. \\
& =\frac{1}{r^{2}}\left[\frac{-2 x}{\pi}-\sin (3 \gamma) \times 3\right]=+\frac{3 \sin (3 r)}{r^{2}} / \pi \\
& \int_{V}=\nabla \cdot \bar{D}=\frac{3 Q}{\pi r^{p}} \sin (3 r) \quad \operatorname{lm}^{3}
\end{aligned}
$$

- In the region, ${ }^{4 \prime \prime}=r \leq 1 m, \bar{D}=\frac{-2 \times 10^{-4}}{\gamma} a_{r} \mathrm{~cm}^{2}$ and for $\gamma \pi 4{ }^{2}, \bar{D}=\frac{-4 \times 10^{-4}}{\gamma^{2}}$ ar dm^{2}, in spherical [ordinates.
Find the" Charge density in both regions.
Sol y $\therefore \quad D_{\theta}=D_{\phi}=0 \mathrm{~cm}^{2}$.
$\therefore S_{Y}$ for $0<r \leq 1 m$ in

$$
h_{1}=\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot D_{r}\right]=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot \frac{-2 \times 10^{-4}}{\partial}\right]
$$

Dept. of E\&CE., SVCE
(62)

$$
f_{1}=\frac{-2 \times 10^{-4}}{r^{2}} \mathrm{fm}^{3} ; 0<r \leq \mathrm{m}_{440}^{\text {Page }}
$$

and he for $r>1 m$

$$
\begin{aligned}
& \rho_{u}=\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[\gamma^{2} D_{r}\right]=\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}\left[r^{2} \times \frac{-4 \times 10^{-4}}{\gamma^{2}}\right] \text {. } \\
& =\frac{1}{\gamma^{2}} \times 0=0 \varphi_{m^{3}} \\
& f_{v}=\nabla \cdot \bar{D}=0 / 4 m^{3} \quad \therefore \text { for region } r>1 m
\end{aligned}
$$

polbum 35
\therefore In the region $\gamma \leq 2, \bar{D}=\frac{5 \gamma^{2}}{4}$ ar and for ir
$\bar{D}=\frac{20}{r^{2}} \overline{a_{r}}$ in Spherical [ordinates. Findu'the charge [Thauminoutline]
density. $\quad D_{\theta}=D_{\phi}=0$

i. $h_{1}=$? for $r \leq 2 m$
 Band atore-562157

$$
\begin{aligned}
& f_{v}=\nabla \cdot \bar{D}=\frac{h_{0}}{h^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot \frac{5 r^{2}}{4}\right]
\end{aligned}
$$ Nor hor $r>2 m$ is

$$
f_{\mu}=V^{1} \cdot D=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot \frac{20}{r^{2}}\right]=\frac{1}{r^{2}} \times 0=0 \mathrm{\mu m}^{3}
$$

$$
\int_{V}=\nabla \cdot \bar{D}=\left\{\begin{array}{l}
5 r \varphi_{m}{ }^{3} ; r \leqslant 2 m \\
0 \mu_{m^{3}} ; r>2 m
\end{array}\right.
$$

Hay Given a Gouci point charge Located at Pheptopigefge, BiM. S. Th\& M problem 36.
total elutric Flux paring through
i. The portion of the sphere $r=26 \mathrm{~cm}$ bounded by

$$
0<\theta<\pi / 2 \text { and } 0<\phi<\pi / 2 \text {. }
$$

ii. the closed surface defined by $\rho=26 \mathrm{~cm}$ and $z= \pm 26 \mathrm{~cm}$.
iii. the plane $Z=26 \mathrm{~cm}$.
[hUH. Hart].
Solus given $Q=60 \mu \mathrm{C}$. at origin.
using Gavrintaw $\psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}$ Coultomb'n.
B. $\quad D \cdot k+\bar{D}$ due to point charge of

$$
\left.\bar{D}=\frac{\theta}{4 \pi r^{2}} \overline{a_{r}} \operatorname{cm}^{2} \cdot h^{k} \quad d r, \theta, \phi\right)
$$

given $\gamma=26 \mathrm{cmet}^{\text {gite }} \gamma=k$ surface

$$
\begin{aligned}
& =\frac{Q}{4 \pi} \int_{\theta=0}^{\pi / 2} \sin \theta d \theta \times \int_{\phi=0}^{\pi / 2} d \phi \times \bar{a} \cdot \prod^{1} \cdot \overline{a_{r}} \\
& =\frac{60 \mu}{4 y} \times 1 \times \frac{1}{1 / 2} \times 1=7.5 \mu \text { Coulomb: } \\
& \psi_{\text {total }}=7.5 \mu \text { Coulombin }
\end{aligned}
$$

ii. given $S=26 \mathrm{~cm}$ and $Z= \pm 26 \mathrm{~cm}$
\bar{D} due to point charge in spherical $C: S$ io $\bar{D}=\frac{Q}{4 \pi \rho^{2}} \bar{a}_{\rho} c_{m}^{2}$ and $\overline{d s} \ldots$ for $\rho=k$ Surface

$$
\begin{aligned}
& p\left(\dot{\rho}_{1} \phi,-z\right)-\overline{d s}=\rho d \phi d z\left(+\bar{a}_{y}\right) \\
& d{ }_{j} d \phi d z \\
& d \rho d h_{2}
\end{aligned}
$$

using GaurinLaw

$$
\psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d S}=\left.\oint_{\langle S\rangle} \frac{Q}{4 \pi \rho^{2}} \overline{a_{\rho}} \cdot g^{\prime} d \phi d d_{1} a_{\rho}\right|_{\rho=0.26 m}
$$

$$
=\frac{Q}{4 \pi \rho} \int_{\varnothing=0}^{2 \pi} d \phi \int_{z=-0}^{+0.26} d z \sqrt{2} d y
$$

$y=26 \mathrm{~cm}$ plane ie $Z=0.26 \mathrm{~m}$
$z=2$
iii) $\quad \operatorname{tr}=26 \mathrm{~cm}$ plane ie $z=0.26 \mathrm{~m}$

$$
\begin{aligned}
& \psi=\left.\frac{\phi}{4 \pi \rho} \int_{\beta=0}^{2 \pi} d \phi\right|_{z=0} ^{0.26} d_{z} \quad \overline{a_{f}} /\left.\cdot \hat{a_{y}}\right|_{\rho=0.26 \mathrm{~m}} . \\
& \begin{array}{r}
=\frac{60 \mu}{401 i \times 0.26} \times 2 \times \times 0 / 26=30 \mu \mathrm{C} \\
\frac{\psi_{\text {total }}=30 \mu \mathrm{C}}{2}
\end{array}
\end{aligned}
$$

- Given the Electric Flux density $\bar{D}=0.3 r^{2}$ Dept. of ECE, B.MFS.I.T \& M

Space.
i) Find \bar{E} at point $p\left(r=2, \theta=25^{\circ}, \phi=90^{\circ}\right)$;
ii) Find the total charge within the sphere $r=3 \mathrm{~m}$.
iii) Find the total Elutric. Flux Leaving the Sphere $r=4 \mathrm{~m}$.

Sole: ' given $\bar{D}=0.3 \gamma^{2} \bar{a}_{r} n /_{m}^{2}$.

$$
\begin{aligned}
& i \quad \bar{D}=E \bar{E} \mathrm{~cm}^{2} \\
& \bar{E}=\frac{\bar{D}}{\epsilon}=\frac{0.3 r^{2}}{\epsilon} \quad \mathrm{~V} / \mathrm{mor} \\
& E_{p}=\frac{0.3(2)^{2} \times 10^{-9}}{8.854 \times 10^{-12}} \mathrm{ar} / \mathrm{m} . \\
& \overline{E_{p}}=135.53 \overline{a_{r}} \quad \mathrm{p}
\end{aligned}
$$

ii. the total Ebarge (Q) with el $r=3 \mathrm{~m}$.
using Gaiuminh Law

$$
\begin{aligned}
& d s=r^{2} \sin \theta d \theta d \phi \overline{0 r} \text {. } \\
& \frac{\text { shoftect:- }}{\text { (or) }}=\psi_{\text {tattle }} \\
& =\left.\operatorname{Dr} \cdot A\right|_{r=3 m} \\
& \begin{array}{l}
=0.3 r^{2} \times\left. 4 \pi r^{2}\right|_{r=3 n} \\
=0.3 \times 4 \pi \times(3) 4^{2}
\end{array} \\
& =0.3 \times 4 \pi \times(3) 4^{r=3} \\
& r=3 \mathrm{~m} .=0.3 \times 4 \pi \times 81 \\
& t=305-364^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& =0.3(3)^{4} \times 2 \times 2 \pi \times 1=305.362 \text { Coulombio } \\
& \text { Dept. of E\&CE., SVCE } \\
& \text { (by) } 8 \text { mat }=305.362 \text { Cumembin }
\end{aligned}
$$

iii. the total Flux leaving the sphere $\dot{\gamma}=4 \mathrm{~m}$

$$
\begin{array}{ll}
n g \text { Gaurin Law } & \overline{d s}=r^{2} \sin \theta d \theta d \phi \overline{a_{r}} \\
H_{\text {total }}=\oint_{\langle S\rangle} \overline{0} \cdot \overline{d s} & \text { Coulombs }
\end{array}
$$

using Gaurin Law
problum38

- In Each of the following panto, Find the numerical value of $\operatorname{div} D$, the point specified.

$$
\begin{gathered}
\text { i. } \bar{D}=\left(2 \frac{1}{4} y z-y^{2}\right) \overline{a_{x}}+\left(x^{2} z-2 x y\right) \overline{a_{y}}+x^{2} y \overline{a_{z}} 4 m^{2} \text { at } p(2,3,-1) \text {. } \\
\therefore \bar{D}=2 \rho z^{2} \sin ^{2} \phi \overline{a_{9}}+\rho z^{2} \sin 2 \phi \overline{a_{\phi}}+2 \rho^{2} z \sin ^{2} \phi \overline{a_{z}} 4 m^{2} \\
\text { at } P\left(2,110^{\circ},-1\right) .
\end{gathered}
$$

$$
\text { iii. } \bar{D}=2 r \sin \theta \cos \phi \overline{a_{r}}+r \cos \cos \phi \overline{a_{\theta}}-r \sin \phi \overline{a_{\phi}} d m^{2}
$$

$$
\text { at } P\left(1.5,30^{\circ}, 50^{\circ}\right)
$$

$$
\begin{aligned}
& =\int_{\langle S\rangle} 0.3 r^{2} \overline{a_{r}} \cdot r^{2} \sin \theta d \theta d \phi \overline{a_{r}} \\
& =0.3 \gamma^{4} \int_{\theta=0}^{\pi} \int_{\phi}^{\pi} \sin \theta d \theta \int_{\theta=0}^{2 \pi} d \phi \\
& =0.3(4)^{4} \times 2 \times\left. 2 \pi\right|^{*}=965.09 \text { Coulomb: } \\
& \text { (0) } \psi_{\text {total }}=\left.\operatorname{Dr} A\right|_{r=4 \mathrm{~m}} \\
& =0.3 r^{2} \times 4 \pi r^{2} l_{r=4 m} \\
& =0.3(u)^{2} \times 4 \pi(u)^{2}=965.09 \mathrm{Ci}
\end{aligned}
$$

soly': $i \cdot \nabla \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{2}}{\partial z} f_{m^{3}}$

$$
\begin{aligned}
\nabla \cdot \bar{D} & =\frac{\partial}{\partial x}\left(2 x y z-y^{2}\right)+\frac{\partial}{\partial y}\left(x^{2} z-2 x y\right)+\frac{\partial}{\partial z}\left(x^{2} y\right) \\
& =2 y z+(-2 \bar{x})+0=2 y z-2 x
\end{aligned}
$$

$\nabla \cdot \bar{D} @ P(2,3,-1)$ i.e $x=2, y=3,3, \bar{m}_{1}-1$

$$
\left.\nabla \cdot \bar{D}\right|_{\mathbb{C P}}=2(3)(-1)-2(2)=-6-4=-0 \cdot \bar{D}_{p}=-10 \mathrm{Cm}^{3}
$$

ii. $\nabla \cdot \bar{D}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \cdot D_{f}\right]+\frac{1}{\rho} \frac{\partial \rho \phi}{\partial \phi}+\frac{\partial D_{z}}{\partial z}$

$$
\begin{aligned}
& =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \cdot 2 \rho z^{2} \sin ^{2} \phi \cdot+\frac{1}{\rho} \frac{\partial}{\partial \phi}\left(\rho z^{2} \sin 2 \phi\right)+\frac{\partial}{\partial z}\left(2 \rho^{2} z \sin ^{2} \phi\right]\right. \\
& =\frac{2 z^{2} \sin ^{2} \phi}{\rho}{ }^{2}+\frac{\rho^{2} z^{2}}{8} \times \cos 2 \phi \times 2+2 \rho^{2} \sin ^{2} \phi(1) \\
& \text {, } P\left(\rho=2, \phi=110^{\circ}, \quad z=-1\right) \\
& \nabla \cdot \bar{D}=\frac{\not\left((-1)^{2} \sin ^{2}(110)\right.}{\not 2} \times 2 \times 2+(-1)^{2} \cos \left(220^{\circ}\right) \times 2+2(2)^{2} \sin ^{2}(11) \\
& \overrightarrow{\nabla \cdot \stackrel{D}{@}}=9.06417 \mathrm{~cm}^{3}
\end{aligned}
$$

iii。 $\bar{D}=2 r \sin \theta \cos \phi \overline{a_{r}}+r \cos \theta \cos \phi \overline{a_{\theta}}-r \sin \phi \overline{a_{\phi}} \phi_{m}^{2}$
at $p\left(r=1.5, \theta=30^{\circ}, \phi=50^{\circ}\right)$
at $P\left(r=1.5, \$ 1.80^{\circ}, \phi=50^{\circ}\right)$

$$
\left.\vec{\nabla} \cdot \vec{D}\right|_{@ p}=6 \sin \left(30^{\circ} \cdot \cos \left(50^{\circ}\right)+\frac{\cos \left(60^{\circ}\right)}{\sin 30^{\circ}} \cos \left(50^{\circ}\right)-\frac{\cos 50^{\circ}}{\sin 30^{\circ}}\right.
$$

,

$$
\left.\nabla \cdot \bar{D}\right|_{Q P}=1.2852 \varphi_{m}
$$

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot D_{r}\right]+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta D_{\theta}\right] \quad+\frac{1}{r \sin \theta} \frac{\partial D_{\phi}}{r \phi} d \operatorname{mon}^{3} \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot 2 r \sin \theta \cos \phi\right]+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}[\sin \theta \cdot r \cos \theta \cos \phi] \\
& +\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left[-r \sin \phi_{0} \theta_{m}{ }^{3} .\right. \\
& =6 \sin \theta \cos \phi+\frac{\cos 2 \theta}{\sin \theta} \cos \phi=\frac{\cos \phi}{\sin \theta}
\end{aligned}
$$

noblum 39) Deturminie an exprunion for the volume Deftige EGESY.M.S.I.T \& M anociated with each \bar{D} firld following

$$
\begin{aligned}
& i . \bar{D}=\frac{4 x y}{3} \overline{a_{x}}+\frac{2 x^{2}}{2} \overline{a_{y}}-\frac{2 x^{2} y}{3^{2}} \overline{a^{2}} \mathrm{~cm}^{2} \\
& \text { ii. } \bar{D}=3 \sin \phi \bar{a}_{f}+3 \cos \phi \overline{a_{\phi}}+\rho \sin \phi \bar{a}_{z} 4 m^{2} . \\
& i i i \cdot \bar{D}=\sin \theta \sin \phi \overline{a_{r}}+\cos \theta \sin \phi \overline{a_{\theta}}+\cos \phi \overline{a_{\phi}} \varphi_{m^{2}}
\end{aligned}
$$

Soly:- $i_{0} \nabla \cdot \bar{D}=\rho_{v}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z} /_{m} 3$

$$
\begin{aligned}
& \nabla \cdot D=J_{V}=\frac{4 y}{3}+0-2 x^{2} y x-2 y^{3}=\frac{4 y}{2}+\frac{4 x^{2} y}{3^{3}}
\end{aligned}
$$

$i i^{p}$ 。

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\int_{4} 4 \psi^{4, w^{\prime \prime}} \frac{\partial}{\partial \rho}\left[\rho \cdot D_{\rho}\right]+\frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi}+\frac{\partial D_{z}}{\partial z} \mu_{m}{ }^{3} \\
& =\sin \frac{\partial}{\partial \rho}[\rho \cdot 3 \sin \phi]+\frac{1}{\rho} \frac{\partial}{\partial \phi}[z \cos \phi]+\frac{\partial}{\partial z}[\rho \sin \phi] \\
& =\frac{3 \sin \phi}{\rho}+\frac{1}{\rho} 3 \not y-\sin \phi+0=0 \operatorname{qn}^{3} \\
& \left.\rho_{V}=\bar{V} \cdot \bar{D}=0\right) 4 m^{3}
\end{aligned}
$$

iii. $\nabla \cdot \vec{D}=\rho_{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot D_{r}\right]+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \cdot D_{\theta}\right]$

$$
\begin{aligned}
& +\frac{1}{r \sin \theta}-\frac{\partial}{\partial \phi} \rho_{\phi}=q_{m}{ }^{3} \\
& \bar{\nabla}-\bar{D}=\rho_{V}=\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot \sin \theta \sin \phi\right]+\frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \theta}[\sin \theta \cos \theta \sin \phi] \\
& +\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}[\cos \phi] \\
& \cos ^{2} \theta=\frac{1+\cos 2 \theta}{4} \\
& \sin ^{2} \theta_{1}+\frac{1-\cos 2 \theta}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{2}{\gamma} \sin \theta \sin \phi+\frac{\sin \phi}{r \sin \theta}+\cos 2 \theta-1\right] \\
& =\frac{2}{\gamma} \sin \theta \sin \phi, \frac{\sin \phi}{\gamma \sin \theta} \times-2 \sin ^{2} \theta \\
& =\frac{2}{\gamma^{\prime}} \sin \sin ^{2} \sin \phi-\frac{2}{\gamma} \phi \sin \theta \sin \phi=0 \ln ^{3} \\
& 3 \\
& \nabla \operatorname{Rn}^{n}=\int_{v}=0 / 4_{n}^{3}
\end{aligned}
$$

1 . if $\bar{D}=10 e^{-2 z}\left(\rho \overline{a_{f}}+\overline{a_{z}}\right) d m^{2}$. Dtermine the total Rlux of \bar{D} out of the crtire Surface of the cylinder $f=1 m$, $0 \leqslant z \leq 1$. Confirm the reout by using the divergen to theorers.

 $\frac{d d d y}{\left(+a_{3}\right)} d s \rho d y$
using Gain Law
$\overline{d s}=\rho d \rho d \phi\left(-\overline{a_{2}}\right)$

$$
\left.\psi_{\text {top }}\right|_{2=1 m}=\int_{\langle s\rangle} \overline{D_{3}} \cdot \frac{d s}{d s}=\left.\int_{\langle s\rangle} 10 e^{-22} \overline{a_{3}} \cdot d \dot{d} \cdot \phi\right|_{z=1 m}
$$

$$
=\left.10 e^{-22} \int_{\rho=0}^{1} 1 d s \int_{\phi}^{2 \pi} d \phi \phi^{2} d \sqrt{2} d a_{z}\right|_{2=1 m}
$$

$$
\left.\Psi_{\text {top }}\right|_{2=1 m}=10 e^{-2} \times 10 e^{-2} \pi \text { Coulombin }
$$

$$
\begin{aligned}
& =1=\left.10 e^{-2 z} \int_{\beta=0}^{1 m} \rho d \rho x \int_{\phi=0}^{2 \pi} d \phi \bar{a}_{\beta} \hat{a}^{\frac{1}{a_{z}}}\right|_{z=0 m} \\
& =-10 \times e^{-z^{2}(0)} \times 0.5 \times 2 \pi \times 1=-10 \pi \text { Coutambin } \\
& \left|P_{\text {side }}\right|_{\rho=1 m}=\int_{\langle S\rangle} \overline{D_{\rho}} \cdot \overline{d s}=\left.\int_{\langle S\rangle} 10 e^{-2 z} \rho \bar{a}_{j} \cdot \rho d \phi d z \overline{a_{j}}\right|_{\rho=1 m}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{\text {total }}=\varphi_{S} \bar{D} \cdot \overline{d s} \text { Cioulomin's } \\
& d \bar{s}=\rho d \phi d_{3}\left(+\overrightarrow{a_{\rho}}\right) . \\
& \rho=1 m
\end{aligned}
$$

$$
\begin{aligned}
\left.\Psi_{\text {oide }}\right|_{\rho=1 m} & =10 \rho \int_{\phi=0}^{2 \pi} d \phi \int_{z=0}^{1} e^{-2 z} d z \bar{a}_{f} /\left.\overline{a_{j}}\right|_{\rho=1 . n} \\
& =10 \times 1 \times \not 2 \pi \times-\frac{1}{2}\left[e^{-2}-1\right] \times 1=10 \pi\left[1-e^{-2}\right]
\end{aligned}
$$

$$
\psi_{\text {total }}=\psi_{\text {top }}+\psi_{\text {bottom }}+\psi_{\text {side }}
$$

$$
=10 e^{-2} \pi-10 \pi+10 \pi-10 \pi e^{-2}
$$

$$
\begin{equation*}
\psi_{\text {total }}=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=0 \quad \text { Coulomb } \tag{a}
\end{equation*}
$$

(Or) $\begin{aligned} & \text { Hothod. } 2 \text { lerification using divergence theorem }\end{aligned}$
 divergence theorem.

$$
\begin{aligned}
& \text { i.e } \left.\int_{\left\langle v_{0}\right\rangle}\left(\bar{\sigma}_{0}, \bar{D}\right) d v=\right\} \quad, \quad, \quad, v=\rho d \rho d \phi d z \text {. } \\
& \begin{array}{l}
\left\langle v_{0}\right\rangle \\
\nabla_{V} \cdot \bar{D}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \cdot D_{\rho}\right]+\frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi}+\frac{\partial D_{2}}{\partial z} \quad q_{m} 3
\end{array} \\
& =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho_{n} 4 e^{-2 z} \rho\right]+\frac{\partial}{\partial z}\left[10 e^{-2 z}\right] \\
& =\frac{10}{23} \times 10 e^{-2 z} \times 25+10 e^{-2 z} \times(-2) \\
& \nabla \cdot \vec{D}=2 \phi e^{-2 z}-2 \phi e^{-2 z}=0 \varphi_{m^{3}} \\
& \therefore \underbrace{}_{\left\langle\int_{\left\langle\omega_{0}\right\rangle}(\nabla \cdot \bar{D}) d r e d\right.} 0 \cdot d r=0] \ln 3<(b
\end{aligned}
$$

Produm 4 . Given the Fild $\bar{D}=69 \sin (0.5 \phi) a_{1}+1.5 \rho \cos (0.5 \phi) a_{\phi} 9 m^{2}$.
Evaluate bottsides of the divergence theoress for the region bounded by $\rho=2 \mathrm{~m}, \phi=0$ to $\phi=\pi$ and $z=0$ f $z=5 \mathrm{~m}$.
Solyi: Divirgence theorem $\quad \begin{aligned} & D_{\rho}=6 \rho \sin (0.5 \phi) \operatorname{lm}_{\phi}^{2} \\ & D_{\phi}=1.5 \rho \cos (0.5 \phi) \varphi_{m^{2}}+D_{2}=0 \mu_{m}^{2}\end{aligned}$
L.H.S

$$
\begin{align*}
& =-\left.1.5 \cos (0.5 \phi) \int_{-\rho=0}^{2} s d s \int_{z=0}^{5} d z \bar{a}_{\phi} \cdot \hat{a}_{\phi}^{1}\right|_{\phi=0^{c}} \\
& =-1.5 \times \operatorname{cop}(0) \times 2 \times 5 \times 1=-15 \text { Coubonbin } \\
& \psi_{\phi=\pi^{c}}=\int_{\langle\beta\rangle} \overline{D_{\phi}} \cdot \overline{d s}=\left.\int_{\langle s\rangle} \rho .5 \rho \cos (0.5 \phi) \overline{a_{\phi}} \cdot d \rho d z_{2}\left(\overline{a_{\phi}}\right)\right|_{\mid, 1} \\
& =1.5 \cos (0.5 \phi) \int_{\rho=0}^{2} \rho d \rho \times \int_{3=0}^{5} d_{2} x,\left.4 a_{0}\right|_{\phi=\pi} \\
& =1.5 \times \cos (\pi / 2) \times 2 \times 5 \\
& \therefore \psi_{\text {total }}=\left.\psi\right|_{s=2 m}+\operatorname{tin}_{\phi=0^{c}}+\left.\psi\right|_{\phi=\pi c} \\
& =2{ }^{2+3}-15+0=225 \text { Coulombin } \\
& \psi_{\text {Potal }}^{2}=225 \text { Coulomb'r } \tag{ज}\\
& \text { ROHOS } \\
& \bar{D}=6 \rho \sin (0.5 \phi) \overline{a_{\rho}}+1.5 \rho \cos (0.5 \phi) \bar{a}_{\phi} \varphi_{m}{ }^{2} \text {. } \\
& \int_{\left\langle u_{0}\right\rangle}(\bar{Q} \cdot \bar{D}) d v=2 \quad d v=\rho d \rho d \phi d z \text {. por } \eta_{z}=0 \\
& \vec{\nabla} \cdot \bar{D}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho D_{\rho}\right]+\frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi}+\frac{\partial D_{\rho}}{\partial \partial_{2}} f_{m}{ }^{3}
\end{align*}
$$

Divergence theorem is Venfied.

$$
\begin{aligned}
& \nabla \cdot \bar{D}=\frac{1}{\rho} \frac{\partial}{\partial \rho}[\rho \cdot 6 \rho \sin (0.5 \phi)]+\frac{1}{\rho} \frac{\partial}{\partial \phi}[1.5 \rho \cos (0.5 \phi)] \\
& =\frac{6 \sin (0.5 \phi)}{8} \times 28+\frac{1.58}{8} \times=\sin (0.5 \phi) \times 0.5 \\
& \text { XX }
\end{aligned}
$$

$$
\begin{align*}
& =11.25 \int_{\rho=0}^{2} \rho d \rho \times \int_{0}^{\pi} \sin (0.5 \phi) d \phi x \int_{z=0}^{5} d z \\
& =11.25 \times 2 \times 2 \times 5=225 \text { Coulombin } \tag{6}
\end{align*}
$$

problem 42
Volume eharge density $\rho_{v}=0$ for $1<0.01 \mathrm{~m}$ and also
Pognvolb
$\rho>0.03 \mathrm{~m}$. In the region $0.01<\rho<0.03 \mathrm{~m}$
$y_{v}=10^{-8} \cos (50 \pi 3) 4 \mathrm{~m}^{3}$. Find Elutre Fhax density
\bar{D} eurg where. - (7 Marks).

Solui:
\square
 radially out. where in desifi, by the following easis

$$
\begin{aligned}
& \text { radially out. whare in de } \\
& i \cdot e \\
& D=D_{j} a+l^{2}
\end{aligned}
$$

$$
\text { and, they } \rho>0.03 \mathrm{~m}
$$

Casei. whan to 0.01 m .

$$
\bar{D}=D_{\rho} \bar{a}_{\rho} \varphi_{m} 2
$$

(en SincéGausian sutacu in $h=0 \operatorname{cm}^{3}$

$$
\therefore Q_{m,}=O C
$$

$$
D_{\rho}=\Psi / A_{\text {raa }}=\frac{Q_{\text {eneased }}}{A_{\text {rea }}}
$$

Since $f_{k}=0$.

$$
\therefore Q_{n n}\left\{\begin{array}{l}
f_{v 1} \\
\left\langle v_{1}\right\rangle
\end{array}=O C_{i}\right.
$$

Dept. of E\&CE., SVCE
($8 x$

$$
\therefore D_{f}=0 \mathrm{~cm}^{2}
$$

$$
\Rightarrow \quad \bar{D}=0 \mathrm{Cm}^{2} ; \quad \rho<0.01 \mathrm{~m}
$$

Canesi $\quad 0.01<\rho<0.03 \mathrm{~m}$ ．

$$
D_{\rho}=\frac{\psi_{\text {total }}}{A}
$$

Area of the Gaussian \qquad
Surface $\Rightarrow \square^{2 \pi^{\rho}} \neq 2$

$$
A=2 \pi \rho 3 \mathrm{~m}^{2}
$$

figb：

$$
\begin{aligned}
& \text { and } \psi_{\text {tatal }}=Q_{\text {end }}=\int_{\left\langle u_{0}\right\rangle} \rho_{v} d v \\
& \rho_{v}=10^{-8} \operatorname{coo}(50 \pi \rho) f_{m}{ }^{3} \text { and } v=\rho d \rho d \phi d z \text {. } \\
& \Psi_{\text {total }}=Q_{\text {end }}=\int_{\text {人vo力 }} 10^{-8} \cos (50 \pi, \rho), \rho d s d \phi d_{2} G_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =10^{-8}\left[\pi,\left.\frac{\sin (50 \pi \rho)}{50 \pi}\right|_{0.01} ^{\rho}-x-\frac{\cos (50 \pi \rho)}{(50 \pi)^{2}} \times\left. 1\right|_{0.01} ^{\rho} \times 2 \pi \times 2\right. \\
& =10^{-8}\left[\frac{1}{50 \pi}[\rho \sin (50 \pi \rho)-0.0 \sin (50 \pi \times 0.01]]+\frac{1}{(50 \pi)^{2}}[\cos (50 \pi \rho)\right. \\
& -\cos [50 \pi(0.01)] \times 2 \pi 3] \\
& =10^{-8}\left[\frac{\rho \sin (50 \pi \rho)}{50 \pi}-\frac{0.01}{50 \pi}+\frac{\cos (50 \pi \rho)}{(50 \pi)^{2}}-0\right] 2 \pi z
\end{aligned}
$$

$$
\begin{aligned}
& D_{j}=\frac{Y_{\text {totel }}}{A}=\frac{10^{-8}\left[\frac{\rho \sin (50 \pi s)}{50 \pi}-\frac{0.01}{50 \pi}+\frac{\cos (50 \pi \rho)}{(50 \pi)^{2}}\right] 2 \pi k}{2 \pi \rho \xi 3} \\
& =\frac{10^{-8}}{\rho}\left[\frac{\rho \sin (50 \pi j)}{50 \pi}-\frac{0.01}{50 \pi}+\frac{\cos (50 \pi j)}{\left.(50 \pi)^{2}\right)}\right] \\
& D_{\rho}=10^{-8}\left[\frac{\sin (50 \pi \rho)}{50 \pi}-\frac{0.01}{50 \pi \rho}+\frac{\cos (50 \pi \rho)}{(50 \pi)^{2} \rho}\right] c^{2} / m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore D_{\rho}=\left[\frac{1}{50 \times 10^{-4}} \cdot \frac{\sin (50 \pi \rho)}{\pi}+\frac{\pi 1}{50^{2} \times 10^{-4}} \frac{\cos (50 \pi \rho)}{\pi^{2} \rho}-\frac{0.01}{10^{-4} \times 50 \pi \rho}\right] \times 10^{-12} / \mathrm{m}^{2} \\
& D_{\rho}=\left[\frac{200 \sin (50 \pi \rho)}{\pi \pi^{n}}+\frac{4 \cos (50 \pi \rho)}{\pi^{2} \rho}-\frac{2}{\pi \rho}\right] \mathrm{pc}_{\mathrm{m}}{ }^{2} \\
& \therefore \bar{D}{ }^{4}{ }_{m}{ }^{2} \\
& \underbrace{\bar{D}=\left[\frac{200 \sin (50 \pi \rho)}{\pi}+\frac{4 \cos (50 \pi \rho)}{\pi^{2} \rho}-\frac{2}{\pi \rho}\right]} a_{\rho}\} p q_{m}^{2}
\end{aligned}
$$

Caseiii. $\quad \rho>0.03 m$.
$=2$ Пept of MCE, B.M.S.I. $~ \& ~ M$

fige!

$$
\frac{\left(\frac{1}{D_{m}} D_{f} \overline{a s}=-\frac{2.5465}{\rho} a_{\rho}\right] p c m^{2}}{\rho ; 0,01 m}
$$

$$
\begin{align*}
& \left.\psi_{\text {total }}=Q_{\text {Rend }}=\int_{\langle\text {vol }\rangle} f_{u} d v=\int_{\langle v o 1\rangle} 10^{-8} \text { conchoth }\right\rangle \\
& =10^{-8} \int_{S=0.01}^{0.03} \rho \cos (50 \pi \rho) d \rho x d x+\int_{z=0}^{2} d z \\
& =10^{-8} \times-2.5465104 \times 2 \pi \times z=-\frac{2.5465 \times 10^{-12} \times 2 \pi 3}{}
\end{align*}
$$

$2^{n d}$ Methods $=$ using Maxarilin fratequation.

Casei: ie when $S<0.01 \mathrm{~m} . \delta_{y}=0 \ln ^{3}$ given
from Maxwill'n fintteg $\quad \nabla \cdot \bar{D}=J_{4} \mathrm{~cm}^{3}$

$$
\nabla \cdot \bar{D}=0
$$

is valid only when $\bar{D}=0 \Rightarrow \rho=0 \ln ^{2}$

$$
0.01<\rho<0.03 m
$$

Caseii. when

$$
\nabla \cdot \bar{D}=\rho_{y} \quad c_{m}
$$

Since \bar{D} in firmor only D_{j} component.

$$
\begin{aligned}
& \therefore \quad \nabla \cdot \bar{D}=\frac{1}{\infty}+\frac{\partial}{\partial \rho}\left(\rho \cdot D_{\rho}\right)=\rho_{4} \\
& \Rightarrow \partial_{0} \frac{\partial}{\partial \rho}\left[\rho \cdot D_{j}\right]=\rho \cdot \rho_{v} \\
& \rho \cdot D_{\rho}=\int_{\langle\rho\rangle} \rho \cdot \rho_{y} d \rho . \\
& \rho \cdot D_{\rho}=\int_{\rho=0}^{\rho}\left(\rho \cdot \rho_{4}\right) d \rho=\int_{\rho=0}^{\langle\rho\rangle} \rho \rho_{v} d \rho+\int_{\rho=0.01}^{\rho} \rho \cdot \rho_{4} d \rho \\
& \text { refer fegb. }
\end{aligned}
$$

$$
\therefore \quad \frac{D}{D}=D_{3} \bar{a}_{3}{c_{n}^{2}}^{2}
$$

$$
\underbrace{\therefore \frac{D=D_{j} a_{\rho}}{D}=\left[\frac{200 \sin (50 \pi \rho)}{\pi}-\frac{2}{\pi \rho}+\frac{4 \cos (50 \pi \rho)}{\pi^{2} \rho}\right]} \text { (pclm}{ }^{2}
$$

$$
0.01<\rho<0.03 \mathrm{~m}
$$

and $\bar{D}=0 \mathrm{~cm}^{2}$ when $\rho=0.01 \mathrm{~m}$.

$$
\begin{aligned}
& \rho \cdot D_{\rho}=\int_{j=0.01}^{\rho} \rho \cdot \times 10^{-8} \cos (50 \pi \rho) d \rho \\
& =10^{-8}\left[\rho \times\left.\frac{\sin (50 \pi 1)}{50 \pi}\right|_{0.01} ^{\rho}-\int_{\rho=0.01}^{\rho}\left(\frac{\sin (50 \pi f)}{50 \pi}\right) \times \cos \right] \\
& =10^{-8}\left[\frac{\rho \sin (50 \pi \rho)}{50 \pi}-\frac{0.01 \sin (50 \pi \times 0.01)}{50 \pi}+\left.\frac{\cos (50 \pi,}{(30 \pi)}\right|_{0} ^{\rho}\right] \\
& \left.=10^{-8}\left[\frac{\rho \sin (50 \pi \rho)}{50 \pi}-\frac{0.01 \sin (\pi / 2)}{50 \pi}+\frac{604(50 \pi 1)}{(500)(50 \pi}\right)\right] \\
& \begin{aligned}
& =10^{-8}\left[\frac{\rho \sin (50 \pi \rho)}{50 \pi}-\frac{0.01,}{(50 \pi)}+\frac{\cos (50 \pi \rho)}{50^{2} \times \pi^{2}}\right] \\
D_{\rho} & =10^{-8}\left[\frac{\sin (50 \pi)}{50 \pi}+\frac{0.01}{\rho(50 \pi)}+\frac{\cos (50 \pi)}{50^{2} \times \pi^{2} \rho}\right] \rho_{m}^{2}
\end{aligned} \\
& b_{1} \cos T_{2}=0 \\
& D_{\rho}=\left[\frac{200 \sin (4 \pi \rho)}{\pi}-\frac{2}{\pi \rho}+\frac{4 \cos (50 \pi \rho)}{\pi^{2} \rho}\right] \times 10^{-12} \mathrm{~cm}^{2}
\end{aligned}
$$

Casciii ie when $\rho>0.03 \mathrm{~m}$ the proudure conciio.

$$
\rho \cdot D_{\rho}=\int_{0.01}^{0.03} \rho \times\left. 10^{-8}\right|_{\text {whe calei }}(50 \pi \rho) d \rho
$$

$$
\rho \cdot D_{\rho}=-205465 \times 10^{-4} \times 10^{-8}
$$

$$
\begin{aligned}
& \rho \cdot D_{f}=\frac{-2.5465}{\rho} \times 10^{-12} \mathrm{~cm}^{2} \\
& D_{f}=\frac{1}{9} \mathrm{Cm}^{2}
\end{aligned}
$$

$$
\therefore \bar{D}=\operatorname{Deg}_{\cos } \sin 2
$$

Deptrof Eece. sVCE
$-84.8933 \bar{a}_{\rho} p 4_{m}{ }^{2} ; \rho=0.03 \mathrm{~m}$.

$$
\begin{aligned}
& \Rightarrow \quad \rho_{0} D_{\rho}=\int \rho \cdot \rho_{y} d \rho \rho \rho 0.01 \\
& \rho \cdot D_{\rho}=\int_{\rho=0}^{0.01} \rho \cdot \rho_{y} d \rho+\int_{0.01}^{\langle\rho\rangle} \rho \cdot \rho_{u} d \rho+\int_{\rho=0.03}^{\rho} 1 \rho 5 v d \rho \\
& h=0 \\
& ; j>0.03
\end{aligned}
$$

Module -2 Pent
Topics: $2 \cdot 8$
(0) Energy expended in moving a point charge in an electric field Cerlelre Prole
$-\quad-$
Dankan V Goucia wreck, (P ked)
Assistant Professor, Dept. of Eck CE
28. Energy expended in Moving a point charge in an

Elatric field (E)
$\ldots \bar{E}$
$-\bar{B}$

figs. Moving a charge in an Uniform field (E)

Consider a charge +QC at a point A in a un, form clutric field E.
the Force anting on a charge θ is

$$
\bar{F}=\overline{Q E} \mathrm{~N}
$$

The diration of force acts in the diration of the field. the vagritede of fore $F=Q E<$ (a).
Let us Consider that charge is moving through a distance $\triangle L$ along an arbitrary diration, say dong A to B, which is inclined at an angle θ to the diration of the field. Since the charge in moving against the field. for such a reverent He force ailing on charge ' Q ' is Force acting $=F \cos (\pi-\theta)$ Newton's onchogle using cq@

$$
=Q E \cos \left(\frac{\pi^{-c}-\theta \theta}{}=\theta\right)
$$

$$
\therefore \text { Force acting }=-Q E \cos \theta
$$

$$
\Rightarrow \text { morkdone }=\text { force acting } \times \text { displacement }
$$

$$
=-Q E \cos \theta \times \Delta L
$$

$$
\bar{E} \cdot \overline{\Delta L}=E \cdot \Delta L \cos \theta
$$

$$
\bar{A} \cdot \bar{B}=A B \cos \theta
$$

$W=-Q \bar{E} \cdot \overline{\Delta L}$, Joules.
if the charge is moved through a differential distance $\frac{d}{d l}$ in the freed \vec{E}, then "the ditterntial work done.

$$
d w=-Q \vec{E} \cdot d l
$$

the total workdone in given by final

$$
\begin{aligned}
& \text { total workdone } \int_{A}^{B} \bar{E} \cdot \overline{d l}=-Q \int_{\text {initial }}^{\text {final }} \cdot \\
& W=-Q \int_{\text {in initial }}^{\text {final }} \bar{E} \cdot \overline{d l}
\end{aligned} \text { Joules. }
$$

Dells of Work done:- work is said to be done when the test charge is moved against the clutric field.

Ky Notepointo:-

1. No workdone is reguirat to move a point tharge along the divetion papendiculer to the fild (\bar{E}).
i.e $\bar{E} \cdot \overline{d l}=0$ when E and \bar{X} ane 1^{ε} Eachether.
2. $\bar{E} \cdot \overline{d l} \neq 0$; when \bar{E} and $\overline{d l}$ arenot papandiculor.
3. Differntial Length vetoris in all thre. Coordimite. problemU3

System Δ :-
proben . Write the Expren frifor Fand $\overline{d t}$ withetifo in
 Sytions:
Solui- i> Lartesian ppirbinate System

$$
\begin{aligned}
& \bar{F}=E_{x} \bar{a}_{x}+{ }_{F} \dot{b}_{y}+E_{z} \bar{a}_{z} \quad v / m \text {. } \\
& \frac{n^{n}}{d^{\prime \prime}}=d x \overline{a_{x}}+d y \bar{a}_{y}+d z \bar{a}_{z} ; m
\end{aligned}
$$

Dept. of ECE, B.M.S.S.I. T $\& M$
ii) Eylindrical [oordinate syotem.

$$
\begin{gathered}
p(\rho, \phi, z) \\
d \rho \quad \rho d \phi>d z \\
\overline{\mathcal{F}}=E_{\rho} \bar{a}_{\rho}+E_{\phi} \bar{a}_{\phi}+E_{z} \bar{a}_{z} ; v / m \\
\overline{d l}=d \rho \bar{a}_{\rho}+\rho d \phi \overline{a_{\phi}}+d_{z} \overline{a_{z}}>m \\
\bar{E} \cdot \overline{d l}=E_{\rho} d \rho+\rho E_{\phi} d \phi+E_{z} d_{z}
\end{gathered}
$$

iii) Spherical [oordinate System.

$$
\begin{aligned}
& \bar{F}=E_{r} \bar{a}_{r}+E_{\theta} \bar{a}_{\theta}, F_{\phi} \bar{a}_{\phi} ; v / m \\
& \underset{r d \theta}{P(r, \theta}, \phi) \rightarrow r \sin \theta d \phi \\
& \bar{d}=d r a_{r}+r d \theta \overline{a_{\theta}}+r \sin \theta d \phi \overline{a_{\phi}} ; m \\
& \overline{E \cdot} \cdot \overline{d l}=E_{r} d r+r E_{\theta} d \theta+r \sin \theta E_{\phi} d p \text { voltn. }
\end{aligned}
$$

bony An Electric Fill is given by $\bar{E}=\left(\frac{x}{2}+2 y\right) \overline{a_{x}}+2 x a_{y} N / c$.
Find the work done in moving a point charge $A=-20 \mu \mathrm{C}$.
i) from the origen to $(4,0,0) \mathrm{m}$.
ii) from $(4,0,0) \mathrm{m}$ to $(4,2,0) \mathrm{m}$.
iii) from origin to $(4,2,0) \mathrm{m}$.
iv) from $(4,2,0)$ to origin.

Solus".

on perth $O A$ th value of y in $300 \therefore \therefore y=0$

$$
\begin{aligned}
& W_{Q A}=+20 \mu \int_{x=0}^{4}\left(\frac{x}{2}\right) d x=20 \mu \times 4=80 \mu \text { Joules } \\
& b_{O_{O A}}=80 \mu \text { Joules }
\end{aligned}
$$

$$
W_{A B}=320 \mathrm{~m} \text { Joules }
$$

iii) $W_{O_{B}}=-Q \int_{0}^{B} \bar{E} \cdot \overline{d l}=-(-20 \mu) \int_{0}^{B(4,2 d)^{n}, 4,}\left[C_{x} d x+E y d y\right]$

$$
W_{B O}=-4001 \text { Jouls }
$$

$$
\begin{aligned}
& =+20 \mu\left[\begin{array}{l}
\left.\int_{x=0}^{4}\left(\frac{x}{2}+7 x\right) d x+\left.\right|_{y=0} ^{2}(2 y) d y\right]
\end{array}\right. \\
& =+20 \mu \cos _{y}^{2} \\
& =40 \\
& L_{O_{B}}=400 \mu / \text { Jouls } \\
& \text { iv) } W_{B O}=-Q \int_{B}^{0} \bar{E} \cdot \overline{d l}=-W_{O B}=-400 \mu \text { Joules }
\end{aligned}
$$

$$
\begin{aligned}
& i) W_{A B}=-\left.\theta\right|_{A} ^{B} \bar{E} \cdot \overline{d l}=-\left.(-201) \int_{(4,0,0)}^{\left(D_{1} \text { ept.)of ECE, B.M.S.I.T } \& M\right.}\right|_{x=4} ^{2 x \cdot d y} \\
& =+20 \mu \int_{y=0}^{2} 2(4) d y=20 \mu \times 8 \times 2 \quad \text { Ato B }
\end{aligned}
$$

Imp. Obsurations - $\quad W=-\left.Q\right|^{\text {tral }} \bar{F} \cdot \overline{d l} \quad$ Dept. Of ECE, B.M.S.T.T $\& M$ against the field \bar{E}.
2. Wlorkdone is Scular in nature.
3. ' W ' is the when charge ' Q ' is moved against the twe when charge Q external Soure reat
diration of F. e.
F': ' W ' is -ve when charge ' Q ' is moved, frulle diration of field E. ie no extenity foire is riquired.
5. Work dere is indeperdent of the of ind suth from O to B but it dypunds on endafish O and B. [Ry. pooblum
6. No Worm (ie $W=0$ Joals) in nguind to move a point inge of QC ovora clood path i.e storting point cond ending pointo both one same.

$$
\begin{aligned}
& \text { i.e } W_{O_{A}}+W_{A B}+w_{B_{O}} \Rightarrow \text { cloud path } \\
& \text { sp/u }+320 \mu-480 \mu=0 \text { Jouls. }
\end{aligned}
$$

7. $K=0$ when the path selected is $\frac{1^{\varepsilon}}{E}$ tothe fried
 to $A(0,2,0)$ along the port $, y=2-2 x, z=0$ in the fold $>E=5 a_{n} y m \quad \Rightarrow E=5 x \bar{a}_{n} \vee / m$

$$
\text { iii) } \bar{E}=5 x \bar{a}_{n}+5 y \bar{a}_{y} y m
$$

Solus:-
posh $y=(2-2 x)=u c$

$$
W=-Q \int_{\text {initial }}^{\text {final }} \frac{d l}{E}
$$

$$
=0
$$

$$
\stackrel{\square}{\because} \quad \stackrel{d x}{ }=d x \overline{a_{x}}+d y a_{y}
$$

$$
W N=-Q Q_{B}
$$

$A(0,2,0)$
i) $\bar{E}=5 \bar{a}_{x} y / m$ and $\overline{d l}=d x \bar{a}_{x}, \vec{y} \cdot \overrightarrow{y y}$

$$
\bar{E} \cdot \overline{d r}=5 d x
$$

$$
\begin{aligned}
& \bar{E} \cdot d x=5 d x \\
& k_{A B}=-(4) \int_{x=1}^{0} 5 d x \cdot \frac{W_{B}}{}=20 \text { joules }
\end{aligned}
$$

ii) Whee $\bar{E}=, \overline{d_{l}}=d x \overline{a_{x}}+d_{y} \overline{a_{y}} \mathrm{~m}$

$$
\begin{aligned}
& \text { E. } L{\|_{A B}}^{\text {E. }}=4 \int_{x=1}^{0} 5 x d x=-4(-2: 5)=10 \text { Joules } \\
& W_{A B}=10 \text { Joules }
\end{aligned}
$$

iii) When $\bar{E}=5 x \widehat{a_{x}}+5 y a_{y} y / m$

$$
\begin{aligned}
& \bar{F} \cdot \overline{d r}=5 x d x+5 y d y \\
& \frac{W_{A B}=-4\left[\int_{x=1}^{0} 5 x d x+\int_{y=p}^{2} 5 y d y\right]=-4[-2.5+10]}{10}=\frac{-30 j o u l d}{\text { Dept of ECCE. SVCE }} \\
& M_{A B}=-30 \text { Joules }
\end{aligned}
$$

Lase study
Ease. Show that No workdone is revived to Move a point charge of 8 a along Circular plath with an Electric field. Intensity (E) due to Infinite Line charge.
Solus:- "Eonsidera Infinite Line charge placed along 'z' unis
 rok+ the tired \bar{E} due to an in finite line charge in

$$
E=\frac{\rho_{l}}{2 \pi \in \rho} \bar{a}_{\rho} v /_{m}
$$

$$
\begin{aligned}
& W_{A B}=-Q \left\lvert\, \frac{1}{2 \pi E s} a_{\rho} \cdot \rho\right. \\
& W_{A B}=-Q \int_{A}^{B} \frac{\rho_{\mu}}{2 \pi E s} \times \delta d \phi \\
& a_{A}
\end{aligned} \bar{a}_{\phi p}=0\left[\begin{array}{l}
\bar{a}_{\rho} \cdot \bar{a}_{\phi}=0 \\
(\text { dot product } \\
\text { concept }) .
\end{array}\right.
$$

x
$M_{A B}=O$ Joules thin showothat the work dore in zero when charge ' 8 ' C in moving in a Circular path [ie path Seluted is pupandicular to the field $\bar{E}]$.

Lase i_{i}
Question
06 - june / July 2011
Obtain the expression for the work done in bringing a charge ' Q ' from one point to another point along the radial path in an electric field due to an infinite line charge. Hence find the potential difference between that two points.
$+\frac{z}{2}$ sett rasilyith Consider an infinite Line charge
$d_{x}=$ de ers placed along 3 anis

Line chage $\bar{E}=\frac{\rho k}{2 \pi \epsilon s} \vec{a}_{j} \geqslant / m . \ll$
Consider point charge of $Q G$, with in moved.
along a path radially from $\rho=a \mathrm{~m}$ to $\rho=b \mathrm{~m}$ radially
the Work done required

$$
\begin{aligned}
& \therefore W_{a b}=-Q \int_{\rho=a}^{b} \frac{f_{l}}{2 \pi \epsilon \rho} \bar{a}_{\rho} \cdot d s \overline{a_{\rho}}=-Q \int_{\rho=a}^{b} \frac{\rho_{l}}{2 \pi \epsilon \rho} d \rho \bar{a}_{\rho} \cdot \bar{a}_{\rho} \\
& \therefore N_{o b}=-Q \times \frac{\rho_{l}}{2 \pi \epsilon} \int_{\rho=a}^{b} / / \rho d s=-\left.Q \frac{\rho_{l}}{2 \pi \epsilon} \ln \rho\right|_{a} ^{b} \\
& W_{a b}=-Q \frac{\rho_{l}}{2 \pi \epsilon}[\ln b-\ln a] \\
& \left\lvert\, \begin{array}{l}
\text { Note } \\
\sqrt{\frac{1}{x} d x=\ln x} \\
\log m / n=\operatorname{dog} m-\lg x
\end{array}\right. \\
& \text { 电 } \\
& \omega_{a b}=-Q \frac{\rho l}{2 \pi t} \ln (b / a) \text { fowles } \\
& \Rightarrow W_{b a}=-Q \operatorname{ll} / 2 \pi \epsilon \ln (a / b)=+Q \frac{\rho l}{2 \pi t} \ln (b / a)=-W_{a b} . \\
& \text { the potentialditternce lw point } a \& b \text { in. } V_{a b}
\end{aligned}
$$

$$
\text { i.e } \sqrt{V_{a b}=\frac{W_{b a}}{Q \Rightarrow 1 G}=\frac{\rho_{l}}{2 \pi \epsilon} \ln (b / a) \quad V_{O} H^{\prime} \circ}
$$

Wime Find the work done in noving a charge +2 c from $(2,0,0) \mathrm{m}$
prof 4 b to $(0,2,0) m$ aiong the straigh Line path joining-tuso points, if the $E=12 x \overline{a_{x}}-4 y \overline{a_{y}} v / m$. Aug $05(6 m)$.
solu:-

$$
\begin{aligned}
& u^{\prime}:- \\
& A=2 C_{i} \rightarrow \rightarrow \rightarrow{ }_{B}(0,2,0) m \\
& A(2,0,0) \quad W_{A B}=-\left.Q\right|_{A} ^{B} \bar{E} \cdot d l \\
& d r=d x \overline{a x}+d y \overline{a_{y}} ;
\end{aligned}
$$

$$
\begin{aligned}
& x \overline{a x}+d y a y \\
& \bar{F} \cdot \overline{d x}=12 x d x-4 y d y
\end{aligned}
$$

$$
\begin{aligned}
& E=d x=12 x\left[\left.\right|_{x=2} ^{0} 12 x d x-\left.\right|^{2} 4 y d y\right]
\end{aligned}
$$

$$
W_{A B}=-2(-24-8)=+64 \text { Joules }
$$

$$
X_{A B} \times+64 \text { Joules }
$$

Topic: The Line Tistegral :-
Question wore that the work done m mon a charge of rom initial position d to foal position A, in Hidorm electric field \bar{E}. does not depend upon the path.

Consider a point charge at a point B in a uniform Field Intensity E. it is required to find the wortedore in moving the charge from B to A along an arbitrary path anshowninfig. 2. Kit the workdone ΔM is moving the charge through a Small lingth $\triangle L$. from B to B^{\prime} ingiven by

$$
\Delta w=-\theta(\bar{E} \cdot \overrightarrow{\Delta L}) \text { Joules }
$$ if the total path from B to A in divided into Large no. of Segments. Let theirlungttin be $\overline{\Delta I}_{1}, \overline{X I}_{2}, \ldots c t=$ and Lit the fictionars the rosputive lengthin be $\bar{E}_{1}, \bar{E}_{2}, \bar{E}_{3} \ldots .$. ..te

\therefore The total work done $|M|$ in moving the charge Q from A to A is

$$
\begin{aligned}
& i s \\
& L=\sum \Delta W=-\theta\left[\overline{E_{1}} \cdot \ddot{\Delta L_{1}}+\overline{E_{2}} \cdot \overline{\Delta L_{2}}+\cdots \cdots\right] \\
&=-Q \sum_{i} \overline{E_{i}} \cdot \overline{\Delta L_{i}} \text { Joules. }
\end{aligned}
$$

if the lengths of the segment r are made infinitely small then $\Delta L \rightarrow d l$ and $\sum \rightarrow C$

$$
\frac{\therefore W=-Q \int_{B}^{A} \bar{E} \cdot \overline{d l} \quad \text { Joules } \leftarrow(b)}{\text { Dept. of EdGE., SVCE }}
$$

Since the applied field $\overline{\mathcal{F}}$ io uniform $\therefore p^{4}(b)$ becomes

$$
\begin{gathered}
W=-Q \bar{E} \cdot \int_{B}^{A} \overline{d L}=-Q \bar{E} \cdot L_{B A} \text { Joules } \\
W=-Q \bar{E} \cdot \bar{L}_{B A} \text { Joules } \leftarrow C \text { © }
\end{gathered}
$$

in a uniform E
Conclusion:-
from cq "(C). the wort done involved in moving the charge depends only on Q, \bar{E} and a vatondrawn from initial (\vec{L}) to final (A) point of the path choorsin. it da snot depend x. on the particular path we have saluted along which to cary
the charge. froblumu6 the charge.
B) $\bar{F}=2 x \overline{a_{2}}-4 y \bar{a}_{y}$ vim. Find the work done in moving a point charge of
$(2,0,0) m+2 c_{i}$
$\therefore(2,0,0) \mathrm{m}$ to $(0,0,0) \mathrm{m}$ and then from $(0,0,0)$ to $(0,2,0) \mathrm{m})$.
ii) from $(2,0,0) \cdots$ to $(0,2,0)$ along the straight tine. path joining, $\frac{t h e}{E}=2 x$ two points.
 CBCs-scheme].

Dept. of E\&CE., SVCE

7 Whte the-expression for Eand-dionem units in whonsmectim systom ii) (ylindrical system
andiii) Spherical syster. (16:Marks)
Solus-refer page No. $192-a$

$$
\text { i) } \bar{W}_{A O}=-Q \int_{A}^{0} E \cdot \overline{d l}=-2 \int_{x=2}^{0} 2 x d x=-2(-4)=+8
$$

bath-1
$W_{A O}=8$ Joules

$$
\text { and } W_{O B}=-Q \int_{O}^{B} \frac{B}{E} \cdot \overline{d l}=-2 \int_{y=0}^{2}(-4 y) d y=+16 \text { Joules }
$$

$$
W_{O B}=+16 \text { Joules }
$$

$$
\Rightarrow W_{A B}=W_{A O}+w_{O B}=8+16 \frac{24 \text { Joules }}{\frac{L L \text { to } B}{}}
$$

ii) Sewndpath \Rightarrow Straight Line joining bluo A to B.

$$
\begin{aligned}
W_{A B} & =-Q \int_{A}^{B} E \cdot d l=-Q \int_{A(2,0,0)}^{[0,20)}[2 x d x-4 y d y]
\end{aligned}
$$

from (i) and (ii) it in obrowed that Nork done is independert of path scluted.
problem47

$$
\bar{E}=2 x \bar{a}_{n}-3 y^{2} \bar{a}_{y}+4 \overline{a_{z}} V I_{m} .
$$

10-June whity 2015
s Find the amount of energy required to move a $\frac{6 G}{6 \text { coulomb of point charge from the origin to }} x=-32$

Sola:- $y=x+2 z$

$$
d l=d x \overline{a_{x}}+d y \overline{a_{y}}+d z \overline{a_{z}}
$$

$$
\begin{aligned}
y & =x+2(-y / 3) \\
& =x-2 / 3 x=x
\end{aligned}
$$

30

$$
W_{o p}=-24 \text { joules }
$$

$$
\begin{aligned}
& \text { ie } x=-3 z+3 \\
& \text { and } y=x+2 z-6\left[\int_{x=0}^{3} 2 x d x-\int_{0}^{1} 3 / y^{2} d y+\left.4\right|_{z=0} ^{-1} d z\right. \\
& =-6[9-1+4(-1)]=-6[4] \\
& =-24 \text { joules }
\end{aligned}
$$

$$
\begin{aligned}
& Q=6 \mathrm{C} \\
& x=-3 z \text { and } y=x+2 z \\
& p(3,1,-1)^{m} \\
& =x-2 / 3 x=x / 3 \\
& y=x / 3 \\
& \text { codes } \\
& \begin{array}{l}
\text { bush } 0(0,0,0) \\
x=-3 z \text { and } y=x+2 z
\end{array} \quad W_{o p}=-\left.Q\right|_{0} ^{P} \bar{E} \cdot \overline{d l} \\
& x=-32 \text {. } \\
& \bar{F}=2 x \overline{a_{x}}-3 y^{2} \overline{a_{y}}+4 \overline{a_{z}} \text {. } \\
& \forall 1 m \cdot\left\{\begin{array}{l}
x=-32 \\
d x=-3 d z
\end{array}\right. \\
& y=x+2 z \\
& \bar{E} \cdot \overline{d x}=2 x d x-3 y^{2} d y+4 d z \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ie } x=-3 z+3
\end{aligned}
$$

Determine work done in carrying a charge of $-2 C$ from usb, $(2,1,-1)$ to $(B, 2,-1)$ in the Elutric field $\bar{F}=y \bar{a}_{x}+x \bar{a}_{y} y / n$ Considering the path along the parabola $x=2 y^{2}$.

Solis

$$
\text { path } x=2 y^{2} \Rightarrow \begin{aligned}
& y^{2}=x / 2 \\
& y= \pm \sqrt{x / 2} \Rightarrow
\end{aligned} \Rightarrow \begin{aligned}
& x=2
\end{aligned} \rightarrow \begin{aligned}
& 1 / 2=+1^{2} \\
& \text { valid }
\end{aligned}
$$ the validequ mut sutinfy both the ${ }^{\text {th }}$ invalid

points ie A and B.

$$
\begin{aligned}
& W_{A B}=2\left[\int_{x=2}^{8}\left(\frac{/}{1 / 2}\right) d x+\int_{y=1}^{2} 2 y^{2} d y\right]
\end{aligned}
$$

$$
\begin{aligned}
& \theta=-2 L \\
& \int_{A(2,1 ;-1) m}^{x} \quad W_{A B}=-Q \int_{A}^{B} \bar{E} \cdot \overline{d l} \\
& \bar{F} \cdot \overline{d l}=y d x+x d y \quad \text { volt' } \\
& W_{A B}=-\left.(-2 c)\right|_{A(2,1,-1)} ^{B(8,2,-1)}[y d x+x d y] \\
& =+2\left[\int_{x=2}^{8} y d x+\int_{y=1}^{2} x d y\right] \quad \text { put } x=2
\end{aligned}
$$

foroblem 49

$$
\bar{E}=-8 x y \overline{a_{x}}-4 x^{2} \overline{a_{y}}+\overline{a_{z}} v / m .
$$

If $E=-8 x y \dot{a}_{x}-4 x^{2} \hat{a} y+\hat{a}_{z} v / m$, find the work done in carrying a $6 C$ charge from $A(1,8,5)$
to $B(2,18,6)$ $B(2,18,6) \quad y=3 x+2, z=x+4 . \quad[06-b e[f(\operatorname{Jan} 2008]$
solu!-

$$
\begin{aligned}
& \bar{F}=-8 x y \overline{a_{x}}-4 x^{2} \overline{a_{y}}+\overline{a_{z}} \mathrm{v} / \mathrm{m} \text {. } \\
& { }_{B}(2,18,6) . \overline{d l}=d x \bar{a}_{x}+d y \bar{a}_{y}+d y \bar{a}_{y} \mathrm{~m} \text {. }
\end{aligned}
$$

Not:-
$Q=6 C$
$A(1,8,5)$ puth $\left.y=3 x+2 \quad \begin{array}{l}\text { and } z=x+4\end{array}\right\} \quad b_{1}$ both the pointe ore

$$
\bar{F} \cdot \overline{d l}=-8 x y d x-4 x^{2} d y+d_{z} ; v_{0} / t^{\prime} s
$$

cure $y=3 x+2$
we $x=\left(\frac{y-2}{3}\right)$

$$
\begin{aligned}
& =-6\left[\int_{x=1}^{2}-8 x(3 x+2) d x-\int_{y=18}^{18} 4\left(\frac{y-2}{3}\right)^{2} d y+1\right] \\
& =-6\left[\begin{array}{l}
-80-574.814+1]=-6(-653.81) \\
=+3922.88 \text { Joules }^{2}
\end{array}\right.
\end{aligned}
$$

(4) An $\bar{E}=-8 x y \bar{a}_{x}-4 x^{2} \bar{a}_{y}+\bar{a}_{3} \quad v m_{m}$, the charge of $6 c$ is to be moved from $B(1,8,5)$ to $A(2,18,6)$. Find the work done in coach of the following cans
$i)$ the patin selected is $y=3 x^{2}+z$ and $z=x+4$.
ii) The straight Line from B to A.
$\operatorname{Jan} 2012$ (8 m).
Solus: $\bar{F}=-8 x y \overline{a_{x}}-4 x^{2} \overline{a_{y}}+\overline{a_{z}} \quad v / m$.

$$
Q=6 c_{i} \quad \overline{d r}=d x \overline{a_{x}}+d y \overline{a_{y}}+d_{z} \overline{a_{z}} \cdot m
$$

poth-1
$=3 x^{2}+2 \rightarrow 2(2,18,6)$
$2=x+4$
$B(1,8,5)$
struighthine
$W=-D \int_{B}^{A} \bar{E} \cdot \overline{d i}$ Joules

$$
\begin{aligned}
& \text { path-2 } \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{x-x_{1}} \\
& \text { struighthine } \\
& \qquad \frac{18-8}{2-1}=\frac{y-8}{x-1} \Rightarrow \frac{y-8}{x-1}=10 \\
& y-8=10(x-1) \Rightarrow y=10 x-10+8 \quad \therefore y=10 x-2 \\
& \text { and } x=1 y+21
\end{aligned}
$$

and $x=\left(\frac{y+2}{10}\right)$
Cone: path $y=3 a^{2}+z$ and $z=x+4$

$$
\begin{align*}
& \Rightarrow \quad y=3 x^{2}+9^{x^{3}+4}=3 x^{2}+x+4 \\
& \therefore y=3 x^{2}+x+4 \\
& N=-6 \int_{B}^{A}\left[-8 x y d x-4 x^{2} d y+d z\right]
\end{align*}
$$

$$
W=-6\left[\int_{x=1}^{2}-8 x\left(3 x^{2}+x+4\right) d x-\int_{y=8}^{18} 4 x^{2} d y+1\right]
$$

$$
\text { w.k.t } y=3 x^{2}+x+y
$$

$$
\begin{aligned}
& \text { w.t.t } y=3 x^{2}+x+4 \\
& d y=6 x d x+d x+0 \Rightarrow d y=(6 x+1) d x \\
& \text { L.h limit } y=8 \Rightarrow x=1
\end{aligned}
$$

L.h limit $\begin{aligned} & y=8 \Rightarrow x=1 \\ & y=18 \Rightarrow x=2\end{aligned}$

Eaxeii. path stytelin Straight line. cy of Line joing blw
", 3 to A in $y=10 x-2$ and $x=\left(\frac{y+2}{10}\right)$
fronc9 ${ }^{4}(a){ }^{4} W=-6 \int_{B}^{A}\left[-8 x y d x-4 x^{2} d y+d z\right]$ Joules

$$
\begin{align*}
W & =-6\left[\begin{array}{c}
2 \\
\int_{x=1}-8 x(16 x-2) d x-\int_{y=8}^{18} 4\left(\frac{A+2}{10}\right)^{2} d y+\int_{\beta=5}^{6} d x
\end{array}\right] \\
& =-6[-162.666-93.333+1]=1530 \text { Joules } \tag{2}
\end{align*}
$$

$W_{B A} \simeq 1530$ Joules (o) 1.53 k Jouks from cou (i) and (2) it in obsowed that workdone is page independent of path chooxn.

$$
\begin{align*}
& W=-6\left[\int_{x=1}^{2}-8 x\left(3\left(x^{2}+x+4\right) d x-\int_{x=1}^{2} 4 x^{2}(6 x+4)^{2} d x+1\right]\right. \\
& =-6\left[-156.666-99.33+7^{4}+1\right. \\
& W=-6(-254.999)+1530 \text { Joules } \\
& \underset{x}{x} \\
& W_{B A} \simeq 153 Q_{\text {Sornales a }} 1.53 \mathrm{~K} \text { Joules } \tag{1}
\end{align*}
$$

Dtermine workdone in Canying a charge of --2G ofrom $(2,1,-1)$
prow to $(8,2,-1)$ in an clutric fild $\bar{E}=y \bar{a}_{x}+x \bar{a}_{y}$ v/m along the path $r=2 y^{2} \ldots \quad(7 \mathrm{~m})$

EEE.J/J 2016.
solni-

$$
\begin{aligned}
& \text { bath } x=2 y^{2} \\
& Q=-2 C \\
& A(2,1,-1) \quad B\left(8,2,-\frac{x}{-1}\right) \\
& W_{A B}=-Q \int_{A}^{B} \bar{E} \cdot \overline{d l} \\
& y= \pm \sqrt{y / 2} \\
& \begin{array}{l}
\text { put } y=+\sqrt{\frac{x}{2}} \\
x=2 \\
y=1
\end{array} \\
& \text { and } y^{2}=x / 2 \\
& \overline{d l}=d x \overline{a_{x}}+d y \overline{a_{y}} ; m \\
& \bar{E}=y \overline{a_{x}}+x \overline{a_{y}} \quad v / m \\
& \bar{E} \cdot \overline{d l}=y d x+x d y \text {,Nolt } b \\
& W_{A B}=-(-2) \int^{B}[y d+x d y] \\
& =4 \\
& l_{A B}=2\left[\int_{x=8}^{8} \sqrt{\frac{x}{2}} d x+\int_{y=\frac{1}{6}}^{2} 2 y^{2} d y\right] \\
& =2[9.333+4.6666] \\
& =2[14]=28 \text { joules } \\
& \text { 认N } W_{A B}=28 \text { foules }
\end{aligned}
$$

problem 52

$$
V=-2 x y+3 \text { val ts. }
$$

\uparrow oz-tmeftuy 2017 -
The electric potential at an arbitrary point in free space is given as $V=-2 x y+3$ volts. Show that $\mathrm{FE} . \mathrm{dl}=0$ for the closed contour shown in Fig. Q.2(b).

Fig. $0.2(\mathrm{~b})$.
solus':. From conupt of Gradient

$$
\begin{aligned}
& \bar{F}=-\nabla v \quad i / m \\
& \bar{E}=-\left[\frac{\partial v}{\partial x} \overline{a_{x}}+\frac{\partial v}{\partial y} a_{y}+\frac{\partial v}{\partial z} a_{z}\right] v / m \text {. } \\
& \text { given } V=-2 x y+3 \\
& \begin{array}{l}
\frac{\partial v}{\partial x}=-2 y ; \quad \frac{\partial v}{\partial y}=-2 x ; \quad \frac{\partial v}{\partial z}=0 . \\
=2 y \bar{a}_{x}+2 x .
\end{array} \\
& \bar{F}=-\left[-2 y \bar{a}_{x}-2 x \bar{a}_{y}+\overline{0}\right]=2 y \bar{a}_{n}+2 x \bar{a}_{y} Y / n \\
& \therefore \frac{\bar{F}=2 y \bar{a}_{x}+2 x \bar{a}_{y}}{} \quad V / m \\
& \therefore \quad E=-\left[\frac{\partial v}{\partial x} \bar{a}_{x}+\frac{\partial y}{\partial y}+\frac{\partial v}{} a_{2}\right] v v^{2}
\end{aligned}
$$

$$
\begin{gathered}
\left.\int_{0}^{C_{2}}\right|_{0} ^{A} \cdot \overline{d l}=\left.\int_{0}^{A} 2 y d x\right|_{y=0,2 x e} ^{A} \\
\therefore \cdot \overline{d l}=0
\end{gathered}
$$

$$
\begin{aligned}
& \int_{A}^{\frac{B}{E} \cdot \overline{d x}}=\left.\int_{A}^{B} 2 x d y\right|_{x=1} ^{B} \text { eine. } \\
& =\int_{y=0}^{1} 2(1) d y=2 \int_{y=0}^{1} d y y^{1}=2 \text { voltb }
\end{aligned}
$$

\underline{G}

$$
\begin{aligned}
& \int_{B .}^{0} \bar{E} \cdot \overline{d l}=\left.\int_{\substack{\text { put } \\
y=x}}^{[2 y d x+2 x d y]}\right|_{\text {puts }=y} ^{0} \quad \text { oq of line } y<x \\
& =\int_{x=1}^{0} 2 x d x+\int_{y=1}^{0} 2 y d y \\
& \because\left(2 \int_{x=1}^{0 x-1} x_{y=1}^{0} d x\right)+\left(2 \int_{y=1}^{0 x-1} y d y\right)=-1-1=-2 \text { volin } \\
& C_{1}+C_{2}+C_{3} \Rightarrow \oint_{C} E \cdot \overline{d l}=\int_{0}^{A} \bar{E} \cdot \overline{d l}+\int_{A}^{B} \bar{E} \cdot \sqrt{B}+\int_{B}^{0} E \cdot \overline{d l} \\
& =0+2-2^{\circ}=0 .
\end{aligned}
$$

$$
\Rightarrow \phi E==0
$$

probtum 53

$$
\bar{E}=y \bar{a}_{y}+x \bar{a}_{y}+2 \bar{a}_{z} v / m .
$$

3 Determine the world done in carrying a chayge of $3 C(f)$ from $B(1,0.1)$ to $A(0.8,8,0.6,1)$) $x^{2}+y^{2}=1$,

tiostraght hine joining the pointr B to A.
Solu:-

$$
Q=2 C \rightarrow \text { path }-2 \rightarrow \overline{d x}=d x \overline{a_{x}}+d y \overline{a_{1}}+\frac{d z}{a_{z}}
$$

$$
\begin{gathered}
\frac{y_{2}-y_{1}}{x_{2}-4}=\frac{y-y_{1}}{x-x_{1}} \Rightarrow \frac{0.6-0}{0.8-1}=\frac{y-0}{2-1} \\
y=3(1-x) \Rightarrow y=3-3 x
\end{gathered}
$$

and $x=(3-y) / 3=1-y / 3$

$$
F \cdot \overline{d l}=y d x+x d y+2 d z \text { vollo }
$$

conei. Shoot arc of $0<x^{2}+y^{2}=1, \quad z=1$.

$$
\begin{align*}
& W_{B A}=-Q \int_{B}^{A} \frac{1}{E} \cdot \frac{1}{d l} \text { Joulhs } \\
& =-Q \int_{B}^{A}[y d x+x d y+2 d z]
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { write } y \text { intern's } \\
\text { of } x \text { inte } x \\
\text { interning } y \text {. uning cq }
\end{array} x^{2}+y^{2}=1 \\
& y= \pm \sqrt{1-x^{2}} \quad x= \pm \sqrt{1-y^{2}}
\end{aligned}
$$

$$
\text { when }_{x=0.8}^{y}=\left\{\begin{array}{r}
\rightarrow+\sqrt{1-x^{2}} \sqrt{\text { valid }} \\
=+0.6 \\
\rightarrow-\sqrt{1-x^{2}} \\
=-0.6
\end{array}\right.
$$

valid e^{u} in the one in which both the poinin thasto be satiesped.
by when $y=0.6$

$$
\Rightarrow x=+0.8
$$

i.e when $x=0.8 \Rightarrow y=+0.6$

$$
\begin{align*}
\therefore W_{B A} & =-2\left[\int_{x=1}^{0.8} \sqrt{1}+x^{2} d x+\int_{y=0}^{0.6} \sqrt{1-y^{2}} d y+0\right] \\
& =-2[-0.08175+0.56175=-0.96 \text { Joules } \\
& \therefore W_{0}=-0.96 \quad \text { Toules }
\end{aligned} \quad \begin{aligned}
& 4=3-3 x \text { (o) } x=1-4 / 3
\end{align*}
$$

caseii. Straight Line path $y=3-3 x$ (6) $x=1-y / 3$. fromeq(a)

$$
\begin{align*}
& W_{B A}=-2\left[\int_{x=1}^{0.8}(3-\beta x) d x+\int_{y=0}^{0.6}(1-y / 3) d y+0\right] \\
& =-2[-0.06+0.54+0]=-0.96 \text { Joules } \\
& W_{B A}=-0.96 \text { Joules }<- \text { (2) } \tag{2}
\end{align*}
$$

from $9(1)$ and (2) it in ofroned that work done io indepandurt of path choosen.

$$
E=5 e^{-\gamma / 4} \widehat{a r}+\frac{10}{\gamma \sin _{\text {O6 -DEC 2013/an } 2014}} \overline{a_{\phi}}
$$

$$
Q=-5 \mu \mathrm{C} \quad \underset{\text { Ob -DE } 2013 / \operatorname{lan} 2014}{(2, \pi / 4, \pi / 2}
$$

Find the work done in moving a point charge $Q=-5 \mu \mathrm{c}$ from the origin to $(2, \pi / 4, \pi / 2) \mathrm{in}$.

$$
(2, \pi / 4, \pi / 2) m
$$ spherical coordinate system

solus:
the given field \bar{E} is in spherical $\vec{C} \cdot \mathrm{~S}$

Note'- if $Q=+5 \mu \mathrm{~m}$ then $W_{O A}=-117.88 \mathrm{M}$ Joules

$$
\begin{aligned}
& 8=-5 \mu
\end{aligned}
$$

$$
\begin{aligned}
& \dot{O}(0,0,0) \quad \overline{d l}=d r \overline{a_{r}}+r d \theta \overline{a_{\theta}}+r \sin \theta d \phi \overline{a_{\varphi}} \mathrm{m} . \\
& E \cdot \overline{d l}=E_{r} d r . \quad+r E_{\theta}^{0} d \theta+r \sin \theta E_{\phi} d \phi \text { Voltio } \\
& \left.\right|_{O A}=-Q \int_{0}^{A} \frac{E^{d} d l}{A}=-\left.Q\right|_{0} ^{A}\left[5 e^{-r / 4} d r+\frac{10}{x \sin \theta} x \gamma \sin \theta d \phi\right] \\
& =-(-5 u)\left[\int_{\gamma=0}^{2} 5 \phi^{-0.25 \gamma} d \gamma+\left.10\right|_{\phi=0} ^{0 / 2} d \phi\right] \\
& =+5 \mu[7.86939+50 \times \pi / 2]=117.88 \mu \mathrm{Jals} \\
& \therefore W_{\text {On }}=117.88 \mu \text { Joules }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } E_{\theta}=0 \text {. }
\end{aligned}
$$

Given the fold $\bar{E}=\left.\frac{k}{\gamma} \overline{a \gamma} V\right|_{m}$ incylinatrical co ordinates
poblumbly system. Show that the inork need to move a point charge Q from any radial distance ' γ ' to a point at twice that radial distance is independent of γ.

Sola'.-

$$
\begin{aligned}
& \bar{E}=\frac{k}{r} a_{r} V /_{m} . \\
& W=-Q \int_{\text {initial }}^{\text {final }} \frac{\bar{L}}{L} \cdot \overline{d l} \text { Joules. }
\end{aligned}
$$

Sine point clorge moving aborning radial path

$$
\begin{aligned}
& \therefore \overline{d l}=d r \overline{a r} . \\
& W=-\left.Q\right|^{2 r_{1}} \frac{k}{r} \overline{a r} \cdot d r a r \\
& Q C \rightarrow \rightarrow=-2 r_{1} \\
& r_{1} \\
& \begin{array}{l}
2 r_{1} \\
\quad \omega=2 Q k \int_{r_{1}}^{2 r_{1}} \frac{1}{r} d r a a_{r} \cdot \frac{1}{a_{r}} \frac{\delta}{s}
\end{array} \\
& |x|=-\left.Q k \ln (\gamma)\right|_{r_{1}} ^{D_{1}} \text { joules } \\
& =-Q K\left[\ln \left(2 r_{k}\right)-\ln \left(r_{1}\right)\right]=-Q K\left[\ln \left(2 r_{1}\right)-\ln \left(r_{1}\right)\right] \\
& =-Q K \ln \left[\frac{2 X_{1}}{X_{1}}\right]=-Q K \ln (2) \\
& \therefore W=-Q K \ln 2
\end{aligned}
$$

thin shows W is independent of ' γ '.

Questions 8 Fiber
obtain an Equation for the elutric scalar potential. (Gm) O2Derve, Dec 2011/5an 2012 .
Define eluthic Scalar potential.
opine potential difference and absolute potential. (um)
Determine the potential difference blu two points du. to apoint charge q at origin. (um) 10-DutJan 206 $\rightarrow 10-\mathrm{Dec} 2015(04)$ [15 Jmin July $2017(6 \mathrm{~m}) \mathrm{CBC5}]$
io potential difference: - The potential of a point A with moppet Q8. to point B is defined as the work done in moving a unit positive point charge. from point B to A against to the Elutricfield E.
(6)Volt':
(or) In general potential at a point A

Consider a point charge of 'QCC which is placed at origin ' O '. The field \bar{E} due to ' Q ' C ' is given by

$$
\begin{aligned}
\bar{E}= & \frac{Q}{4 \pi \epsilon r^{2}} \overline{a_{r}} \quad v / m \leftarrow \\
& \pi \text { equinsphanial cis }
\end{aligned}
$$

from q^{4} (1) it in obserred that the field is in radial dirution. in radial path

$$
\overline{d e}=d r \overline{a_{r}}
$$

fig. conupt of potention
differnce f aboulute potertial.
the potentical diffince bluthe pointe A and B is the workdone required to move a point charge
of 'IC' from point B to point A ' along radial path against to the field \bar{E}.
i.e

$$
\begin{aligned}
\bar{V}_{A B} & =\frac{W}{-Q_{\vec{u}}} \cdot-\int_{B}^{A} \frac{A}{E} \cdot \overline{d l}=-\int_{r_{b}}^{r_{a}} \frac{\overline{d l}}{} \\
& =-\int_{r_{b}}^{r_{a}} \frac{Q}{4 \pi \epsilon r^{2}} \overline{a_{r}} \cdot d r \bar{a}_{r} \\
& =-\left.\frac{Q}{4 \pi \epsilon}\right|_{r_{b}} ^{r_{a}} \frac{1}{r^{2}} d r \overline{a_{r}} \cdot \overline{a r} \\
& =\frac{-Q}{4 \pi \epsilon} \times\left.\frac{-1}{r}\right|_{r_{b}} ^{r_{a}}
\end{aligned}
$$

$$
\begin{aligned}
&=+\frac{Q}{4 \pi \epsilon}\left[\frac{1}{r_{a}}-\frac{1}{r_{b}}\right] ; \quad r_{b}>r_{b} \\
& \therefore V_{A B}=\frac{Q}{4 \pi \epsilon}\left[\frac{1}{r_{a}}-\frac{1}{r_{b}}\right] ; v_{0} H_{b}^{\prime} \\
& \text { whar }_{b}>r_{a} . \\
& V_{A B}=\frac{Q}{u \pi \epsilon r_{a}}-\frac{Q}{u \pi \epsilon r_{b}} \quad \text { woll'l }
\end{aligned}
$$

$$
\text { XX: } V_{A B}=V_{A}-V_{B} \text { volt'D }
$$

xit ABSOLUTE POTENTCAL: - Dec|Jan $2015(\mathrm{~cm})$
Special cosei- when $\gamma_{b} \rightarrow \infty$ i.e the point B becomes intinite point (©ig ground point (or) reference point. DD:- Absolute potential (6) potential wore a pound io detined as the workdone required to move a 1G from infinite porden ground point) to a sqecific poinlalong the radial path againt to the ficld \bar{F}. Dept. of ExCE, svei i.e $\left(V=\frac{Q}{4 \pi \gamma}\right.$ Volt'r $112{ }^{\text {Page 213 }}$

$$
\begin{aligned}
& \therefore \text { the potinticl } V_{B} \rightarrow 0 \quad \text { bce } \gamma_{b} \rightarrow \infty \text {. } \\
& \therefore V_{A B}=V_{A \infty}=V_{A}=\frac{Q}{u \pi \in \theta}\left[\frac{1}{r_{a}}-\frac{1}{r_{b}}\right] \\
& \sigma_{A}=\frac{Q}{u \pi E r_{a}} \text { volt'n } \\
& \text { * Ingencral } \quad \Sigma=\frac{Q}{6 \pi t r} \text { voll's }
\end{aligned}
$$

Topic

Topic 2.11 (a) sony
potential field of a system of charges:-
Quontion, Discum with relevant equations the potenticut field of a system of charges. $10 \mathrm{~J}(\mathrm{~J} 2013 \mathrm{~g} 8 \mathrm{~m})$.
sour
Elamification:-
i) potential due foppoint charge.
potential fill due $\left[\begin{array}{l}i i> \\ \text { due to line charge density. } \\ \text { ii) due to surface charge density. }\end{array}\right.$
to Costinuond borg iii) due to Surface charge density.
distribution
iv) due to volume charge density.
i) potential due to point charge i- $D \cdot k+t$ the potential at a point p port. ground point is

$$
V_{p}=\frac{Q}{4 \pi E r} \quad \operatorname{voltin}
$$

Q"(1) in valid only when point charge is mot be Located at the origin.
if Q is Located otherthan origin, then equ (1) is modified as

3 Discuss with relevanteguations the potential field of a system of charges and hence obtain the potemial field of a ring of uniform line charge density.
(08 Marks)
Solus Pafe No-214.
4 Deline electric scalar potential. Derive an expression for potential due to several poimt charges. Soluin ritermpafenor215. . .ogmarks)
\qquad
10 a. Derive an equation for portential due to infunite line charge. Solu:- refer Page No-

$$
s_{p}=\frac{Q}{4 \pi \epsilon\left|\vec{r}-r_{1}\right|} \text { volin }
$$ bluw pointchorger (Q) Lacation to fo oppotent dd do where $\left|\overline{\bar{x}}-\bar{x}_{1}\right|$ is the dintance the Specticfont (P) wher we Ne a avre x the potential. 3u) Spuial coner- potential due to suval point chargese[onsider a point charges of $Q_{1}, \theta_{2}, \ldots Q_{n}$ Cioulomits Located ata porint ip is manased duto aut n - torint tooge unary pranciplo of Syppestion

fig. potential due to
scueral point charges.

$$
U_{p}=\frac{1}{4 \pi \epsilon}\left[\frac{Q_{1}}{\left|\vec{r}-\bar{r}_{1}\right|}+\frac{Q_{2}}{\left|\bar{r}-\bar{r}_{2}\right|}+\cdots+\frac{Q_{1}}{\left|\vec{r}-\bar{r}_{n}\right|}\right]
$$

$$
\bar{Y}_{p}=\frac{1}{4 \pi E} \sum_{i=1}^{n} \frac{Q_{i}}{\mid \overline{\gamma-r_{i}}} \text { oll }_{0}
$$

$$
\text { if } Q_{1}=\theta_{2}=Q_{n}=Q C
$$

then

$$
V_{p}=\frac{\theta}{4 \pi \epsilon} \sum_{i=1}^{n} \frac{1}{\left|\bar{\gamma}-\bar{r}_{i}\right|} \text { Volto }
$$

ii) Potential du to Line darge dintribution:-
from defu of dine charge dessity isi l_{m}

$$
\rho_{l}=\frac{d Q}{d l} \cdot l n
$$

$$
\Rightarrow d Q=\rho_{l} d l \text { Cioulomb'n }
$$

Te diffential potential due to $d Q$ is givenby $d v_{p}=\frac{d Q}{u \pi \epsilon\left|\bar{r}-\bar{r}_{1}\right|}$ volt."
the total potential V_{p} due to the entire Line charge in
iii) potential due to Surfac cherge dintributioni-

Surfare chagedinsity $\rho_{s}=d Q / d s \mathrm{~cm}^{2}$ $d \sigma=\rho_{5} \cdot d S$ Goutmb'

$$
d_{p}=\frac{d Q^{\prime}}{d \pi \epsilon\left|\bar{\gamma}-\bar{r}_{1}\right|} \quad \text { volto }
$$

fig: potertial die
to surtane derge.

$$
V_{p}=\left\lvert\, \frac{d Q}{u \pi \epsilon\left|\bar{\gamma}-\bar{\gamma}_{1}\right|}\right. \text { volin }
$$

the total potential $v_{p} \bar{v}_{\langle s\rangle} \frac{\rho_{s} d s}{4 \pi \epsilon\left|\bar{\gamma}-\bar{r}_{1}\right|}$ voll's
iv) potential due to valume chorge dintribution B -

to aokmetorge
divity.

$$
\begin{aligned}
& d v_{p}=\frac{d Q}{u \pi \epsilon\left|\bar{\gamma}-\bar{\gamma}_{1}\right|} v_{0} t^{\prime} \\
& d v_{p}=\frac{f_{v} d v}{u \pi \epsilon\left|\bar{\gamma}-\bar{\gamma}_{1}\right|} \cdot v_{0} t^{\prime} \rho
\end{aligned}
$$

$$
\frac{\hat{u}_{p}=\left\lvert\, \frac{h u d v}{\langle v\rangle}{ }^{4 \pi \epsilon\left|\bar{r}-\bar{r}_{1}\right|}\right.}{}
$$

frootlem 55
$c^{15 n c}$
A 15 nc point charge is at the origin in free space. Calculate v_{1} if point P is located at $\mathrm{P}(-2,3,-1)$ and :i) $\mathrm{V}=0$ at $(6,5,4)$ ii) $\mathrm{V}=0$ at infinity.
$p(-2,3,-1)$
(B0) 埌 $\boldsymbol{\prime}=\bar{v}=5 \mathrm{~V}$ at $(2,0,4)$.

06- June /July 2009 \mathfrak{N}
solu':

$$
\text { i) } \left.V_{P R}=\frac{Q}{V_{P Q}}=\frac{1}{4 \pi f}-\frac{1}{r_{R}}\right]
$$

$U_{P R}$

$$
V_{p}=15 \not x \times 9 \times 10^{\not 4}\left[\frac{1}{\sqrt{14}}-\frac{1}{\sqrt{77}}\right]=20.695 \text { voltio }
$$

$$
V_{P R}=V_{P P}-V_{B}^{\prime} \cdot \theta^{(g i n i)}=V_{P}=20.695 \text { volt'o }
$$

\therefore the potential at a point \dot{p} wrt $v=0 v @(6,5,4)$ is $\bar{v}_{p}=20.695$. volt.
ii)

$$
V_{P Q}=\frac{Q}{4 \pi \epsilon}\left[\frac{1}{r_{p}}-\frac{1}{r_{p}}\right]
$$

$$
\begin{aligned}
& \gamma_{R} \rightarrow \infty ; \frac{1}{\gamma_{R}} \rightarrow 0
\end{aligned}
$$

\therefore the potential at a point ' P ' w.r.t $V=O V$ e infinity in $\bar{V}_{p}=36.080$ volt's
\qquad iii)

He potrital ata pont' p w.rt $V=5 \mathrm{~V}$ at $R(2,04)$

XX Topic 2011 (c)

$$
\begin{aligned}
& \text { poptial at a porn } \\
& \text { (c) } p_{p}=10.893 \text { volt's }
\end{aligned}
$$

Quentron obtein the potential fild of a ring of uniform line charge density. $10-\mathrm{J} \mid \mathrm{J} 20.2 .(8 \mathrm{~m})$.

$$
\begin{aligned}
& \delta_{P R}=15 \times 9 \times 0.04365=5.8933 \text { volt's } \\
& V_{P R}=V_{P}-V_{R} \text { USH? } \\
& V_{P}=V_{P R}+V^{n}+5+5.893=10.893 \text { vorth }
\end{aligned}
$$

'Q' invenifomly distributed
$\therefore Q=S_{l} L$ Cialonk'

Dept. of ECE, B.M.S.I.T \& M

ie circumfernate
D) rivatione -

x fig: [irculor ation unifom Lane borge antint place on xy plane.
therpoteritial ata point $P(\theta, \theta, 2)$ in obtained by Considining a differntial chorge 'dQ' Mova Length 'de'.

$$
\begin{aligned}
& \vec{V}_{p}=\int_{\langle\phi\rangle}^{u \pi \epsilon \sqrt{3^{2}+a^{2}}} \frac{\rho_{l} d l}{\langle=0} \int_{\phi=0}^{2 \pi} \frac{\rho_{l} \times a d \phi}{4 \pi \epsilon \sqrt{3^{2}+a^{2}}}=\frac{\rho_{l} a}{4 \pi \epsilon \sqrt{3^{2}+a^{2}}} \int_{0}^{2 \pi} d \varphi \\
& =\frac{\rho_{l} a}{\frac{\mu x t}{2} \sqrt{3^{2}+a^{2}}} \times \not 2 \not x=\frac{\rho_{l} a}{2 t \sqrt{2^{2}+a^{2}}}
\end{aligned}
$$

$$
\left.\frac{\dot{x} x}{\text { Dep. of f:xce. SVCC }} V_{p}=\frac{\rho_{l} a}{2 \epsilon \sqrt{2^{2}+a^{2}}}\right] \text { volfh }
$$

Specialcene: if all the charge is concentrated at origin
(ie in the from of a point charge) then the potential at a point ' p ' is
$\operatorname{lem} 56$

$$
V_{p}=\frac{Q-\overline{2}}{U \pi t z} \text { volt's... }
$$

Lance of charge is uniformly dintributed around a circular ring of radius 2 m . Find the potential of a point on the asin"from the plane of the ring. Compare e with the result where all the charge in at origingingle form of a point charge:
solver

$$
Q=4 \circ n C^{\circ}
$$

$$
f_{e}=Q / L=\frac{Q}{2 \pi a} \rho_{n}
$$

L- Length of line charge dirsity
potential at point p.

$$
V_{p}=\frac{\text { potential at point } p a}{2 E \sqrt{3^{2}+a^{2}}}=\frac{\frac{10}{\pi} n \times .2}{2 \epsilon \sqrt{5^{2}+2^{2}}}=\underline{\underline{6.7 \text { volt's }}}
$$

Caner.

$$
V_{P}=66.7 \text { volt' }
$$

if the charge in concentrated at the origin, then the potential at $(0,0,5) \mathrm{m}$ in $U_{p}=\frac{Q}{4 \pi \in Z}=\frac{40 \times 0^{-4} \times 9 \times 10^{2}}{5}$ coneii:

$$
V_{P}=72 \mathrm{Noltr}
$$

obs:- $\quad U_{p} \propto \frac{1}{\text { dintanu(} r \text {) } ; ~} \quad \gamma_{\text {(Carei) }} \uparrow \Rightarrow v_{p} \phi$ and $\gamma_{\phi} \Rightarrow v_{p} \uparrow$ (caseii)
hum 54 A total charge of 4013 ne is uniformty distributed over a circulas ring of radius 2 m placed in 2 m
$\mathbf{Z}=0$ planc, withpenter as origin. Find the electric potential at $A(0,0,5)$.
$40 / 3 \mathrm{nc}$
Sohe:

$$
\rho_{l}=\theta / \lambda=\theta / 2 \pi a l
$$

$$
\begin{aligned}
& V_{A}=\frac{\rho_{l} a}{2 \epsilon \sqrt{a^{2}+2^{2}}} \text { udlb } \\
& V_{A}=\frac{\frac{Q}{2 \pi \alpha} \cdot \alpha}{2 \epsilon \sqrt{a^{2}+z^{2}}}
\end{aligned}
$$

$$
V_{A}=22.283 \text { volts }
$$

if all the crage in comentrate at origin. then potential at point i p is $V_{p}=\frac{Q}{4 \pi \epsilon z}$

$$
\begin{aligned}
& v_{p}=\frac{40}{3} \text { p } \times 9 \times 10^{t} \times \frac{1}{5}=24 \text { voly } \\
& V_{p}=24,001 t_{0}
\end{aligned}
$$

potential due to uniformning.
potential duto point chorge
$a \rightarrow 0 \Rightarrow$ pointarge orain

$$
\bar{V}_{p}=\frac{\rho_{l} \times a}{2 \epsilon \sqrt{a^{2}+z^{2}}}=\frac{\rho_{l} \times 2 \pi a}{2 \epsilon(2 \pi) \sqrt{a^{2}+z^{2}}}=\frac{\rho_{l} \times l}{4 \pi \epsilon \sqrt{a^{2}+2^{2}}}=\frac{Q}{4 \pi \epsilon z} \text { volf: }
$$

2-11d potential due to Infinite Line charge:
QQ 10> Derive an equation for the potential at a point due to
Q13) Derive $(6 \mathrm{~m}) 10 \mathrm{~J} / \mathrm{J} 2013$ an Infinite Line charge. (Gm) 06-Dec 2010.

4/ Alirction of fate in act along as ie rabid diration.
nAy inference blew the points ' a ' and \dot{b} is the potent y defence blew the pone wired to cary Fib tho who thing but the work done required to cary a unit + ven chore from point b to point a along
E. field

$$
\text { radial path against to the } \int_{a b}^{a}=-\int_{b}^{E} \overline{d l}=\int_{a}^{b} \bar{E} \cdot \overline{d l} \text { volt': }
$$

$$
\bar{V}_{A B}=\frac{Q}{4 \pi E}\left[\frac{1}{r_{a}}-\frac{1}{r_{b}}\right] \text { vol' }^{\prime 2} \underset{\left(r_{b}>r_{a}\right)}{ }
$$

\rightarrow potential at a point w.r.t ground

$$
\begin{aligned}
& \text { potential at a point } \quad \text { i.e } r_{b} \rightarrow \infty \\
& V_{A}=\frac{Q}{u \pi E r_{a}} \text { volt? }
\end{aligned}
$$

\rightarrow potential due to crccular ning of clorgedinsity

\rightarrow potential due to in finite line chage $V_{a b}=\frac{b e}{2 \pi \epsilon} \ln \left(\gamma_{b} / r_{a}^{5}\right) 0_{1 s}$

$$
\begin{aligned}
& \bar{U}_{a b}=\int_{r_{a}}^{r_{b}} \frac{\rho_{l}}{2 \pi \epsilon_{\rho}} \bar{a}_{\rho} \cdot d \rho \overrightarrow{a_{\rho}} \quad \text { Volf'o } \\
& =\frac{\rho_{l}}{2 \pi \epsilon} \int_{r_{a}}^{r_{b}} \frac{1}{s} d s \bar{a}_{l} \cdot \bar{a}_{y} \\
& =\left.\frac{\rho_{l}}{2 \pi t} \ln f\right|_{r_{a}} ^{r_{b}} \\
& V_{a b}=\frac{\rho_{l}}{2 \pi \in}\left[\ln r_{b}-\ln r_{a}\right] \\
& \text { xix }
\end{aligned}
$$

problem 58
a $\therefore E=E=10$-June/suly 2013

10-June/July 2013
Given the field E $-40 x y a_{x}+20 x^{2} a_{y}+2 \mathrm{a}, \mathrm{V} / \mathrm{m}$; calculate the potential between the two points $P(1,-1,0)$ and $Q(2,1,3) \quad Q(2,1,3)$ (06 Marks)
solui- $P(1,-1,0) \quad Q(2,1,3)$.
Sopi-: $\bar{E}=40 x y \overline{a_{1}}+20 x^{2} \overline{a_{y}}+2 \overline{a_{z}} \mathrm{v} / \mathrm{m}$.

$$
\begin{aligned}
& V_{P Q}^{x_{1} y_{1}}-\int_{Q} \frac{P}{E} \cdot \overline{d l}=+\int_{P}^{Q} \bar{E} \cdot \overline{d l} \quad \text { voliz }
\end{aligned}
$$

Foth blu pand 8 $\quad \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{x-x_{1}}$

$$
\begin{aligned}
& \frac{1+1}{2-1}=\frac{y+1}{x-1} \Rightarrow 2(x-1)=y+1 \\
& y=2 x-2-1 \Rightarrow[y=2 x-3] \\
& U_{P Q}=\int_{P}^{Q}\left[40 x y d x+20 x^{2} d y+2 d z\right] \\
& V_{P Q}=\int_{y+3}^{2} 40 x y d x+\int_{y=-1}^{1} 20 x^{2} d y+\int_{z=0}^{3} 2 d z \\
&=\int_{x=1}^{2} 40 x(2 x-3) d x+\int_{y=-1}^{1} 20\left(\frac{y+3}{2}\right)^{2} d y+\left.2\right|_{z=0} ^{3} d z \\
& V=6.6667+93.3333+6=106 \text { volts } \\
& V
\end{aligned}
$$

(bb.) A point charge of 6 nC is located at the origin in free space find potential of point P if \mathbf{P} is located at $(0.2,-0.4,0.4)$ and i) $\mathrm{V}=0$ at infinity
ii) $\mathrm{V}=0$ at $(1,0,0)$
iii) $\mathrm{V}=20 \mathrm{~V}$ at ($-0.5,1,-1$).
(10 Marks)
Sun:-

$i) V=0$ at infinity

$$
\begin{aligned}
& \therefore V_{p}=\frac{Q}{u \pi \epsilon r_{a}} \div v_{0} l_{t}^{\prime} \\
& r_{a}=\sqrt{0.2^{2}+(-0.4)^{2}+(0.4)^{2}}=0.6 \mathrm{~m} \\
& r_{a}=0.6 \mathrm{~m} \\
& V_{p}=\frac{(6 n) 9 \times 10^{9}}{0.6}=90 \text { volt's } \\
& v_{p}=90 \text { volt's }
\end{aligned}
$$

iif.

$$
\begin{aligned}
& \gamma_{b}=1.5 \mathrm{~m} \\
& V_{P R}=\frac{Q}{4 \pi t}\left[\frac{1}{r_{a}}-\frac{1}{r_{b}}\right] ; \text { volfs } \\
& =(6 n)\left(9 \times 10^{9}\right)\left[\frac{1}{0.6}-\frac{1}{1.5}\right] \\
& V_{P R}=54 \quad \text { volfn }
\end{aligned}
$$

$$
\begin{aligned}
& V_{P R}=V_{P}-V_{R} ; V_{0} \|_{\text {'n }} \\
& V_{P}=V_{P R}+V_{R} \\
& V_{P}=54+20 \\
& V_{P}=74 \text { voltn }
\end{aligned}
$$

abburn 59 Define potenial differexico and absolute potentat: reter Page No-211 and 213.
(6) An Elutric field in exproned in rectangulor cordinate, \&s by $\bar{E}=6 x^{2} \overline{a_{x}}+6 y \overline{a_{y}}+4 \overline{a_{2}} v m$.
Find
i) $V_{M N}$ of pointe M and N are S pecifed by $M(2,6,-1)$ and $N(-3,-3,2)$.
ii) $V_{M}, \quad i=0$ volts at $Q(4,-2,-35)$.
ii) V_{N} if $V=2$ vilin at $p(1,2,-4)$.

Solu:-

$$
\begin{aligned}
& \bar{F}=6 x^{2} \overline{a_{x}}+6 y a_{y}+4 \overline{a_{3}} v / m \\
& \overrightarrow{d l}=d x \overline{a_{x}}+d y a_{y}+d_{z} \overline{a_{z}} \quad \mathrm{~m} . \\
& \bar{F} \cdot \overline{d l}=6 x^{2} d x+6 y d y+\varphi d z \text { voltin. } \\
& \text { i) } V_{M N}=-\int_{N}^{M} \frac{M}{d} \cdot \overline{d l}=+\int_{M}^{N} \bar{E} \cdot \overline{d l} \\
& =\int_{x=2}^{-3} 6 y^{2} d x+\int_{y=6}^{-3} 6 y d y+\int_{3}^{2} \psi y_{-1}^{2} d z \\
& =-70-81+12=-139 \text { volts } \\
& V_{\text {mN }}=-139 \text { volts }
\end{aligned}
$$

ii) \bar{V}_{m} if $\bar{V}_{Q}=0$ volth at $Q(4,-2,-35)$

$$
\begin{aligned}
& V_{M Q}=V_{M}-V_{Q}^{0}=V_{m}=-\int_{Q}^{M} \frac{M}{E} \cdot \overline{d l} \\
& \dot{M}(2,6 ;-1) \quad \dot{Q}(4,-2,-35) \\
& V_{M Q}=V_{M}=\int_{M}^{Q} \bar{E} \cdot \overline{d l}=\int_{x=2}^{4} \phi x^{2} \cdot d x+\int_{y=6}^{-2} b y d y+\int_{3=-1}^{35} 4 d_{2} \\
& \because=112-96-34(4)=-120 \text { volts } \\
& V_{M}=V_{m Q}=-120 \text { volis } \\
& \text { iii) } \begin{array}{ll}
V_{N}=? & V_{p}=2 y \\
N(-3,-3,2) & \dot{p}(1,2,-4)
\end{array} \\
& \hat{V}_{N p}=-\int_{P}^{N} \frac{N}{E}=\int_{N}^{P} \frac{P}{E} \cdot \overline{d l}=U_{N}-V_{P} \\
& \Rightarrow V_{N}=V_{N p}+V_{p}=\int_{N}^{P} E \cdot \overline{d l}+V_{p} \\
& V_{N}=\left[\int_{x=-3}^{T} 6 x^{2} d x+\int_{y=-3}^{2} 6 y d y+\int_{z=2}^{-4} 4 d z\right]+2 \\
& V_{N}=56+(-15)-6(4)+2 \\
& U_{\lambda 1}=56-15-24+2=19 \text { voltin } \\
& x_{N}=19 \text { volts }
\end{aligned}
$$

problem60

- Calculate the potential at the center of a square of side 2 m . while charges $2 \mu \mathrm{c},-\operatorname{tuc}$ and 2 mc are located at is four corness.
spue?

(canume)
the potential at point i

$$
\begin{aligned}
& V_{0}=V_{1}+V_{2}+\dot{V}_{3}+V_{4} \text { Volto } \\
& V_{0}=\frac{Q_{1}}{4 \pi \in|\overline{p O}|}+\frac{\theta_{2}}{u \pi \epsilon|\overline{R O}|}+\frac{\theta_{3}}{u \pi \in \mid \overrightarrow{x_{0} \mid}}+\frac{Q_{4}}{4 \pi \epsilon|\overline{s o}|} \text { volin } \\
& \left|\overline{P_{0}}\right|=|\overline{R O}|=|\overline{80}|=|\overline{S O}|=\sqrt{2} \mathrm{~m} . \\
& \therefore V_{0}=\frac{1}{4 \pi \in(\sqrt{2})}\left[Q_{1}+\theta_{2}+\theta_{3}+Q_{4}\right] \\
& \begin{array}{r}
=\frac{9 \times 10^{9}}{\sqrt{2}}[2 \mu-y / u+2 \mu+2 \mu] \\
-12.727 \times 10^{3}
\end{array} \\
& \times 0 \\
& V_{0}=12.727 \mathrm{k} \text { wolin } \\
& =12.727 \times 10^{3} \text { volto }
\end{aligned}
$$

solus-

$$
V=\frac{Q}{6 \pi \in \gamma} \text { volt }
$$

cone:.
y the potential at point ' D du to $+\infty$ no. of point charges plaud along ix axis is

$$
\begin{aligned}
& V_{0}=V_{1}+V_{2}+V_{u}+V_{8}+\cdots \cdots \\
& V_{0}=\frac{Q n}{4 \pi \in(1)}+\frac{Q n}{u \pi \epsilon(2)}+\frac{Q n}{4 \pi \in(4)}+\frac{Q n}{4 \pi \in(8)}+\cdots \cdot . \\
& V_{0}=\operatorname{Qn} \times 9 \times 10^{9}\left[1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right] \\
& V_{0}=98 \sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} \\
& \sum_{n=0}^{\infty} a^{n}=\frac{1}{(1-a)} \dot{a k} \\
& T_{0}=98 \times \frac{1}{1-1 / 2}=98 \times 2=18 Q \text { volt } \\
& \frac{\sqrt[V_{0}]{ }=18 \theta \operatorname{VOH}^{\prime} \mathrm{D}}{\text { Dept. of E8CE, SVCE }}
\end{aligned}
$$

Since fired adn towerds the desired point. Enther care all the point chargs are placed along coris and the desired point in at origin $\therefore \overline{a_{r}} \Rightarrow-\overline{a_{x}}$ ie fiuld drection.

$$
\begin{aligned}
& \therefore \quad \bar{F}_{0}=\overline{F_{1}}+\bar{E}_{2}+\overline{F_{4}}+\overline{E_{8}}+\cdots .{ }^{\prime} / m \\
& \overline{F_{0}}=\left[\frac{Q n}{4 \pi \epsilon()^{2}}+\frac{Q n}{4 \pi \epsilon(2)^{2}}+\frac{Q n}{4 \pi \epsilon(u)^{2}}+\frac{Q n}{4 \pi \epsilon(8)^{2}}+\cdots\right]\left(-\overline{a_{k}}\right) \\
& \bar{E}_{0}=\frac{Q n}{4 \pi \epsilon}\left[1+\frac{1}{4}+\frac{1}{16}+\frac{1}{6 u}+\cdots\right]\left(-\overline{a_{x}}\right) \\
& E_{0}=\left[Q p \times 9 \times 10^{9} \sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}=9 Q \frac{1}{1-1 / 4}=98 Q \times \frac{4}{3}\right]\left(-a_{a}\right), \\
& \overline{F_{0}}=12 \theta\left(-\bar{a}_{x}\right)=-12 \theta \bar{a}_{x} \mathrm{x} / \mathrm{m} .
\end{aligned}
$$

2) For a Line charge $S_{l}=\left(\frac{10^{-9}}{2}\right)$ cfm on the Z axt. of ECE, BAM SII.T \& M $\dot{A}_{A B}$-where A is $(2 m, \pi / 2,0)$ and $B(4 m, \pi, 5 m)$.
solu:-

$$
V_{A B}=-\int_{B}^{A} \bar{E} \cdot \overline{d l}
$$

wher $\bar{E}=\frac{\rho_{l}}{2 \pi \epsilon \rho} \widehat{a}$ and $\overline{d l}=d \rho \sqrt{a, \pi}$

$$
\begin{aligned}
& V_{A B}=-\int_{B}^{A} \frac{\rho_{r}}{2 \pi A} \overline{a_{y}} \cdot d \rho \sqrt{x_{0}} \\
& =-\int_{\rho=\frac{b_{1}}{2} \frac{\rho_{e}+\omega_{1}}{2 \pi_{0}} d \rho}^{a_{\rho}} \cdot \frac{1}{a_{\rho}} \\
& \int_{\rho=2}^{4} \frac{1}{\rho} d \rho \\
& =\left.\frac{\rho_{l}}{2 \pi \epsilon} \ln \rho\right|_{2} ^{4} \\
& V_{A B}=\frac{\rho_{l}}{2 \pi t} \ln (4 / 2)=\frac{\rho_{l}}{2 \pi t} \ln (2) \text {. } \\
& V_{A B}=\frac{10^{-9}}{2} \times 18 \times 10^{9} \ln (2)=6.238 \text { usthth } \\
& V_{A B}=6.238 \text { voltin }
\end{aligned}
$$

Five equal point charges $\theta=20$ Dept. af ECE, B.MS.I.T \& M mon b^{2}, $x=2,3,4,5,6 \mathrm{~m}$, Find de polentical at $x=2,3,4,5,6 \mathrm{~m}$. Find the potential at the origin.
solu:- - patential due to many point
$V_{0}=2_{0} \quad Q=$ zonai each. Charges.

$$
\begin{aligned}
& V=\frac{\theta}{4 \pi \epsilon^{r}} \text { volto. }
\end{aligned}
$$

Sime $Q_{2}=Q_{3}=Q_{4}=Q_{1}-\theta_{6}=2000^{\circ}$
using Superpositiong ininciple.

$$
\begin{aligned}
& V_{0}=V_{2}+V_{5}+V_{4}+V_{5}+V_{6} \\
& \begin{array}{l}
V_{0}=20 巾 \times 9 \times 10\left[\frac{1}{2}+\frac{1}{r_{2}}+\frac{1}{\gamma_{3}}+\frac{1}{r_{4}}+\frac{1}{r_{5}}+\frac{1}{r_{6}}\right] \\
\left.V_{0}+\frac{1}{5}+\frac{1}{6}\right]
\end{array} \\
& =18 \times 1045 \\
& \infty \\
& T_{0}=26.1 \text { Nolto }
\end{aligned}
$$

©. Current and Current density
(2). Continuity of current

1 Obtains an expression for the equation of continuity.

2 Derive an expression for continuity equation in point form.

02-DEC2008/Jan 2009
(0S Marks)
10-DEC 2013/致 2014
(0) Marks)

10-June/suly 2013

3 Discuss current and current density and derive the expression for continuity equation. (06 Marts)

06- June / /fly 2009
7 Define point for of continuate equation.
(tick Marks)
10 -June / July 2015
$9 \quad$ With usual notations, prove point form of continuity equation, $\nabla . J=\frac{\partial \rho_{v}}{\partial t} . \quad$ (05 Marks)
10 - June /July 2014
10 Derive point form ot continuity equation.

06 -Dec/Jan 2008

11 Derive the integral and point form of continuity equation.
(06 Marks)

Current (I) P- The current is defined as the rate of Flow of large per unit time.

$$
\text { i.e } I=\frac{d \theta_{3}}{d t} \text { are (or Ampere }
$$

Note: one Ampare (IA) of Current in knothing but One cioulomb of chorge paning acrom the sutace in one sceond.
Eurust dinsity (\bar{J}) - The currnt density (\bar{J}) is defined as the Curent paning through the unit surtace area when Surtace is atnormal to the diration of flow of currint (I).
ie

$$
\begin{aligned}
& \bar{J}=\frac{d I}{d s} \\
& \text { (o) } A / m^{2} \\
& \bar{J}=\frac{d I}{d s} \overline{a_{n}} A / m^{2}
\end{aligned}
$$

where \vec{a}_{n} is the unit vator normal to the diration of flow of curnent.
Note:- Current (I) in Scalorquantity.
\therefore Current density (\bar{J}) is Vectorquantity.
\Rightarrow Relation blu Eurrent (fand Eurrent density (\bar{J}) Poustor.
Q5) prove that total currant flowing through the suffue. S
ingiven by $I=\mid \bar{T} \cdot \overline{d S}$ Amm (oum) 02 JlJ 2011.

Consider a Surtace S and the Dept. Rfoum B.M.G.I.T \& M the surtace (I).
the diration of Curent is normal to the Surface (S).
\therefore the diration of \bar{J} is also normal to the surtace.

the differential curint dI paning through the differential surtare $d s$ sinsivien by

$$
d I=
$$

$$
\overline{d s}=d x d y \overline{I_{2}}
$$

$\Rightarrow \quad d I \frac{d}{d s}$ Ampario

if "wionsidered Surtare is to be cloned then

$\frac{\text { (0.8MP }}{X^{x}}$ Q1.2.3.7.9.10.11.12. 02 Fan2009, 10 -Jan2014, $10 \mathrm{JJT} 2013,06 \mathrm{~J} / \mathrm{J} 2009$
$1 \cdot 2 \cdot 3 \cdot 7 \cdot 9 \cdot 10-11 \cdot 12.10 \mathrm{~J} / \mathrm{J} 2015,10 \mathrm{~J} / \mathrm{J}-2014,$.
CBCS $[15-$ Dec $/ \mathrm{Jan} 2017](6 \mathrm{~m})$ $-d \theta / d t$
CBCs [15-bulJan 2017$](6 \mathrm{~m})$
the Currint Flow through the any closed
Surtace in given by

$$
I=\oint_{\langle S\rangle} \bar{J} \cdot \overline{d S} \quad \text { Amparin }
$$

\leftarrow (1)
The chorge inside the closed surface in dentited by Q_{i}, then the rate of decrease is $\frac{-d Q_{i}}{d t}$, by principle of Lonservation, dicharge

$$
\begin{equation*}
I=\oint_{\langle S\rangle} \bar{J} \cdot \overline{d s} \operatorname{l}^{\prime}-\frac{d Q_{i}}{d t} \tag{2}
\end{equation*}
$$

i.ecurntb

\qquad
i
time rate of decrease of charge per unit volume aterng point.
Notes. for a Steady [urrent $\rho_{y}=$ constant $(k) \therefore \frac{\partial f_{v}}{\partial t}=0 \therefore$.

$$
\nabla \cdot \vec{J}=0
$$

06 - June /July 2011

0 id J -2011.
i> md the current flowing outward trough the circular band $\rho=3,0<\phi<2 \pi, 2<z<2.8$.
ii) Find Current density at $p\left(\rho=3, \phi=30^{\circ}, z=2 \mathrm{in}\right)$; (106 Marks)
Sofas, ii) $\bar{J}=10 \rho^{2} z \bar{a}_{\rho}-4 \rho \cos ^{2} \phi \bar{a}_{\phi} m A / m^{2}$
the currant density at $p\left(3,30^{\circ}, 2\right)$ is

$$
\begin{aligned}
& \rho=3 \mathrm{~m} ; \phi=30^{\circ} \text { and } z=2 m \\
& \bar{J}=10(3)^{2}(2) \overline{a_{\rho}}-4(3) \operatorname{con}^{2}\left(30^{\circ}\right) \overline{a_{\phi}} \text { mAlm }{ }^{2} \\
& \bar{J}=180 \overline{a_{\rho}}-9 \bar{a}_{\phi} \mathrm{mAlm}^{2}
\end{aligned}
$$

i) given $\rho=3 \mathrm{~m}, \quad 0<\phi<2 \pi, \quad 2<z<2.8 \mathrm{~m}$

$$
\begin{aligned}
& p(f, \phi, \xi) \\
& d y \underset{\rho d \phi}{\langle } \longrightarrow d_{3}
\end{aligned}
$$

$$
\bar{J}={\left.\underset{J \rho}{1_{\rho}^{2} 2}\right) \overline{a_{\rho}} \frac{-4 \rho \cos ^{2} \phi}{J_{\phi}} \overline{a_{\phi}} \mathrm{mA} / \mathrm{m}^{2} .}^{J^{2}}
$$

$\therefore \quad I=\oint_{\langle S\rangle} \vec{J} \cdot \overline{d S}$ Amperein.

$$
\begin{aligned}
& \left.I^{\prime}\right|_{\rho=3 m}=\int_{\langle s\rangle} J_{\rho} \cdot \overline{d s}=\left.\int_{\langle s\rangle} 10 \rho^{2} z \bar{a}_{\rho} \cdot \rho d \phi d_{z}\left(\overline{a_{s}}\right)\right|_{\rho=3 m} ^{x i m} \\
& =10 \rho^{3} \int_{\phi=0}^{2 \pi} d \phi \int_{z=2}^{2.8} 2 d z \bar{a}^{2} \cdot \bar{a}_{1} \times 1 \mathrm{~m} \\
& \left.T^{\prime}\right|_{\rho=3 \mathrm{~m}}=10(3)^{3} \times 2 \pi \times 1.92 \times 1 \mathrm{~m}=3.2572 \mathrm{~A} \\
& \left.I^{\prime}\right|_{S=3 m}=3.2572 \text { Amperels } \\
& \left.I^{\prime \prime}\right|_{\phi=0^{c}} ^{\prime}=\int_{\angle S \lambda} \overline{J_{\phi}} \cdot d s=\int_{\angle s^{\prime}}-\left.4 \rho \cos ^{2} \phi \overline{a_{\phi}} \cdot d j d_{z}\left(-\overline{a_{\phi}}\right)\right|_{\phi=0^{c}} ^{x 1 m} \\
& =+4 m \operatorname{con}^{2 \rho^{\prime}(0)} \times \int_{z=2}^{2.8} d z \times \int_{\rho=0}^{3} \rho d s=\underline{=} \\
& \left.T^{\prime \prime \prime}\right|_{\phi=2 \pi^{c}}=\int_{<s\rangle} \overline{J_{\phi}} \cdot \overline{d s}=\int_{\left\langle s^{\top}\right.}-4 \rho \cos ^{2} \phi \overline{a_{\phi}} \cdot d j d_{2}\left(+\overline{a_{\phi}}\right) \times\left.\operatorname{lm}\right|_{\phi=2 \pi c} \\
& =-4 m \cos ^{2}(2 \pi) \times \int_{z=2}^{2.8} d_{2} \times \int_{\rho=0}^{3} \rho d \rho=-0.0144 \mathrm{~A}
\end{aligned}
$$

$$
I=I^{\prime}+I^{\prime \prime}+I^{\prime \prime \prime}=3.2572+0.0144-0.0144=3.257 \mathrm{~A}
$$

$\therefore I \simeq 3.26$ Amperio
06 - tIne July 202 ?
The current density due flow of charges in a very small region in the viscinive of the origin is
given by $\mathrm{J}=\mathrm{J}_{0}\left[\mathrm{x}^{2} \hat{a}_{x} \div y^{2} \hat{a}_{y}+z^{2} \hat{a}_{2}\right]$ A $/ \mathrm{m}^{2}$, where J_{0} is a constant. Find the time rate of increase of charge density at each of the following points (all in meters):
$\begin{array}{ll}\text { i) }(0.07 & 0.01,0.01)\end{array} \quad$ ii) $(0.02,0.01,01)$
i) $0.0=0.01,0.01) \quad$ ii) $(0.02,-0.01,-0.01)$.
$\stackrel{\text { Solve:- }}{\stackrel{\text { given }}{ }} \bar{J}=J_{0}\left[x^{2} \overline{a_{x}}+y^{2} \overline{a_{y}}+z^{2} \overline{a_{z}}\right] \mathrm{Alm}^{2}$.
i) $(0.002,0,01,001), 1001)$.

$$
\frac{\partial s_{y}}{\partial t}=?
$$

using Continuity Current c qu

$$
\begin{aligned}
& \cdot J=-\frac{\partial S_{4}}{\partial t} \cdot \mathrm{Alm}^{3} \\
& \Rightarrow \frac{\partial J_{y}}{\partial t}=-\nabla \cdot \bar{J}=-\left[\frac{\partial J_{x}}{\partial x}+\frac{\partial J_{y}}{\partial y}+\frac{\partial J_{3}}{\partial z}\right] A / m^{3} \\
& \frac{\partial I_{x}}{\partial i}=J_{0}(2 x)=2 x J_{0} \cdot A I_{m^{3}} \\
& \frac{\partial J_{y}}{\partial y}=J_{0}(2 y)=2 y J_{0} \mathrm{Alm}^{3} \\
& \frac{\partial J_{z}}{\partial z}=J_{0}(2 z)=22 J_{0} \mathrm{Alm}^{3}=22 J \mathrm{~J}_{0} \mathrm{Alm}^{3} .
\end{aligned}
$$

∞

$$
\frac{\partial \rho_{u}}{\partial t}=-2 J_{0}[x+y+z] \mathrm{A} / \mathrm{m}^{3}
$$

case. i) $(0.02,0.01,0.01)$

$$
\begin{aligned}
& \text { i) }(0.02,0.01,0.01) \\
& \frac{\partial J_{v}}{\partial t}=-2 J_{0}[0.02+0.01+0.01]=-0.08 \mathrm{~J}_{0} \mathrm{~A} / \mathrm{m}^{3} \\
& i i\rangle(0.02,-0.01,-0.01)
\end{aligned}
$$

$$
\frac{\partial I_{y}}{\partial t_{1}}=-2 J_{0}[0.02-0.01-0.01]=0 A / \operatorname{mo}^{3}
$$

5 Wrovghetatal current flowing through the surface, S is given by $I=\int J d s$ AMM. (04 Marks)
troblemb6 - - - refer. Page No. 228.
(i) Find the Current Creaming the portion of the $y=0$ plane defined by $-0.1 \leq x \leq 0.1 m$ and $-0.002 m \leq z \leq 0.002 m$ of $\bar{J}=10^{2}|x| \quad \overline{a_{y}} A / m^{2}$.
sole

$$
I=\underset{\langle s\rangle}{ } \bar{J} \cdot \overline{d s}
$$

$$
\bar{J}=10^{2}|x| \overline{a_{y}} A / m^{2}
$$

$$
\overline{d S}=d_{x} d_{z}\left(\overline{a_{y}}\right) \quad y=\text { plane (fo) } x_{z} \text { plane. }
$$

x
$I=4 m \mathrm{~A}$
(or) Find the Current Ereming the portion of the $x=0$ plane defined by $-\pi / 4 \leq y \leq \pi / 4 \mathrm{~m}$ and $-0.01 \leq z \leq 0.01 \mathrm{~m}$. if

$$
\begin{aligned}
& \quad J=100 \cos (2 y) \overline{a_{n}} A /^{2} \\
& I=\int_{\langle s\rangle} \bar{J} \cdot \overline{d s}=\int_{\langle s\rangle} 100 \cos (2 y) \overline{a_{x}} \cdot d y d z\left(+\overline{a_{x}}\right) . \\
& =\int_{y=0 \pi}^{\pi / 4} 100 \tan (2 y) d y \times \int_{z=-0.01}^{0.01} d_{z} \times \overline{a_{x}} \overline{a_{x}} \\
& I=100 \times 0.02 \times 1=2.0 \mathrm{~A} \Rightarrow I=2 \mathrm{~A}
\end{aligned}
$$

(6) Given $J=10^{3} \sin \theta \mathrm{ar}_{\mathrm{a}} \mathrm{Alm}{ }^{2}$ in spherical coordinates. Find the Current Crowing the spherical shell $\gamma=0.02 \mathrm{~m}$.
sole:-

$$
I=3.95 \mathrm{Ampain}
$$

$$
\begin{aligned}
& I=\left.\int_{\Delta>}^{J \cdot d s}\right|_{r=k} \text { Sphere. } \\
& \begin{array}{l}
p(r, \phi, \phi) \\
\mu(\underset{r d \theta}{ } \underbrace{}_{r \sin \theta d \phi}
\end{array} \\
& \overline{d s}=r^{2} \sin \theta d \theta d p \overline{Q_{r}} \\
& I=\left.\int_{\langle s\rangle} 10^{3} \sin \theta \overline{o r} \cdot r^{2} \sin \theta d \theta d \phi \overline{o r}\right|_{r=0.02 \mathrm{~m}} . \\
& =10^{3} r^{2} \int_{\theta=0}^{\pi} \sin ^{2} \theta d \theta \times \int_{\phi=0}^{2 \pi} d \phi \quad \overline{a_{\gamma}} \gamma^{1} \cdot \overline{a_{\gamma}} \\
& =10^{3}(0.02)^{2} \times 1.5707 \times 2 \pi \times 1=3.9478 \mathrm{~A}
\end{aligned}
$$

A Condudor Lamics stady Lurrent of I amparin.
The componento of [urrent density vector J are
$J_{x}=2 a x$ and. $J_{y}=2 a y$. Find the third component J_{z}. Derive any relation employed.
Note'. Module-5A Quotion. Jone 2006 (10M).
Soly:-
using [ontinuity q^{u}

$$
\nabla \cdot \bar{J}=-\frac{\partial v}{\partial t} A / m^{3}
$$

if Condutor corrics Steady Curent then

$$
\begin{aligned}
& \rho_{u}=\text { constant } \Rightarrow \frac{\partial \rho_{y}}{\partial t}=0 \rho_{m^{3}}-\mathrm{sec} \text {. } \\
& \Rightarrow \nabla \cdot \bar{J}=0 \\
& \frac{\partial J_{x}}{\partial x}+\frac{\partial J_{y}}{\partial y}+\frac{\partial J_{3}}{\partial z}=0 \\
& \frac{\partial}{\partial x}(2 a x)+\frac{\partial}{\partial y}(2 a y)+\frac{\partial J_{z}}{\partial z}=0 \\
& 2 a+2 a+\frac{\partial J_{3}}{\partial z}=0 \\
& \frac{\partial J_{z}}{\partial z}=-4 a .
\end{aligned}
$$

Integrating wrt ' 2 .

$$
\left.J_{2}=-4 a_{3}+K\right] A / m^{2}
$$

Dept. of E\&CE., SVCE
\& \quad soln refer-pagerlo-229: $\quad 02$ - sune / July 2010
8 Sexp the vector current density $\bar{J}=10 \rho^{2} z \hat{a}_{a}-4 \rho \cos ^{2} \phi \hat{a}, \mathrm{~ms} / \mathrm{m}^{2}$. lind the wad current fowing outward through the circular band $\rho=3 \mathrm{~m}, 0<\phi<2 \pi^{i}, 2 \mathrm{~m}<262.8 \mathrm{~m}$. i06 Marks) (repeaAled),

Mincullaneous Topics
Topic 2.14 potential Gradient
Quation:
Show that the clutric fild intensity is a negative of the gradient of the elutric Salar potential.
ie. $\bar{E}=-\nabla \vee v / m$. (5m)
(or).
Show that $E=-\pi, ~ V / m .(6 m)$
(or)
prove, using Larterstan Co-ordinate Syetem,
Het $E=-\nabla \vee V_{m}$ wher E and Het $E=-\nabla \vee V \|_{m}$ where E and v have \#heir roputive names of fild intensity and
potential. (7m). potential. (7m).

$$
\begin{aligned}
& \text { potential. (7on). } \\
& {[02-\operatorname{Dec} 2010,02-\operatorname{Jan} 2009,06-\tan 200906-\tan 2010,}
\end{aligned}
$$ 06 -Jon 201g, 06 - Jan 2014, 10 - Jan 2014, 02. Juhle/July 2012, 02- JunelJuly 2010] 141

soly:- Method I :- using Spharical Co-ordinate System. w.kt the Elutric frild Intensity E.du to point charge is given by

$$
\bar{F}=\frac{Q}{H \pi E r^{2}} \bar{a}_{r} \quad v / m
$$

the potential at apoint due to pointclorge is
given by

$$
\begin{aligned}
& \text { given by } \\
& \forall=\frac{Q}{4 \pi \epsilon^{r}} \quad \text { volth } \quad \Rightarrow=f^{\prime}(r) \text { only: }=\text { sealorfu. } \\
& \Rightarrow r \text { ridinate System. }
\end{aligned}
$$

V in Spherical [oordinate System.

$$
\begin{aligned}
& \nabla \text { in Spharical } \frac{\partial}{\nabla r} \overline{a r}+\frac{1}{\gamma} \frac{\partial}{\partial \theta} \bar{a}_{\theta}+\frac{1}{\gamma \sin \theta} \frac{\partial}{\partial \phi} \bar{a}_{\phi} m \\
& \nabla V=\text { Gradient }=\frac{\partial V}{\partial r} \overline{a r}+\frac{1}{\gamma} \frac{\partial \|}{\partial \theta} \overline{a_{\theta}}+\frac{1}{\gamma \sin \theta} \frac{\partial \psi}{\partial \phi} \overline{a_{\phi}} v / m \\
& \text { Since } V=f^{n}(r) \text { only }: ~
\end{aligned}
$$

$$
\nabla V=\frac{\partial V}{\partial r} \widehat{a r}
$$

$$
\text { fromeq" (2) } \frac{\partial V}{\partial r}=\frac{-Q}{4 \pi E r^{2}}<(4)
$$

lesing equ (4) (3)

$$
V V=-\frac{Q}{4 \pi \epsilon r} \frac{\nabla}{a_{r}} \vec{E}
$$

using on (0)

$$
\Rightarrow \quad \bar{V}=-\bar{E}
$$

(5) $\bar{E}=-\nabla V \mathrm{~V} / \mathrm{m}$
i.e E is a negative potential gradient of the potential

Method II Using Rectangular Co-ordinate System
Consider two neighboring points $A(x, y, z)$ and. $B(x+d y, y+d y, z+d z)$, separated by a smalldentance $\overline{d l}$ in an \tilde{d} iatric field \bar{E}.

$$
V_{B} d v w o l i o
$$

A

$$
\begin{aligned}
& \left.V_{B} d v w+1, z+d z\right) \\
& B(x+d x, y+d y, z+d z
\end{aligned}
$$

(x, y, z) Let the potential at B betigher than that at A by an amount of $d v$
\therefore the work done in moving a charge QC from A to B is $d w=-Q E \cdot \frac{d}{d l}$ Joules.
if $Q=1 c$ ie unit charge, the potential $d w=d v$

$$
\begin{align*}
& \text { ic } d \mathbf{V}=\frac{d w}{Q_{Q} \rightarrow 1 c}=-\bar{E} \cdot \frac{d l}{\text { Volfin }} \\
& d V=-\bar{E} \cdot\left[d x \bar{a}_{a}+d y \bar{a}_{y}+d z \bar{a}_{z}\right] \tag{1}
\end{align*}
$$

where $\overline{a_{n}}, \overline{a_{y}}$ and $\overline{a_{z}}$ are the unit vectors along x, y and z directions.
The potential difference do can be Confided as the change in the potential V as wet move from A to B, Which is $d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y+\frac{\partial v}{\partial z} d z$

$$
-\bar{E}=\nabla V
$$

$$
\Rightarrow \dot{F}=-\nabla V \vee / m
$$ givers by the negative of the gradient of potential at that point.

$$
\begin{align*}
& \text { ide } \\
& d V=\left[\frac{\partial V}{\partial x} \bar{a}_{x}+\frac{\partial V}{\partial y} \bar{a}_{y}+\frac{\partial y}{\partial z} \overline{a_{z}}\right] \cdot\left[d x \overline{a_{x}}+\frac{d y}{} \overline{a_{y}}+d_{z} \bar{a}_{z}\right] \tag{2}\\
& q^{-1}(1) \text { in of (2) } \\
& -\bar{E} \cdot\left[d x \bar{a}_{x}+d y / \frac{d}{d y}+d_{z} \bar{a}_{z}\right]=\left[\frac{\partial v}{\partial x} \overline{a_{x}}+\frac{\partial v}{\partial y} \overline{a_{y}}+\frac{\partial v}{\partial z} \overline{a_{z}}\right] . \\
& {\left[d x \overline{a_{x}}+A_{y} \overline{a_{y}}+d z \bar{a}_{z}\right]} \\
& -\bar{E}=\frac{\partial v}{\partial x} \overline{a_{x}}+\frac{\partial v}{\partial y} \overline{a_{y}}+\frac{\partial V}{\partial z} \overline{a_{z}} \\
& -\bar{E}=\left[\frac{\partial}{\partial x} \overline{a_{x}}+\frac{\partial}{\partial y} \bar{a}_{y}+\frac{\partial}{\partial z} \overline{a_{z}}\right] \cdot v \\
& \text { Thusthe } \bar{E} \text { at any point in }
\end{align*}
$$

Solved problems
2 -
Giventie poteniaf field, $y \leq 50 \mathrm{x}^{2} \mathrm{yc}+26 \mathrm{y}^{2}$ votsin free space

(07 Mabst $\Rightarrow V=50 x^{2} y z+20 y^{2}$ vilfo ${ }^{\text {P8.0.ECzary }}$
Given the potential feld $V=50 x^{2} y z+20 y^{2}$ volts in free space, firct _-
$\begin{array}{ll}\text { i) } & \text { Potential } V \text { at } P(1,2,3) \\ i) & \left.\left|E_{p}\right| \text { Magnitude of eiectric polential }\right)\end{array}$

Solui- given $\bar{U}=50 x^{2} y z+20 y^{2}$ volt's

$$
\begin{aligned}
\therefore & \sigma_{p}=50(1)^{2}(2)(+3)+20(2)^{2} \\
& \tilde{U}_{p}=380
\end{aligned}
$$

ii) $\bar{E}=-\nabla i=-\left[\frac{\partial v}{\partial x} a_{x}+\frac{\partial v}{\partial y} \overline{a_{y}}+\frac{\partial v}{\partial z} \overline{a_{z}}\right] \mathrm{v} / \mathrm{m}$.

$$
\begin{aligned}
& \text { ii) } \mathcal{F}=\frac{\partial v}{\partial x}=100 x y ; \frac{\partial v}{\partial y}=50 x^{2} z ; \frac{\partial y}{\partial z}=50 x^{2} y \text {. } \\
& \bar{F}=-100 x y z \overline{a_{2}}-50 x^{2} z \overline{a_{y}}-50 x^{2} y \overline{a_{z}} v / m .
\end{aligned}
$$

@ $p(1,2,3)$

$$
\begin{aligned}
& 0 p(1,2,3) \\
& \overline{E_{p}}=-\left[600 \overline{a_{x}}+230 \overline{a_{y}}+100 \overline{a_{z}}\right] \\
& \overline{a r}=\overline{E_{p}}
\end{aligned}
$$

i> or at p i.e $\overline{a_{r}}=\frac{\bar{E}_{p}}{\left|E_{p}\right|}$

$$
\begin{aligned}
& \left|\bar{w}_{p}\right|=650.307 \mathrm{v} / \mathrm{m} \\
& \overline{a_{r}}=\frac{d_{o f} r^{4}}{}=-\left[0.92 \overline{a_{x}}+0.35 a_{y}+0.153 \overline{a_{z}}\right]
\end{aligned}
$$

Topic 2.15
Eradient in all three Lo-ordinate Systemser
\rightarrow Eartesian Co.ordinate System.

$$
\begin{aligned}
& P(x, y, z) \\
& d x \frac{1}{d y} \rightarrow d_{z} \\
& \nabla=\frac{\partial}{\partial x} \overline{a_{x}}+\frac{\partial}{\partial y} \overline{a_{y}}+\frac{\partial}{\partial z} \overline{a_{z}} \\
& V \rightarrow \text { Scalor }{ }^{\mu \mu} \text {. } \\
& \square V=\frac{\partial V}{\partial x} \bar{a}_{x}+\frac{\partial V}{\partial y} \bar{a}_{y}+\frac{\partial Y}{\partial z} \bar{a}_{z} \quad \bar{T} / \mathrm{m} . \\
& \rightarrow \text { Dylindrical } \mathrm{C} \cdot \mathrm{~S} \quad \mathrm{P}(\beta \phi, z) \\
& \operatorname{df}_{d} \bigvee_{\rho d \phi} \longrightarrow d_{2} \\
& \nabla=\frac{\partial}{\partial \rho} \bar{a}_{\rho}+\frac{1}{\rho} \frac{\partial}{\partial \phi} \overline{a_{\phi}}+\frac{\partial}{\partial z}{\overline{a_{z}}}^{m^{-1}} \\
& T V=\frac{\partial V}{\partial f} \overline{a_{\rho}}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \overline{a_{\phi}}+\frac{\partial V}{\partial z} \overline{a_{2}} \quad \mathrm{~T} / \mathrm{m} . \\
& \rightarrow \text { Spherical } C \cdot S \quad \underset{d r}{p(r, \theta, \phi)} \underset{r d \theta}{\mathbb{L}} \rightarrow r \sin \theta d \phi \\
& \nabla=\frac{\partial}{\partial r} \overline{a r}+\frac{1}{r} \frac{\partial}{\partial \theta} \overline{a_{\theta}}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \overline{a_{\phi}} \\
& \nabla V=\frac{\partial V}{\partial r} \overline{a_{r}}+\frac{1}{\gamma} \frac{\partial V}{\partial \theta} \overline{a_{\theta}}+\frac{1}{\gamma \sin \theta} \frac{\partial V}{\partial \phi} \bar{a}_{\phi} \text {. } \mathrm{V} / \mathrm{m} \text {. }
\end{aligned}
$$

kay Notes- To Solve problem 's
if given íotential field

$$
\begin{aligned}
& V=f^{u}(\text { spatial Variables.) } \\
& \left\lvert\, \begin{array}{ll}
v_{p}{ }^{O} & p(x, y, z) \\
p(s, \phi, z)
\end{array}\right. \text { and } p(r, \dot{\theta} \phi)
\end{aligned}
$$

(2)

$$
\begin{align*}
& D=E E \mathrm{~cm}^{2} \tag{6}\\
& \left|\frac{3}{D_{p}}\right|=\rho_{s} \varphi_{m}{ }^{2} \tag{8}\\
& \text { Maxarienfinty }{ }^{4} \\
& \bar{\sigma} \cdot \bar{D}=f_{H} . C_{m}{ }^{3} \\
& \text { volure chargedenity. }
\end{align*}
$$

problem69
Let $V=\cos 2 \phi$ in the free space in cylindrical system. Find:
宛

ρ_{v} at $B\left(0.5,60^{\circ}, 1\right)$.
Damistant Proresiar irech., (Ph.D)
$\begin{array}{ll}\text { Email:dankam.ece?sucengg.com } & \text { (08 Marks) } \\ & 10-\operatorname{lan} 2013\end{array}$
Solis

$$
\nabla \bar{u}=\frac{\partial u}{\partial r} \overline{a_{1}}+\frac{1}{\gamma} \frac{\partial u}{\partial \phi} \overline{a_{\phi}}+\frac{\partial y}{\partial z} \bar{a}_{z} \quad b u z \neq f^{n}(z)
$$

$$
i) \bar{E}=-\nabla V=-\left[\frac{\partial v}{\partial r} \overline{a r}+\frac{1}{\gamma} \frac{\partial v}{\partial \phi} \overline{a_{q}}\right] \quad V / m
$$

$$
\frac{\partial V}{\partial \gamma}=-\frac{\cos 2 \phi}{\gamma^{2}} \quad ; \quad \frac{\partial V}{\partial \phi}=-\frac{2 \sin (2 \phi)}{\gamma^{2}}
$$

$$
\begin{aligned}
\bar{E} & =\left(\frac{E_{\phi}}{\frac{\operatorname{con} 2 \phi}{r^{2}}}\right) \overline{a_{r}}+\left(\frac{2 \sin (2 \phi}{r^{2}}\right) \overline{a_{\phi}} \\
& ={ }^{\text {put }} r=2
\end{aligned}
$$

E at $f\left(2,30^{\circ}, 1\right)$ put $r=2, \phi=30^{\circ}$
(48) $S_{y}=-106.248 \mathrm{P} \mathrm{cm}^{3}$

$$
\begin{aligned}
& E_{A}=\frac{\cos (60)}{2^{2}} \overline{a_{r}}+\frac{2 \sin \left(60^{\circ}\right)}{2^{2}} \overline{a_{\phi}} \quad V / m . \\
& \bar{E}_{A}=0.125 \overline{a_{r}}+0.43301 \overline{a_{\phi}} \mathrm{v} / \mathrm{m} \\
& \text { ii) } f_{v}=\nabla \cdot \bar{D}=\frac{1}{r} \frac{\partial}{\partial r}[\gamma D r]+\frac{1}{r} \frac{\partial\left[D_{\phi}\right]}{\partial \phi}+\frac{\partial D_{z}}{\partial z} \\
& I_{v}=\nabla \cdot \bar{D}=E ष \cdot \bar{E}=\frac{1}{r} \frac{\partial}{\partial r}[r E r]+\frac{1}{r} \frac{\partial E_{q}}{\partial \phi}+\frac{\partial ब_{z}^{0}}{\partial z} \\
& \rho_{V^{-}}=\left[\frac{1}{\gamma} \frac{\partial}{\partial r}\left[\gamma \cdot \frac{\cos 2 \phi}{r^{x}}\right]+\frac{1}{\gamma} \frac{\partial}{\partial \phi}\left[\frac{2 \sin (2 \phi)}{r^{2}}\right]\right] \\
& =\epsilon\left[-\frac{\cos 2 \phi}{r^{3}}+\frac{1}{r^{3}} 4 \cos (2 \phi)\right] ; \rho_{V} @ B\left(0.5,60^{\circ}, 1\right) \\
& \rho_{v}=E\left[-\frac{\cos \left(120^{\circ}\right)}{0.5^{3}}+\frac{4 \cos \left(120^{\circ}\right)}{0.5^{3}}\right]=-12 \epsilon=-12 \times 8.854 \times 10^{-12}
\end{aligned}
$$

broblem to

$$
x(1,2,-1) \quad V=3 x^{2} y+2 y^{2} z+3 x y z .
$$

... Find the electric teld intenstyat point $x(1,2,-1)$ giventhe potential $V=3 x^{2} y+2 y^{2} z+3 x y z$.
Solu':
$\operatorname{Dec} 2014$

$$
\begin{aligned}
& \bar{E}=-\nabla V \\
& =-\left[\frac{\partial v}{\partial x} \overline{a_{x}}+\frac{\partial y}{\partial y} \overline{a_{y}}+\frac{\partial y}{\partial z} \overline{a_{z}}\right] V / m . \\
& \frac{\partial V}{\partial x}=6 x y+3 y z . \quad \frac{\partial V}{\partial y}=3 x^{2}+4 y z+3 x z . \\
& \frac{\partial v}{\partial z}=2 y^{2}+3 x y . \\
& \text { E @ } \times(1,2,-1) \text { put } x=1, y=2, z=-1 \text {. } \\
& \frac{\partial v}{\partial x}=12-6=6 \quad \frac{\partial y}{\partial y}=3-8-\beta=-8 \\
& \begin{aligned}
& \frac{\partial V}{\partial z}=2(4)-6=2 \\
&=-\left[6 \overline{a_{x}}-8 \overline{a_{y}}+2 \overline{a_{z}}\right] y / m . ~
\end{aligned} \\
& \overline{F_{x}}=-6 \overline{a_{x}}+8 \overline{a_{y}}-2 \overline{a_{z}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

hrolum t1 $V=100\left(x^{2}-y^{2}\right)$ volin $\quad P(2,-1,3) m \quad V, \bar{E}, \bar{D}$ and is Given $V=100\left(x^{2}-y^{2}\right)$ woits, and pt. on the surface. $P(2,-1,3)$)... find V, E., Dand p, at P. P and the equation of the conductor surlace.
Soh:- $\quad V=100\left(x^{2}-y^{2}\right)$ volt'n

$$
\frac{\partial y}{\partial x}=100(2 x) \quad \frac{\partial y}{\partial y}=100(-2 y) \quad \frac{\partial y}{\partial z}=0
$$

$$
\frac{\partial y}{\partial x}=200 x ; \frac{\partial y}{\partial y}=-200 y
$$

$$
\bar{F}=-200 x \overline{a_{x}}+200 y \overline{a_{y}} \bar{v} / m
$$

$$
\overline{\sigma_{p}}=-200(2) \overline{a_{x}}+200(-1) \bar{a}_{y} \text { जि/m }
$$

$$
\left.\frac{p}{\sqrt{E_{p}}}=-600 \overline{a_{n}}-200 \bar{a}_{y}\right] \mathrm{v} / \mathrm{m}
$$

ii) $\overline{D_{p}}=\epsilon_{0} \cdot \bar{E}_{p}=8.854\left[-400 \overline{a_{x}}-200 \overline{a_{y}}\right]$ petm 2 .

$$
=\left[-3.5416 \overline{a_{x}}-1.770 \overline{a_{y}}\right] n \varphi_{m}^{2}
$$

\dot{x}
iv) S_{s} at $p \quad \rho_{S}=\left|\bar{D}_{p}\right|=3.95927 \mathrm{ncm}^{2}$
$x^{x} v$ veq 4 of Condurtor Sustace

$$
\begin{gathered}
\text { of Condutor } y=100\left(x^{2}-y^{2}\right) \text { volt'n } \\
\text { put } V=300 \text { voll'? } \\
300=100\left(x^{2}-y^{2}\right) \\
2-y^{2}-3
\end{gathered}
$$

$$
\begin{aligned}
& =100\left(x^{2}-y^{2}\right) \\
& \Rightarrow\left[x^{2}-y^{2}=3<\varphi^{4}\right. \text { of condu } \\
& \text { suface. }
\end{aligned}
$$

$$
\begin{aligned}
& P(i,-1,3) \text { i.e } x=2, y=-1, z=3 \text {. } \\
& \therefore V_{p}=100\left[2^{2}-(-1)^{2}\right]=100[4-1]=300 \mathrm{voll} . \\
& \text { ii) } \bar{E}=-\nabla v=-\left[\frac{\partial y}{\partial x}+\frac{\partial y}{\partial y} a_{y}+\frac{\partial v}{\partial z} \overline{a_{z}}\right] \text { V/m. }
\end{aligned}
$$

$$
V=100 \sinh (5 x) \sin (5 y) \text { volty }
$$

broblum 72

\rightarrow ?

$$
\begin{gathered}
\text {-3) } \bar{J}=100 \sinh (5 x) \sin (5 y)^{E \mid} \quad p(0.1,0.2,0.3) \\
\text { i) } \bar{v}_{p}=100 \sinh (5 \times 0.1) \sin [5(0.2)]=0.90943 \text { volto } \\
\bar{v}_{p}=0.90943 \text { volto }
\end{gathered}
$$

$$
i>\bar{E}=-\nabla V=-\frac{\partial V}{\partial x} \bar{a}_{x}-\frac{\partial V}{\partial y} a_{y}
$$

$$
\frac{\partial V}{\partial x}=100 \cosh (5 x) \times 5 \sin (5 y)=500 \operatorname{costh}(5 x) \sin (5 y)
$$

$$
\begin{aligned}
& \frac{\partial v}{\partial y}=500 \sinh (5 x) \cos (5 y) .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial V}{\partial y}=500 \sinh (5 x) \cos (5 y) \\
& \bar{E}=-500 \cosh (5 x) \sin (5 y) \overline{a_{x}}-500 \sinh (5 x) \cos (5 y) a_{y} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \overline{E_{p}}=-9.8398 \overline{a_{x}}-260.50 \mathrm{ay} \\
& \sum_{p} / \mathrm{m} . \\
& \left|\bar{E}_{0}\right|=260.693 \mathrm{~V} / \mathrm{m} .
\end{aligned}
$$

iii> $\left|E_{p}\right|=260.693 \mathrm{~V} / \mathrm{m}$.
iv) $\rho_{s}=|\bar{D}|=G\left|\bar{E}_{p}\right|=8.854 \times 260.693 \mathrm{pclm}^{2}$

$$
\left|f_{s}\right|=2.30818 \mathrm{ncm}_{\mathrm{m}}{ }^{2}
$$

problonts

$$
v=(x+1)^{2}+(y+2)^{2}+(z+3)^{2} \text { volto }
$$

(lectrieal pelential at an arbitrary point in free - space is given as:

$\frac{v}{E}$
$|E|$, soluic $\Rightarrow \quad V=(x+1)^{2}+(y+2)^{2}+(z+3)^{2}=$
|可, \jmath_{v}.
iii) $\left|\bar{x}_{p}\right|=\sqrt{108}=10.3923 \mathrm{~V} / \mathrm{m}$.
iv) $\bar{D}=E \bar{E}=8.854 \bar{E} \mathrm{pcm}{ }^{2}$.

$$
\left.\bar{D}=-17.708(x+1) \overline{a_{x}}-17.7081 y+2\right) \overline{a_{y}}-17.708(3+3) \overline{a_{2}}
$$

i) $\left|\bar{D}_{p}\right|=\epsilon\left|\bar{F}_{p}\right|=92.0134 \mathrm{pcm}{ }^{2}$

$$
\text { vi) } \begin{aligned}
\rho_{4} & =\nabla \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z} c_{m}{ }^{3} \\
f_{V} & =\nabla \cdot \bar{D}=[-17.708-17.708-17.70
\end{aligned}
$$

$$
\begin{array}{ll}
J_{v}=V \cdot D \\
f_{v}=\nabla \cdot \bar{D}=\left[\begin{array}{lll}
-17.708 & -17.708 & -17.708
\end{array}\right] p \mathrm{c} f_{m 3}
\end{array}
$$

$$
f_{v_{p}}=-53.124 \mathrm{pc} \mathrm{~m}^{3}
$$

$$
\begin{aligned}
& \text { ति, } \quad V_{p}=3^{2}+3^{2}+3^{2}=27 \text { Vollo } \\
& V_{p}=3^{2}+3^{2}+3^{2}=27 \text { Volto } \\
& U_{p}=27 \text { vollo } \\
& \text { ii) } \bar{E}=-\frac{\partial v}{\partial x} \overline{a_{x}}-\frac{\partial y}{\partial y} \overline{a y}-\frac{\partial v}{\partial z} \overline{a_{z}} V V_{m} \text {. } \\
& \frac{\partial v}{\partial x}=2(x+1) ; \quad \frac{\partial v}{\partial y}=2(y+2) \quad \frac{\partial y}{\partial z}=2(z+3) \\
& \bar{E}=-2(x+1) \overline{a_{x}}-2(y+2) \overline{a_{y}}-2(z+3) \overline{a_{z}} \quad v / m \text {. } \\
& \overline{\Sigma_{p}}=-6 \overline{a_{x}}-6 \overline{a_{y}}-6 \overline{a_{z}} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

poblum 74
6. if the potertial fild $V=3 x^{2}+3 y^{2}+22^{3}$ Volth. Find $i \bar{V}$ ii \bar{E} and iii>D at $P(-4,5,4)$. 14 -Jan 2015 . EEE (GMarks)
solui-

$$
\begin{aligned}
& V=3 x^{2} \pm 3 y^{2}+2 z^{3} \text { volt } D \\
& V_{p}=3(-4)^{2}+3(5)^{2}+2(4)^{3} \\
& V_{p}=251 \text { volt' }
\end{aligned}
$$

i) $\bar{E}=-\nabla V=-\frac{\partial v}{\partial x} \overline{a_{x}}-\frac{\partial V}{\partial y} \bar{a}_{y}-\frac{\partial u}{\partial z} \bar{a}_{z}$ U/m.

$$
\begin{aligned}
& \frac{\partial v}{\partial x}=6 x ; \frac{\partial v}{\partial y}=6 y ; \frac{\partial v}{\partial z}=6 z^{2} . \\
& \bar{E}=-6 x \overline{a_{a}}-6 y \overline{a_{y}}-6 z^{2} \overline{a_{z}} \quad \mathrm{~V} / \mathrm{m} \text {. } \\
& \overline{\bar{F}_{p}}=-6(-4) \overline{a_{n}}-6(5) \bar{a}_{y}-6(4)^{2} \overline{a_{z}} \text { VIm } \\
& \left.\overline{\bar{F}_{p}}=+24 \overline{a_{x}}-30 \overline{a_{y}}-96 \overline{a_{z}}\right] \mathrm{J} / \mathrm{m} . \\
& \text { iii) } \vec{D}_{p}=E \overline{E_{P}}=8.854\left[24 \overline{a_{x}}-30 \bar{a}_{y}-96 \overline{a_{2}}\right] \mathrm{pcm}^{2} \\
& \bar{p}_{p}=0.21249 \overline{a_{x}}-0.2656 \overline{a_{y}}-0.8499 \overline{a_{z}} \cap \mathrm{~cm}^{2}
\end{aligned}
$$

153
problem 75
Find V and the volume charge densityt in free space, if $V=\frac{2 \cos \phi}{r^{2}}$ at $P\left(0.5,45^{\circ}, 60^{\circ}\right)$.
(07 Marks)
inspherical C $\cdot S$ $\gamma=0: 5, \theta=45^{\circ}$

$$
V_{p}=\frac{2 \cos \left(60^{\circ}\right)}{(0.5)^{2}}
$$

$$
\phi=60^{\circ}
$$

$$
v_{p}=4 v_{0} t^{n}
$$

$$
E=-\nabla V_{B}^{*}
$$

$$
J_{V}=\nabla \cdot \bar{D}=E \nabla \cdot \bar{E}=+E \nabla \cdot(-D V)^{2} E-E \nabla^{2} t
$$

$$
f_{y}=-\epsilon \nabla^{2} v \quad \rho_{m^{3}}
$$

$$
\nabla^{2} V=\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}\left[\gamma^{2} \frac{\partial y}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial y}{\partial \theta}\right]
$$

$$
+\frac{1}{\gamma^{2} \sin ^{2} \theta} \frac{\partial^{2} y}{\partial \phi^{2}}
$$

$$
V=\frac{2^{2} \cos \phi}{r^{2}} \text { Voltn }
$$

$$
\begin{aligned}
\frac{\partial v}{\partial r}=\frac{-4 \cos \phi}{r^{3}} \text { volin. } \frac{\partial v}{\partial \phi} & =\frac{-2 \sin \phi}{r^{2}} \\
\frac{\partial^{2} v}{\partial \phi^{2}} & =\frac{-2 \cos \phi}{r^{2}} \\
& =\frac{-2 \cos \phi}{}
\end{aligned}
$$

$$
\begin{aligned}
\rho_{4} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[x^{2} \cdot \frac{(-4 \cos \phi)}{r^{3}}\right]+\frac{1}{r^{2} \sin ^{2} \theta} \times \frac{-2 \cos \phi}{r^{2}} \\
& =\frac{1}{r^{2}} \times \frac{4 \cos \phi}{r^{2}}-\frac{2 \cos \phi}{r^{4} \sin ^{2} \theta}=\frac{4 \cos \phi}{r^{4}}-\frac{2 \cos \phi}{r^{4} \sin ^{2} \theta} \\
& \rho_{u p}=\frac{4 \cos \left(60^{\circ}\right)}{(0.5)^{4}}-\frac{2 \cos \left(60^{\circ}\right)}{(0.5))^{4} \sin ^{2}(45)}=32-32=0 \rho_{m^{3}}
\end{aligned}
$$

$$
S_{4}=0 \ln ^{3}
$$

$$
m^{3} \quad v=2 x^{2} y-5 z \quad p(-4,3,6)
$$

Find the potentat, electric held mensity and whame chare denciny a a point $P(-4,3.6)$
provided the potential field $V=2 x^{2} y-5 z$.
(iv) $10-\mathrm{Dec}-20,4$

Given potential feid $v=2 x^{2} y-52$ and at appint $P(-4,3.6)$, obtain
i) V, i) E. (ii) Direction of \bar{V} (V). arkig- $\operatorname{Ton} 2015^{\circ}$
Given $V=2 x^{3} y-5 x$ at pont $P(4,3,6$. Find the potential, clectric fold intusity wed velune charge density.
Solv:- given $\quad \bar{I}=2 x^{2} y-52$ volts. JJJ-2013 at $p(-4,3,6)$.

$$
\begin{aligned}
& \text { i. } V_{p}=2(-u)^{2}(3)-5(6)=66 \mathrm{ko} / \mathrm{m}(\mathrm{D} \\
& \begin{array}{rlr}
\frac{r v}{\partial x} & =4 x y ; \frac{\partial v}{\partial y}=\frac{2 x^{2}}{\frac{\partial v}{\partial z}}=-5 . \quad r_{p}=66 \text { volv/ }
\end{array} \\
& \therefore \bar{I}=-\frac{\partial V}{\partial x} \bar{a}_{x}-\frac{\partial y}{\partial y} \bar{a}_{y}-\frac{\partial v}{\partial z} \bar{a}_{z} \quad v / m \text {. } \\
& \bar{F}=-4 x y \overline{a_{x}}-2 x^{2} \overline{a_{y}}+5 \overline{a_{z}} \quad \text { V/m. } \\
& \overline{k_{p}}=-4(-4)(3) \overline{a_{a}}-2(-4)^{2} \bar{a}_{y}+5 \bar{a}_{z} \quad \mathrm{v} / \mathrm{m} . \\
& \overline{k_{p}}=+48 \overline{a_{n}}-32 \overline{a_{y}}+5 \overline{a_{z}} \mathrm{v} / \mathrm{m} \text {. } \\
& \therefore \quad\left|\bar{E}_{f}\right|=57.905 \mathrm{v} / \mathrm{m}
\end{aligned}
$$

iv. $\bar{D}=E \overline{E_{P}}=8.854\left[+48 \overline{a_{x}}-32 \bar{a}_{y}+5 \overline{a_{z}}\right] \mathrm{pclm}^{2}$

$$
\frac{D_{p}}{D_{p}}=+0.42 \alpha_{p}=8.894 \overline{a_{n}}-0.2833 \overline{a_{y}}+0.04427 \bar{a}_{z} \mathrm{nc} \mathrm{~m}^{2}
$$

V. $\left|\overline{D_{p}}\right|=\epsilon_{0}\left|\bar{E}_{p}\right|=512.69 \mathrm{pcm}^{2}$
(E) $\left|\bar{D}_{p}\right|=0.512 .69 \mathrm{nc}_{\mathrm{m}}{ }^{2}$

Vi, Volume chorge dinsity. (Su)

$$
\begin{aligned}
& f_{\bar{v}}=\bar{\nabla} \cdot \bar{D}=\epsilon \bar{\nabla} \cdot \bar{E} \quad \text { Um }^{3} \\
& P(-4,3,6) \\
& =\epsilon\left[\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}\right] \varphi_{m^{3}} \\
& F_{x}=-4 x y / /_{m}: E_{y}=-2 x^{2} / /_{m}^{\prime} \quad E_{z}=5 . \mathrm{v} / \mathrm{m} . \\
& \frac{\partial E_{x}}{\partial x}=-4 y ; \quad \frac{\partial E_{y}}{\partial y}=0-\frac{\partial E_{z}}{\partial z}=0 \\
& J_{V}=\epsilon(-4 y) d n^{3} \\
& f_{u_{p}}=t(-4 \times 3) y_{m^{3}}^{y=3}=-12 \in \mathrm{cf}_{m^{3}} \\
& \rho_{u_{p}}=-106.248 \mathrm{pcq}{ }^{3}
\end{aligned}
$$

$2^{\text {nd metrod }}(0)$.
solu:-

$$
\begin{aligned}
& \text { 6. If } V=\frac{6 \sin \theta}{r} v \operatorname{vind} V \operatorname{made} E \operatorname{tap}(3,60.25) \\
& V T=\frac{60 \sin \theta}{r^{2}} \cdot \text { volt's } p\left(3.600^{\circ} 25^{\circ}\right) \\
& V_{p}=\frac{60 \sin (60)}{3^{2}}=5.773 \text { voll. } \\
& V_{p}=5.7735 \text { vollo }
\end{aligned}
$$

$$
\bar{F}=-\nabla V=-\frac{\partial v}{\partial r} \overline{a_{r}}-\frac{1}{r} \frac{\partial v}{\partial \theta} a_{\theta}-\frac{1}{r \sin \theta} \frac{\partial \phi}{\partial \phi} a_{q} v_{n} .
$$

$$
\frac{\partial V}{\partial r}=\frac{-2 \times 60 \sin \theta}{r^{3}}=\frac{-120 \sin \theta}{r^{3}}
$$

$$
\frac{\partial v}{\partial \theta}=\frac{60 \cos \theta}{r^{2}} ; \frac{\partial v}{\partial \phi}=0 .
$$

$$
\begin{aligned}
& \bar{E}=+\frac{120 \sin \theta}{r^{3}} \overline{a_{r}}-\frac{60 \cos \theta}{r^{3}} \overline{a_{\theta}} \mathrm{v} / \mathrm{m} \\
& \overline{E_{p}}=\frac{120 \sin (60)}{3^{3}} \overline{a_{r}}-\frac{60 \cos (60)}{3^{3}} \overline{a_{\theta}} \mathrm{v} / \mathrm{s} \\
& \overline{E_{p}}=3.849 \overline{a_{r}}-1.11 \bar{a}_{\theta} \bar{v} / \mathrm{m} \\
& \left|\bar{E}_{p}\right|=4.00616 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Find the Electric Field Intensity at point $x(1, z-1)$
grobliven the potential $v=3 x^{2} y+2 y^{2} z+3 x y z$ EEEN(5m) Jan 2014.
Sols: $\therefore F=3 x^{2} y+2 y^{2} z+3 x y z$.

$$
\begin{aligned}
& V_{p}=3(1)^{2}(2)+2(2)^{2}(-1)+3(1)(2)(-1) \\
&=\phi+8(-1)-16=-8 \\
& V_{p}=-8 \text { volt }
\end{aligned}
$$

ii. $\bar{E}=-\frac{\partial v}{\partial x} \cdot \overline{a_{x}}-\frac{\partial v}{\partial y} \overline{a_{y}}-\frac{\partial y}{\partial z} \overline{a_{z}}-v / m$.

$$
\frac{\partial v}{\partial x}=6 x y+3 y z ; \frac{\partial v}{\partial y}=3 x^{2}+4 y z+3 x z
$$

$$
\frac{\partial v}{\partial z}=2 y^{2}+3 x y
$$

$$
\begin{gathered}
\bar{E}=-(6 x y+3 y z) \overline{a_{x}}-\left(3 x^{2}+4 y z+3 x z\right) \overline{a_{y}} \\
0-\left(2 y^{2}+3 x y\right) \overline{a_{z}} v / m . \\
\overline{\Sigma_{p}}=-[6(1)(2)+3(2)(-1)] \overline{a_{x}}-\left[3(1)^{2}+4(2)(-1)+3(1)(-1)\right] \overline{a_{y}} \\
-\left[2(2)^{2}+3(1)(2)\right] \overline{a_{z}} \quad v / m
\end{gathered}
$$

$$
\begin{equation*}
\frac{\sqrt{\bar{F}_{p}}=-6 \overline{a_{x}}-8 \overline{a_{y}}-14 \overline{a_{z}}}{\sqrt[F]{F} 1} \mathrm{~V} / \mathrm{m} \tag{158}
\end{equation*}
$$

$$
\left|\overline{E_{p}}\right|=17.2046 \mathrm{~V} / \mathrm{m}
$$

$$
V=\frac{60 \sin \text { फ.eptrobe'ECE, B.M.S.I.T } \& M}{\gamma^{2}}
$$

A potential feld in free space is expressed as $V=\frac{60 \sin \theta}{r^{2}} v$. Find the electric flux density at the point (3.60.250) in spherical co-ordinates.

$$
P\left(3,60^{\prime}, 25^{\circ}\right)
$$

Solu:- given
frespoce medium $V=\frac{60 \sin \theta}{r^{2}}$ volt's

$$
E=E_{0} \mathrm{Hm}
$$

$$
\bar{D}=? \quad \text { a, } p\left(3,60^{\circ}, 25^{\circ}\right)
$$

Gratient in Spherical co-ardinate System ingiven by

$$
\begin{aligned}
& \nabla V=\frac{\partial V}{\partial r} \widehat{a_{r}}+\frac{1}{\gamma} \frac{\partial v}{\partial \theta} \overline{a_{\theta}}+\frac{1}{\gamma \sin \theta} \frac{\partial v}{\partial \phi} \bar{a}_{\theta} \text { थf. } \\
& \frac{\partial y}{\partial \gamma}=\frac{-2 \times 60 \sin \theta}{\gamma^{3}}=-\frac{120 \sin \theta}{\gamma^{3}} \mathrm{v} / \mathrm{m} \text {. } \\
& \frac{\partial x}{\partial \theta}=\frac{+60 \cos \theta}{r^{2}} \quad \text { v/m. }
\end{aligned}
$$

$$
\begin{aligned}
& \nabla V=\frac{-120 \sin \theta}{\gamma^{3}} \overline{a_{\gamma}}+\frac{1}{\gamma} \cdot \frac{60 \cos \theta}{\gamma^{2}} \overline{a_{\theta}} \quad v / r .
\end{aligned}
$$

from concept of potential gradiont

$$
\bar{E}=-\nabla V=+\frac{120 \sin \theta}{r^{3}} \overline{a_{r}}-\frac{60 \cos \theta}{\gamma^{3}} \overline{a_{\theta}} v /_{m}
$$

$$
\bar{E} @ p\left(3,60^{\circ}, 25^{\circ}\right)
$$

i.e $\gamma=3 \mathrm{~m}$ and $\theta=60^{\circ}$.

$$
\begin{aligned}
& \bar{E}_{p}=\frac{120 \sin \left(60^{\circ}\right)}{(3)^{3}} \overline{a_{r}}-\frac{60 \cos \left(60^{\circ}\right)}{(3)^{3}} \overline{a_{\theta}} \\
& \bar{E}_{p}=3.849 \cdot \overline{a_{r}}-1.11 \overline{a_{\theta}} \mathrm{v} / \mathrm{m} .
\end{aligned}
$$

the Elutric flux dersity \bar{D}_{p} in given by

$$
\begin{aligned}
& \bar{D}_{p}=G_{0} \bar{E}_{p}{c_{m}}^{2} \\
& =8.854\left[3.849 \overline{a_{r}}-1.11 \overline{a_{0}}\right] \mathrm{pc} \mathrm{~m}^{2} \\
& \left.\overline{D_{p}}=34.079 \overline{a_{r}}-9.8376 \overline{a_{\theta}}\right] \mathrm{pcm}^{2}
\end{aligned}
$$

pt. E\&CE, SVCE Bangalore

$$
\left|\bar{D}_{P}\right|=35.4705 \mathrm{pcm}^{2}
$$

topic
topic: 2.16
Questions
Energy density in an electrostatic field.
\qquad 02-DEC2010
Derive equations af energy summed and energy density in an clectostatio held.
-06-DEC2008/Jan 2009

(04 Marks).
C2 - June íJuly 2011
30
(96 Marks)
02 - June /July 2012
31

Prove that the energy density in an electrostatic held is $\frac{1}{2} \vec{D} \cdot \vec{E}$ where D and E are the electric flux density and the electric field intensity respectively.
(08 Marks)
Derive
(σ).
05- June / July 2009
White the expression for the energy sired in Electrostatic field having electric field

— intensity E

$$
\text { (oo) } \in \frac{1}{2} E^{2} \mathrm{~J} / \mathrm{m}^{3}
$$

Prove that the energy density in an electrostatic held is given by $\frac{1}{2} \in \overrightarrow{\mathrm{E}}$ Join ${ }^{3}$. (es Marka)
06 -Dec/Jan 2008
(or)

10-Dec/fan 2016
36
c. Derive an equitation for energy stored in tons of \bar{E} and \bar{D}
(05 Marks)
Sole:- Energy dinpity i- Energy stored per unit volume
w.kt Energy stored in a capacitor

$$
e=\frac{1}{2} c v^{2} \text { Joules } \leftarrow \text { (1) }
$$

$c=\frac{\theta}{v}$
and $Q=C V$
<2
V-potential blu
the plates
G(O) inced

$$
\begin{equation*}
e=\frac{1}{2} Q V \tag{3}
\end{equation*}
$$ (volta)

the total chorge Q in a volume in given by

$$
\begin{equation*}
Q=\int_{\langle v 01\rangle} f_{v} d v \tag{4}
\end{equation*}
$$

using $q^{4}(4)$ in $\varphi^{4}(3)$
h_{1}-volume charge dissity $\left(C / m^{3}\right)$ dve-differnstial volume $\left(\mathrm{m}^{3}\right)$.

$$
e=\frac{1}{2} \int_{\left.\left\langle v_{0}\right\rangle\right\rangle} \rho_{v} V d v
$$

using Maxwilís firat equation

$$
e=\frac{1}{2} \int_{\langle v 01\rangle} \nabla \cdot \bar{D}=s_{v} \operatorname{ctm}^{3} \quad v d v<
$$

using aricutor idersity

$$
\nabla \cdot(\phi \bar{A})=\phi \nabla \cdot \bar{A}+\bar{A} \nabla \phi
$$

I Cvator
\therefore Scalarf"

$$
\begin{align*}
& \quad \text { Scalarfu } \\
& \therefore \quad \bar{\nabla}(V \bar{D})=U \nabla \cdot \bar{D}+\bar{D} Q V \tag{7}\\
& \Rightarrow V \nabla \cdot \bar{D}=\nabla(V \bar{D})-\bar{D} \nabla V
\end{align*}
$$

using cq $^{4}(7$ in (6).

$$
C=\frac{1}{2} \int_{\langle v 01\rangle} \nabla(V \cdot \bar{D}) d x \frac{1}{2} \int_{\langle v 01\rangle} \bar{D} \cdot \nabla \sqrt{ } 162 d \vartheta
$$

using Divergence theorem
w.k.t \bar{E} due to point chorge

$$
\bar{E}=\frac{Q}{4 \pi E r^{2}} \overline{a r}
$$

as $r \rightarrow \infty \bar{E} \rightarrow 0 \Rightarrow \bar{D}=0$

$$
\begin{array}{r}
\therefore \quad \oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=0 \\
\text { As surt }
\end{array}
$$

using Gradiunt Concupt $\bar{E}=-\nabla v v / m$.
$C=\frac{1}{2} \int_{\left.\left\langle u_{0}\right\rangle\right\rangle} \bar{D} \cdot \bar{E} d v^{\circ} \quad$ Joulss Stored.
and Erergy demity de $=\frac{1}{2} \bar{D} \cdot \bar{E} d v \quad \frac{\text { Note!- }}{\bar{A} \cdot \bar{A}=A^{2}}$

$$
\Rightarrow \frac{d e}{d v}=\frac{1}{2} \bar{D} \cdot E \mathrm{~J} / \mathrm{m}^{3}
$$

(o)

$$
\begin{array}{ll}
\left.\frac{d e}{d v}=\frac{1}{2} \bar{D} \cdot E=\frac{1}{2} \in E \cdot E=\frac{1}{2} \in E^{2}\right] \mathrm{J} / \mathrm{m}^{3}
\end{array}
$$

$$
\begin{align*}
& \int_{\langle v 01\rangle} \nabla(\sqrt{\bar{D}}) d v=\oint_{\langle s\rangle} \sqrt[v D]{ } \cdot \sqrt{s} \\
& c=\frac{1}{2} \underset{\langle S\rangle}{\phi}+\bar{D} \cdot \overline{d s}-\left.\frac{1}{2}\right|_{\left\langle v_{0}\right\rangle} \bar{D} \cdot \nabla U d v \\
& \Rightarrow
\end{align*}
$$

problem 80
A metallic sphere of radius 10 cm has a surface charge density of $10 \mathrm{n} \mathrm{lm}^{2}$. Calulate clutric

Evergy stored in the System. $(6 \mathrm{~m}) /(7 \mathrm{~m})$.
10 Jund Joly 2014
sobi:-06-Jan2009.

the total chorge' Q ' callesed by the sphere
in given by $Q=\rho_{s} \times$ Arcaof Sphere.

$$
\begin{aligned}
& Q=\rho_{3} \times 4 \pi r^{2} \\
& Q=10 \mathrm{n} \times 4 \pi(0.1)^{2}=1.2566 \mathrm{nC}
\end{aligned}
$$

H. Fluxdirsity $\bar{D}=\frac{Q}{u \bar{u} r^{2}} \overline{a r} \varphi_{m}{ }^{2}$.

$$
|\bar{D}|=\frac{Q}{u \pi r^{2}} l_{m}{ }^{2}
$$

Energy stored in the system $e=\int_{\left\langle v_{0}\right\rangle} \frac{1}{2 \epsilon_{0}}|\overline{\bar{D}}|^{2} d v$.

$$
e=\int_{\left\langle v_{0}\right\rangle} \frac{1}{2} \bar{D} \cdot \bar{E} d v
$$

$$
\begin{aligned}
& e=\frac{1}{2 \sigma_{0}} \int_{\left\langle v_{0}\right\rangle}|\bar{p}|^{2} \cdot d x \\
& C=\frac{1}{2 \epsilon_{0}} \int_{\langle v 01\rangle} \frac{Q^{2}}{(4 \pi)^{2} \cdot r u} \cdot r^{2} \sin \theta d r d \theta d \phi \text {. } \\
& C=\left.\frac{\theta^{2}}{(u)^{2}\left(2 E_{0}\right)} \int_{r=0.1}^{\infty} \frac{1}{r^{2}} d r \int_{\theta=0}^{\pi} \sin \theta d \theta\right|_{p=0} ^{2 \pi} d \phi \\
& e=\left.\frac{Q^{2}}{32 \cdot \pi^{2} \epsilon_{0}} \cdot \frac{\gamma^{-2+1}}{-2+1}\right|_{0.1} ^{\infty} \times 2 \times 2 \pi . \\
& e=\frac{-Q^{2}}{32 \pi^{2} \epsilon_{0}}\left[\frac{1}{\infty}-\frac{1}{0.1}\right] \times u \pi . \\
& C=\frac{-2^{2}}{3 g \pi^{2} E_{0}}[0-10] \times 4 \bar{\pi} \\
& C=\frac{+40 \not Q^{2}}{32 \pi E_{0}}=\frac{40\left(1.2566 \times 10^{-9}\right)^{2}}{32 \pi \times 8.854 \times 10^{-12}} \\
& C=7.096 \times 10^{-8} \text { Joulors }=70.96 \mathrm{~W} \text { Jouler }
\end{aligned}
$$

bobblem 81
Apotential function in $v=2 x+4 y$ wolto in in fruespace, Find the stored energy in freespace in the $1 \mathrm{~m}^{3}$ volume centerad at orgin.

$$
\begin{array}{r}
06-J a n 2008 \\
(6 \mathrm{~m}) .
\end{array}
$$

Solvi: $\quad \ddot{\bar{y}}=2 x+4 y$ votfo.
Fnirgy Stored in the sytern

$$
\begin{aligned}
& e=\frac{1}{2} \int_{\text {Luol> }} \bar{E} \cdot \bar{D} d v e \text { Joulto } \\
& e=\frac{1}{2} \int_{\langle U 0\rangle} E \cdot \in E d v \\
& =\frac{1}{2} E E^{2} \int_{\left\langle v_{0}\right\rangle}^{d x} \rightarrow \text { lm }^{3} \text {.(given) }=\frac{1}{2} \in E^{2} \text { jouls } \\
& \left.\bar{F}=-\nabla V=-\frac{-\partial u}{\partial r} \overline{a_{x}}+\frac{\partial y}{\partial y} \overline{a_{y}}\right] \\
& \frac{\partial v}{\partial x}=2, \quad \frac{\partial v}{\partial y}=4 . \\
& \bar{E}=-2 \overline{a_{x}}-4 \bar{a} y \quad V / m \cdot-|\bar{E}|=\sqrt{4+16} \\
& |E|^{2}=E^{2}=4+16=20 \mathrm{v} . \\
& e=\frac{1}{2} \times 8.854 \times 10^{-12} \times(20)=88.54 \times 10^{-12} \text { Joulo. } \\
& \text { Lo, } e=88.54\} \text { Joules }
\end{aligned}
$$

Find the enirgy stored in free space tor the region
brown/ $2 \mathrm{~mm}<r<3 \mathrm{~mm}, 0<\theta<90^{\circ}, 0<\phi<90^{\circ}$ given the potential field
$\left(\because=\frac{200}{r}\right.$ volt.
(ii) $V=\frac{300}{\gamma^{2}} \cos \theta$ Volt n.

Solver $\quad \bar{Y}=\frac{200}{\gamma}$ volts.

$$
e=\frac{(200)^{2} 60}{2}[166.667 \times 1 \times \pi / 2]
$$

$\$ 0$

$$
e=46.359 \times 10^{-6} \text { Joules }
$$

(大) $e=46.359 \mu$ Joules

$$
\begin{aligned}
& 0.002<r<0.003,0<\theta<90^{\circ} \text { and } 0<\phi<90^{\circ} \\
& \bar{E}=-\nabla V=-\frac{\partial v}{\partial r} \bar{a}_{r}=+\frac{200}{r^{2}} \bar{a}_{r} \bar{j} m \text {. } \\
& \bar{E}^{2}=\bar{E} \cdot \bar{E}=E^{2}=\left(\frac{200}{r^{2}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& d v=r^{2} \sin \phi d r d \theta d \phi \\
& =\frac{\epsilon_{0}(200)^{2}}{2} \int_{\langle 001\rangle} \frac{1}{r^{4}} \cdot r^{2} \sin \theta d r d \theta d \phi
\end{aligned}
$$

ii. $V=\frac{300 \cos \theta}{r^{2}}$ volt:

$$
\begin{aligned}
& \bar{F}=-\left[\frac{\partial v}{\partial r} \bar{a}_{r}+\frac{1}{r} \frac{\partial v}{\partial \theta} \bar{a}_{\theta}\right] \\
& \bar{F}=\frac{600}{r^{3}} \cos \theta \overline{a_{r}}+\frac{300}{r^{3}} \sin \theta \bar{a}_{\theta} \quad \bar{v} / m . \\
& \bar{E}^{2}=\left(\frac{600}{r^{3}} \cos \theta\right)^{2}+\left(\frac{300}{r^{3}} \sin \theta\right)^{2}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& F^{2}=\frac{600^{2}}{\gamma^{6}} \cos ^{2} \theta+\frac{300^{2}}{\gamma^{6}} \sin ^{2} \theta \text {. } \\
& e=\left.\frac{1}{2}\right|_{\langle v 0\rangle\rangle} \in E^{2} d v J_{\text {our }} d v=r^{2} \sin \theta d r d \theta d \phi \\
& =\frac{1}{2} \in\left[\begin{array}{c}
600^{2} \int_{r=0.002}^{0.003} \frac{1}{r^{r}} d r \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta \sin \theta d \theta \int_{\phi=0}^{\pi / 2} d \phi \\
\pi
\end{array}\right. \\
& \left. \pm\left. 300^{2} \int_{r=0.002}^{0.003} \frac{1}{r^{4}} d r\right|_{\theta=0} ^{\pi / 2} \sin ^{3} \theta d \theta \int_{\phi=0}^{\pi / 2} d \phi\right] \\
& =\frac{1}{2} \in 600^{2}(29321000)(0.333)(0.5 \pi) \\
& +300^{2} \times(29321000)(0.6667)(0.511] \\
& C=36.698 \text { Joubs } \\
& \left.E \simeq{ }_{36.7}\right] \text { joules }=36.7 \text { douly }
\end{aligned}
$$

Moduk 2 problems
problem.
Acherge in uniformly distributed over a spherical Surface of radius ' a ' m. Determine electric field interning lung where in Space . Use Gamin law.
problem 3.
In acritain region of space $\bar{D}=2 x y \bar{a}_{x}+3 y \bar{z} \bar{a} y$ $+42 x \bar{a}_{x} \varphi_{n}{ }^{2}$. Evaluate the amount of Electric flux te at pans through the portion bounded by $-1 \leq y \leq 2$ and $0 \leq z \leq 4$ in the $x=3$ plane.
problems.
A cube of 4 m Centered at origin with edges parallel to the coordinate axes of cartesian (coordinate system. if \bar{D} (Ilutric flux density) $=\frac{20 x^{5}}{5}{\overline{a_{n}}}_{\mathrm{cm}^{2}}$, what is the total charge Contained in the cure.
problem 5.
Find the total charge in a volume defined by Six planes for which $1 \leq x \leq 2, g \leq y \leq 3$,

$$
3 \leq z \leq 4 \text {. if } \bar{D} \Rightarrow 4 x \overline{a_{x}}+3 y^{2} \overline{a_{y}}+2 z^{2} \bar{a}_{z} \varphi_{m}^{2}
$$

problem 6
ut $\bar{D}=\left(2 y^{2} z-8 x y\right) \overline{a_{x}}+\left(4 x y z-4 x^{2}\right) \overline{a_{y}}$ $+\left(2 x y^{2}-4 z\right) \bar{a}_{z}$. Determine the total charge within a volume of $10^{-14} \mathrm{~m}^{3}$ Located at $p(1,-2,3)$.
problem 7 .
Given $\bar{D}=z \sin \phi \hat{a}_{p}+\rho \sin \phi \overline{a_{z}} \varphi_{m}{ }^{2}$.
compute the volume charge density at $\left(1,30^{\circ}, 2\right)$.
problem 9
Calculate the divergence of vector \bar{D} at the points Specified using cartesian, Cylindrical and Spherical Coordinates.
i) $\bar{D}=\frac{1}{z^{2}}\left[10 x y z \overline{a_{x}}+5 x^{2} z \bar{a}_{y}+\left(2 z^{3}-5 x^{2} y\right) \bar{a}_{z}\right] d^{2}$ at $p(2,3,5)$.
ii) $\bar{D}=5 z^{2} \overline{a_{p}}+10 \rho z \overline{a_{z}}$ at $p\left(3,-45^{\circ}, 5\right)$.
iii) $\bar{D}=2 r \sin \theta \sin \phi \overline{a_{r}}+r \cos \theta \sin \phi \overline{a_{\theta}}+r \cos \phi \overline{a_{\phi}} \varphi m^{2}$ at $P\left(3,-45^{\circ}-45^{\circ}\right)$.
problem 10
Modules problems
Given $\bar{D}=5 \sin \theta \bar{a}_{\theta}+5 \sin \phi \overline{a_{\phi}}$. Find the charge density at $(0.5 \mathrm{~m}, \pi / 4, \pi / 4)$:
 and $\bar{D}=\frac{0.1}{r^{2}}$ ar mclm^{2} for $r>0.08 \mathrm{~m}$. Find ρ_{v} for $i>r=0.06 \mathrm{~m}$ ii> $\gamma=0.1 \mathrm{~m}$.
problem 13
Verify both sides of Gam Divergence theorem if $\bar{D}=2 x y \bar{a}_{x}+x^{2} \bar{a}_{y} \mathrm{Clm}^{2}$ present in the region bounded by $0 \leq x \leq 1,0 \leq y \leq 2,0 \leq z \leq 3$.

Problem 19
Given $D=5 \gamma$ ar Cm^{2}, prove divergence theorem for at all region indexed by spherical Surface at $r=a$ and $r=b(b>a)$ and (entered at the origin.

Module - ${ }^{\text {Siummanf }}$
Ea. Lost of Symbols:

1. Workdone $(o r)$ Energy $(\mathrm{lal}) \rightarrow$ Joules (J)
2. potential difference $(v) \longrightarrow J / c$ ©o $v o l t$.
3. Enargy density $(e) \longrightarrow J / m^{3}$.
4. Eurant (I) \rightarrow Ampen(A)
5. Currit density $(\bar{J}) \rightarrow \mathrm{Alr}^{2}$.
6. Eondutivity (σ) $\rightarrow v / \mathrm{m}$ (大) s / m.
7. Musintanue $(\hat{\beta}) \rightarrow \Omega$. (ohm).
8. drift Cectority $\left(\overline{v_{a}}\right) \rightarrow \mathrm{m} / \mathrm{sec}$. q. mothity $\left(\mu_{e}\right) \longrightarrow \mathrm{m}^{2} / v$-sce.

b. Formulaes.
9. Gaurin Law". The slutric Flux paning through any elosed Surface is equal to the total charge conclosed by that surface.

$$
\text { i.c } \psi=\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=Q_{\text {inloned }}
$$

Coulombin
2. $\quad|\vec{D}|=\rho_{s} \operatorname{cm}^{2}$ and $\bar{D}=G E \rho_{m}{ }^{2}$

$$
|\bar{D}|=E_{0}|\bar{E}|+\mathrm{clm}^{2}
$$

3. Deli(a) (o) vator prator
a. Eartesian Eordinate system $p(x, y, z)$ $\underset{d x}{d y} \hookrightarrow d z$

$$
\nabla=\frac{\partial}{\partial x} \bar{a}_{x}+\frac{\partial}{\partial y} \overline{a_{y}}+\frac{\partial}{\partial z}{\overline{a_{2}}}_{b} m^{-1}
$$

b. Lylindrical Co-ordinate System $p(s, \phi, z)$

$$
d_{j}^{\lfloor } \int_{\rho}^{b} d \phi \leq d z
$$

$$
\left.\bar{\nabla}=\frac{\partial}{\partial \rho} \bar{a}_{\rho}+\frac{1}{\rho} \frac{\partial}{\partial \phi} \bar{a}_{\phi}+\frac{\partial}{\partial z} \bar{a}_{z}\right] m^{-1}
$$

c. Sphorical co.ordinate system $p(r, \theta, \phi)$

$$
d r \frac{1}{r d \theta} \rightarrow_{r \sin \theta d \phi}
$$

$$
\nabla=\frac{\partial}{\partial r} \bar{a}_{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \overline{a_{\theta}}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \overline{a_{\phi}} \bar{m}^{-1} .
$$

4. Divergence $(\nabla \cdot \overline{0})$.
a. Eartesion Co-ordinate System $d x d y d y$.

$$
\begin{aligned}
& \text { [artesian } \\
& \bar{D}=D_{x} \overline{a_{x}}+D_{y} \bar{a}_{y}+D_{2} \bar{a}_{z} \\
& \left.\nabla \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}\right]=1 m^{2} \Rightarrow \text { Scalar }
\end{aligned}
$$

b. Eylindrial co-ordinate system.

$$
p(\rho, \phi, z) \quad d v=\rho d s d \phi d z .
$$

$$
d_{s}^{5} d_{g d \phi} \longrightarrow d_{z}
$$

$$
\frac{D}{D}=D_{\rho} \overline{a_{g}}+D_{\phi} \overline{a_{\phi}}+D_{z} \overline{a_{z}} \mathrm{~cm}_{m}^{2}
$$

$$
\left.\nabla \bar{D}=\frac{1}{\rho} \frac{\partial}{\partial \rho}[\rho \cdot D \rho]+\frac{1}{\rho} \frac{\partial D \phi}{\partial \phi}+\frac{\partial D_{\alpha}}{\partial z}\right] \varphi_{m^{2}}
$$

c. Divergence in Spherical coordinate system.

$$
\begin{gathered}
P(r, \theta, \phi) \quad d v=r^{2} \sin \theta d r d \theta d \phi \\
d r \frac{\alpha}{r d \theta} \rightarrow r \sin \theta d \phi \\
\bar{D}= \\
D_{r} \overline{a_{r}}+D_{\theta} \bar{a}_{\theta}+D_{\phi} \bar{a}_{\phi} G_{m}^{2} \\
\left.\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cdot D_{r}\right]+\frac{1}{r \sin \theta} \frac{\partial\left[\sin \theta D_{\theta}\right]}{\partial \theta}\right] \\
+\frac{1}{r \sin \theta} \frac{\partial D \phi}{\partial \phi}{ }^{2}
\end{gathered} q_{m}^{2}
$$

L. Maxallsfint cation (o) point form of Gauminaw
it states that He \& eturncflux per unit volume Leaving a vanytingly. Small volume unit is exactly equal th the volume charge density tire.

$$
\nabla \cdot \bar{D}=\rho_{v} c_{m}{ }^{3}
$$

5. Divergence theorem: -The divergence theorem states that. the total Elutric Flues crooning the cloned Sustace is equal to the integral of the divingne of the Flux density throughout the enclosed where.
6. Energy expanded in moving a point charge in an

Eletricifild.
Wlork done

$$
\int_{\text {initial }}^{\text {fild. }} \underset{E=-\theta \cdot d l}{\text { final }} \text { Foules }
$$

ifo The Line integral

* Nork doni is independent of the patk choosen in ary elutrostatic fiuld. (uniform non-uniform).
* if the path choosen to be 1 the \vec{E} then worksore in Zero ard abo if the pathchoosen to be a closed peths then also workdone in to be

8. Definition of potential difternce and potential C -

The potertiol of point A with rospect to point B is defined as the workdone in moving a cenit positivecharge Quefrom point B to A against to the fild \vec{E}.

$$
Q_{u} \hat{\varrho}_{B}=-\int_{\text {initial }}^{\text {final }} \bar{E} \text {, voltb }
$$

* if Charge Q is at origin then potential difference blu points A and B is

$$
V_{A B}=\frac{Q}{u \pi \epsilon_{0}}\left[\frac{1}{r_{a}}-\frac{1}{r_{b}}\right] \quad v_{0} l_{f_{0}} .
$$

9. Absolute potential $\left(V_{a}\right)$ i-

The workdone in moving a unittest-charge from the, infinity (∞) to the Specific point against field E is called absolute potential.

$$
V=\frac{Q}{u \pi E_{0} \gamma^{2}} v_{0} l_{t n}=-\int_{+\infty}^{\text {incl }} E \cdot \overline{d l} \text { volt }
$$

10. Potential offprint Charge and system of charges.

\rightarrow line charge.

$$
V=\int_{\langle\lambda\rangle} \frac{\rho_{l}}{U \pi \epsilon_{0} r} d l \text { villon }
$$

\rightarrow volume charge

$$
V=\int_{\left.\left\langle v_{0}\right\rangle\right\rangle} \frac{h_{u} d v}{u \pi G_{0} r} v_{0} t_{0 n}
$$

11. potential Gradient (-

$$
\bar{E}=-\left.\nabla v \quad v\right|_{m}
$$

a. Cantesian Ca-ordinate System:

$$
\nabla V=\frac{\partial V}{\partial x} \overline{a_{x}}+\frac{\partial v}{\partial y} \bar{a}_{y}+\frac{\partial V}{\partial z} \vec{a}_{z} \quad V / m
$$

b. Tyindrical coordinate System.

$$
\begin{aligned}
& \nabla v=\frac{\partial v}{\partial \rho} \overline{a_{j}}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} a_{p_{i}}+\frac{\partial v}{\partial z} \overline{a_{z}} \\
& \\
& \text { ordinater Syptem. }
\end{aligned}
$$

ci Spherical coordinate syttem.

$$
\left.\square V=\frac{\partial V}{\partial \gamma} a_{r}+\frac{1}{\gamma} \frac{\partial V}{\partial \theta} \overline{a_{\theta}}+\frac{1}{\gamma \sin \theta} \frac{\partial V}{\partial \phi} \overline{a_{\varphi}}\right] 1_{m}
$$

Noten Gradient risults in vator.
12. Hepotential fied of a circular ring of uniform line charge density in given by

$$
V=\frac{\rho_{l} \cdot a}{2 \epsilon_{0} \sqrt{a^{2}+z^{2}}}
$$

volts.

$$
\begin{aligned}
& \rho_{L}=\frac{Q}{\text { length }}=\frac{Q}{\text { Cirun-fernce }} \\
& \rho_{l}=\frac{Q}{2 \pi a} c_{m}
\end{aligned}
$$

\rightarrow where a-radiun of ring.
13. Enargy density in a lutrostactic fields -

$$
\text { Energy density }(e)=\frac{1}{2} \bar{D} \cdot \vec{E}=\frac{1}{2} \in E^{2} \text { Joubel } / m^{3}
$$

Note: $\bar{E}=\bar{E}=E^{2}$
and $\bar{D}=\in E \mathrm{Cl}^{2}$.
14. Turnt (I):- rate of Flow of charge por unit time.

$$
I=\frac{d Q}{d t} \text { Asce }
$$

15. [ument density (\bar{J})

$$
\bar{J}=\frac{d I}{d s} \cdot \mathrm{~A} m^{2}{ }^{2} \bigcirc \bar{J}=\frac{d I}{d s} \bar{a}_{n} \mathrm{Alm}{ }^{2}
$$

i.e Curnntpaning through the unit Surface area, wher Surtace is at nomal to the diration.
O1 Flow of Cument (I).
and $I=\oint_{<s\rangle} \bar{J} \cdot \overline{d s}$ Anparin
16. Continuity current equation:-

$$
\nabla \cdot \bar{J}=-\frac{\partial \rho_{y}}{\partial t} \text { A } \rho_{m}{ }^{3} \text {......point form. }
$$

- $I=\oint_{\langle s\rangle} \bar{J} \cdot \overline{d s}=-\frac{d Q}{d t}=-\int_{\langle\omega 0\rangle}\left(\frac{\partial J_{v}}{\partial t}\right) \cdot d v \cdot$

- relationship b turn $\bar{J}, \rho v$ and \bar{v}

$$
\overline{\bar{n}}=\rho_{V} \vec{v} \mathrm{~A} \mathrm{~m}^{2}
$$

where \vec{v}-velocity vector.

17 - Point from of ohrinhaw.

$$
\bar{J}=\sigma \bar{E} \mathrm{Alm}{ }^{2}
$$

18. Drift velocity (va)

$$
V_{d}=-\mu \bar{E} \quad \mathrm{~m} / \mathrm{sec}
$$

where μ-mobility ot elution $\left(\mathrm{m}^{2} \mid v-s u\right)$.

Dankan V Gowda MTech.,(Ph.D) Assistant Professor, Dept. of E\&CE
Email:dankan.ece@svcengg.com

Part-A : Poisson's and Laplace's Equations

Derivation of Poisson's and Laplace's Equations, Uniqueness theorem, Examples of the solution of Laplace's equation.

Topics:
3.1 Derivation of Poisson's and Laplace's Equations.
3.1a Laplace's and Poisson's Equations in all three co-ordinate Systems.
3.1b Important vector operations
\checkmark Solved Problems
3.2 Uniqueness theorem
\checkmark Solved problems
3.3 Applications: Examples of the solution of Laplace's equation
3.3a Capacitance of Parallel plate capacitor
\checkmark Solved Problems
3.3b Capacitance of a coaxial cable
\checkmark Solved Problems
3.3c Capacitance of a concentric sphere
\checkmark Solved Problems
Miscellaneous Topics
3.4 Applications of Poisson's Equation
\checkmark Solved Problems

Summary

- List of Symbols
- List of Formulae

Dept. of ECE, B.M.S.I.T \& M

Motule - 3

- - Dankan Vowda vTech (in m)

Assistant Professor. Dept. of E\&CE
Email:dankam.ece(espcengg.com

Par-A : Poisson's and Laplace's Equations

Ber of Poisson's and Laplace's Equations. Uniqueness theorem, Examples of the solution of Laplace's equation.

Topics:

1. Derivation of Poisson's and Laplace's Equations.
$>$ Poisson's and Laplace's Equations in all three co-ordinate Systems.
2. Uniqueness theorem
3. Applications: Examples of the solution of Laplace's equation

Topics: 1

1. Derivation of Poisson's and Laplace's Equations.
\Rightarrow Poisson's and Laplace's Equations in all three co-ordinate Systems.

Topic 3.1
Drivation of poimorin and Laplaub Equations.
Quotion:-
Derive poimoris and Laplacein equations. (5m).
(or)
Starting from Gaurs's Law in poinfform, dorive poimorin and Laplace equation. $(6 \mathrm{~m})$
[02Dee 2010, 06 - $\operatorname{Jan} 2009,06$ - $\operatorname{Jan} 2010,06-\operatorname{Jan} 2012$, 10 - $\operatorname{Jan} 2012,10$ - $\operatorname{Jan} 2013,06$ - $\operatorname{Jan} 2014,10-\operatorname{Jan} 2014$, $10-\mathrm{J} / \mathrm{J} 20 \mathrm{l3}, 06-\mathrm{J} / \mathrm{J} 2011,02 \mathrm{~J} / \mathrm{J}-2011,06-\mathrm{J} / \mathrm{J} 2012$, 10-Junel Joly 2012, 06 Jund Jly 2009, 06 - Junal July 2009, 10 -Ded Jan 2015, 06 Jan2013, of J/J 2013, o6 Del Jan 2008, $06-J \mid J$ 2016, 10 - Jan 2016, $10 \mathrm{~J} / \mathrm{J}-2016$, 06 -号ce1010].

$q^{4}(2)$ in $q^{4}(1)$

$$
\nabla \cdot(\epsilon \bar{E})=\rho_{v} \varphi_{m^{3}} \Rightarrow \nabla \cdot \bar{E}=\rho_{v 1} \mid \epsilon \leftrightarrow(3)
$$

using gradient relationship

$$
\text { i.e. } \bar{E}=-\nabla \cdot \vee /_{m} \leftarrow \text { (用 }
$$

9^{4} (4) in (3).

$$
\begin{align*}
& \nabla \cdot(-\nabla V)=\rho_{v} / \epsilon \quad c / m^{3} / \rho_{t n} \\
& -\nabla^{2} V=\rho_{v} / \epsilon \\
\Rightarrow & \nabla^{2} V=-\rho_{v} / \epsilon \quad v / m^{2}<(Q) \tag{a}
\end{align*}
$$

\Rightarrow for a thomogerious region ' ϵ ' constant φ é(a) Lalled poimonin equation.
In a charged free rgion $l_{x}=0 \therefore \varphi^{-4}(a)$ - becoms

$$
\begin{equation*}
\sigma^{2} V=0 \text { y } / m^{2} \tag{b}
\end{equation*}
$$

and cqu (b) Called Laplacin equation.

$$
v o t=\rightarrow \nabla^{2} \cdot v=-\rho_{v} / \epsilon \quad v / m^{2} \ldots \text { poimonin quation. }
$$

$\rightarrow \nabla^{2} v=0$ v/m² Laplacir equation.
3.19 Laplaces and poimonin quation in all thre coordinate

Systems:-
\rightarrow Fartesian Loorchate System:- $p(x, y, z)$
Laplace's equation. $\nabla^{2} \dot{V}=0$

$$
\text { i.e } \nabla^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0 \quad v / m^{2}
$$

poimorin equation $\nabla^{2} V=-S_{u} \mid \epsilon \quad V / m^{2}$

$$
\sqrt{\left.\nabla^{2} V=\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}+\frac{\partial^{2} y}{\partial z^{2}}=-\rho u \right\rvert\, \epsilon} u / m^{2}
$$

\rightarrow Eylindrical Eoordinate System:- $p(\rho, \phi, 3)$
Laplaie equation $d^{2} v=0 \quad v / m^{2}$
poimorieyquation $\nabla^{2} V=-\operatorname{Su}\left(G \quad u / m^{2}\right.$

Sphenical Coordinate System:- $p(r, \theta, \phi)$
Laplacein quation $\nabla^{2} V=0 \mathrm{v} / \mathrm{m}^{2}$

$$
\nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial v}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial V}{\partial \theta}\right]+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}=0
$$

poimonin equation $\quad \nabla^{2} i=-\rho_{y} / \in V / m^{2}$.

$$
\nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial V}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial v}{\partial \theta}\right]+\frac{1}{r^{2} \sin ^{2} \theta^{2}} \frac{\partial^{2} v}{\partial \phi^{2}}=-\rho_{1} / \epsilon
$$

3.1b Timportant Vefor operationo

Cartesianol
i- Rutangulor Loordinate Sustem:-
opevation
Expression

\rightarrow Gradient if v-Scalerfu $\nabla V \quad \|_{m}\left\{\begin{array}{l}\nabla V=\frac{\partial V}{\partial x} \overline{a_{x}}+\frac{\partial v}{\partial y} \overline{a_{y}}+\frac{\partial V}{\partial z} \overline{a_{z}}\end{array} \begin{array}{l}V / m \text { rioulto. } \\ \bar{A}=A_{x} \overline{a_{x}}+A_{y} \overline{a_{y}}+A_{3} \overline{a_{z}}\end{array}\right.$

$$
\begin{aligned}
& \text { litor } \bar{A}=A_{x} \bar{a}_{x}+A_{y} \bar{a}_{y}+A_{z} \bar{a}_{z} \\
& \text { virgence } \\
& \nabla_{0} \cdot \bar{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z} \varphi_{m^{3}}
\end{aligned}
$$

\rightarrow Loplacise 4 vyeov/m

$$
\begin{aligned}
& \begin{array}{r}
\nabla \cdot(\nabla v)=\nabla^{2} v=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial y}\right)+\frac{\partial}{\partial z}\left(\frac{\partial v}{\partial z}\right) \\
=0
\end{array}
\end{aligned}
$$

\rightarrow poimorir cqu

$$
\begin{aligned}
& \nabla^{2} v=-f_{u} / \epsilon v / m^{2} \quad \square^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=-f_{v} / \epsilon \quad V / m^{2} \\
& \text { in } \text { scalor. }
\end{aligned}
$$

operation
Expression

Remark.

1. DeL openator $\nabla=\frac{\partial}{\partial \rho} \overline{a_{y}}+\frac{1}{\rho} \frac{\partial}{\partial \phi} \overline{a_{p}}+\frac{\partial}{\partial z} \overline{a_{z}} \mathrm{~m}^{-1} \quad$ Vetoroperator.
2. Gradient QV $4 / m$

$$
\begin{aligned}
& \overline{\nabla V}=\frac{\partial v}{\partial \rho} \bar{a}_{\rho}+\frac{1}{\rho} \frac{\partial y}{\partial \phi} \bar{a}_{\phi}+\frac{\partial v}{\partial z} \overline{a_{3}} \bar{y} / m_{c} \text { vetor } \\
& \bar{A}=A_{s} \bar{a}_{\rho}+A_{\phi} \overline{a_{\varphi}}+A_{3} \bar{a}_{z}
\end{aligned}
$$

3. Divergence $\nabla \cdot \bar{D} \mathrm{~cm}^{3}$

$$
\nabla \cdot \bar{D}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho D_{j}\right]+\frac{1}{\rho} \frac{\partial D}{\partial D_{0}}+\frac{\partial D_{z}}{\partial z} \operatorname{lm}^{2} \text { scalar. }
$$

4. Laplavinc φ^{4} $\left.\nabla^{2} v=0 \varphi^{2} v / m^{2} \quad \nabla^{2} v=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\frac{\beta}{\partial \rho}\right]+\frac{1}{\rho^{2}} \frac{\partial^{2} v}{\partial \phi^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right] / m^{2}$ scalar
5. poimorincs"

Eite Spherical/polar Eo-ordinate System

$$
p(r, \theta, \phi) d x=r^{2} \sin \theta d x d \theta d \phi
$$ operation Remark

1. D\&人 operator

Exprenion $\nabla=\frac{\partial}{\partial r} \bar{a}_{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \bar{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \bar{a}_{\phi} m^{-1}$ vetor opurator
2. Gradiont TVV V / m $\nabla V=\frac{\partial V}{\partial r} \overline{a_{r}}+\frac{1}{r} \frac{\partial V}{\partial \theta} \bar{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \bar{a}_{\phi}$ vector $\bar{A}=$ Ar $\overline{a r}+A_{\theta} \overline{a_{0}}+A_{\phi} \overline{a_{\phi}}$
3. Divergence (V.B) $4 \mathrm{~m}^{3}$

$$
\left.\begin{array}{rl}
\nabla \cdot \bar{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[\begin{array}{rl}
r^{2} & \left.D_{r}\right]
\end{array}\right] \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}[\sin \theta \cdot D] \\
& +\frac{1}{r \sin \theta} \frac{\partial D \phi}{\partial \phi} ; \text { D }^{3}
\end{array}\right]
$$

\square Scalar $\leftarrow^{\text {Scular }}$
5. Doimorice p^{4}

$$
\begin{aligned}
& \text { 4. Laplacieny" } \\
& \sum^{2} V=0 \quad V / m^{2}\left(\nabla^{2} v=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial V}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial V}{\partial \theta}\right]+\frac{1}{r^{2} \sin ^{2}} \frac{\partial^{2} v}{\partial \phi^{2}}=0\right) \\
& 4 / m^{2}
\end{aligned}
$$

 satisfy the laplace s equation.
ff Harks,

$$
\begin{array}{ll}
\text { i) } \quad y=20 x^{2} y d+10 x y^{2} & \text { Dankan V Gouda Mrectuphd, } \\
\text { ii) } y=15 x^{2}+10 y^{2}-25 z^{2} & \text { Assistant Professor, Dept of E\&C } \\
& \text { Email:daukanecrasvengg.con }
\end{array}
$$

$$
\text { ii) } V=15 x^{2}+10 y^{2}-25 z^{2} \quad \begin{aligned}
& \text { Assistant Professor, Dept of E\&CE } \quad \text { Enailadmkantectaswengg.con } \\
& \text { EAsts }
\end{aligned}
$$

$$
02-\mathrm{DEC} 2008 / \mathrm{Jan} 2009
$$

25 Derive laplace's equation, verify whether the potential field given below satisfies Laplace's equation $v=2 x^{2}-3 y^{2}+z^{2}$.
(of Marks)
10-DEC2011/Jan 2012
26 Determine whether or not the potential equations:
(23i) $V=2 x^{2}-4 y^{2}+z^{2}$ ii) $V=r^{2} \cos \phi+\theta$ iii) $V=r \cos \phi+\gamma$
satisfy the laplace's equation. (06 Marks)

06-DEC 2013/Jan 2014
28 Verify whether the potential field given below satisfies 5 place's equation.
(i) $v=x^{2} v^{2}+x^{2} \quad$ (ii) $v=2 x^{2}-3 y^{2}+z^{2}\left(\operatorname{sig}_{5}\right)$
106 Marks)
10-June/July 2013
$06-\operatorname{Jan} 2013$
$34 V$ Verify that the potential Field given below satisfy laplace sabine $V=2 x^{2}-3 y^{2}+z^{2}+2{ }^{2}$
(ok Marks)
06-June/July 2014
35

i) $V x^{2}+y-a$ if $V=0 \cos +x$
(06 Marks)

ne/ July 2016
EEE-10-June/July 2016

$$
\circ
$$

10 -Dec/lan 2016
37 b. Verify that the potential field given below satisfies the Laplace equate
$y=2 x^{2}-3 y^{2} \div z^{2} \leftrightarrow(\theta 25)$

(Page No - 289)
\%
i) $V=2 x^{2}-4 y^{2}+z^{2}$

Laplace eq $q^{a} \quad \nabla^{2} V=0$

$$
\begin{aligned}
& - \text { i.e. } \frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0 . \\
& \frac{\partial v}{\partial x}=2(2 x)=4 x ; \frac{\partial^{2} y}{\partial x^{2}}=4 . \\
& \frac{\partial v}{\partial y}=-8 y ; \frac{\partial^{2} y}{\partial y^{2}}=-8 . \\
& \frac{\partial v}{\partial z}=+2 z ; \frac{\partial^{2} y}{\partial z^{2}}=2 . \\
& \Rightarrow 4-8+2=-2 \text { \& } 2 \text {. }
\end{aligned}
$$

\therefore given potential fild not-satisfying Laplaien φ^{4}.

$$
\begin{aligned}
& \therefore V=r^{2} \cos \phi+\theta \\
& \text { botental fild in }
\end{aligned}
$$

- given potatial fild is in Sphurical C.S

$$
\begin{aligned}
& \frac{q^{2} r}{2}=0 \\
& \frac{r^{2}}{2} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial y}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial y}{\partial \theta}\right]+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} y}{\partial \phi^{2}}=0 \\
& \frac{\partial v}{\partial r}=2 r \cos \phi ; \frac{\partial y}{\partial \theta}=1 \\
& \frac{\partial V}{\partial \phi}=-r^{2} \sin \phi ; \frac{r^{2} y}{r \phi^{2}}=-r^{2} \cos \phi
\end{aligned}
$$

$$
\begin{gathered}
\lambda^{2} v=\frac{1}{\gamma^{2}}\left[r^{2} \times 2 r \cos \phi\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}[\sin \theta] \\
- \\
+\frac{-1}{\gamma^{2} \sin ^{2} \theta} \times-\gamma^{2} \cos \phi \\
\nabla^{2} v=\frac{2 \cos \phi}{\gamma^{2}} \times 3 \gamma^{2}+\frac{1}{x^{2} \sin \theta} \\
\\
-\frac{\cos \phi}{\sin ^{2} \theta}
\end{gathered}
$$

$=6 \cos \phi+\quad \frac{\cot \theta}{r^{2}}-\frac{\cos \phi}{\sin ^{2} \theta} \neq 0 \therefore \nabla^{2} v \neq 0$
\therefore the given potential ficld $V=r^{2} \cos \phi+\theta$ volin is not satirtying the Laplaion quation.

$$
\begin{aligned}
& \text { ixi> } V=20 x^{2} y z+10 x^{2} z^{2} \\
& \nabla^{2} V=\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}+\frac{\partial^{2} y}{\partial z^{2}}=0 \\
& \frac{\partial y^{2}}{\partial x}=40 x y z+10 y^{2} z-\frac{\partial^{2} y}{\partial x^{2}}=40 y z \\
& \frac{\partial y}{\partial y}=20 x^{2} z+20 x y z^{2} ; \frac{\partial^{2} y}{\partial y^{2}}=20 x z^{2} . \\
& \frac{\partial v}{\partial z}=20 x^{2} y+20 x y^{2} z ; \frac{\partial^{2} v}{\partial z^{2}}=20 x y^{2} \\
& 40 y z+20 x z^{2}+20 x y^{2}=0
\end{aligned}
$$

\therefore given potential fild $V=20 x^{2} y z+10 x y^{2} z^{2}$ not satisfying the Laptacinquation.

$$
\begin{aligned}
& \text { eNy } \\
& V=15 x^{2}+10 y^{2}-25 z^{2} . \\
& \frac{\partial y}{\partial x}=30 x ; \frac{\partial^{2} y}{\partial x^{2}}=\overline{30} \text {. } \\
& \frac{\partial v}{\partial y}=20 y ; \quad \frac{\partial^{2} v}{\partial y^{2}}=20 \\
& \frac{\partial y}{\partial z}=-50 z ; \quad \frac{\partial^{2} y}{\partial z^{2}}=-50 \\
& \text { Laplaci, } y^{4} \nabla^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=0 \\
& \text { i.e } \quad 30+20-50=0
\end{aligned}
$$

$\sigma^{2}+U=0$
\therefore The given potental fild $v=15 x^{2}+10 y^{2}-25 z^{2}-101$ v) Sutistying the Laplacin equation.

$$
\begin{aligned}
& V=2 x^{2}-3 y^{2}+z^{2} \\
& \frac{\partial v}{\partial x}=6 x ; \frac{\partial^{2}}{\partial x^{2}}=4 . \\
& \frac{\partial V}{\partial y}=-6 y ; \quad \frac{\partial^{2} v}{\partial y^{2}}=-6 . \\
& \frac{\partial v}{\partial z}=2 z ; \quad \frac{\partial^{2} v}{\partial z^{2}}=2 . \\
& \nabla^{2} v=\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}+\frac{\partial^{2} y}{\partial z^{2}}=0
\end{aligned}
$$

the given potentiol field $V=2 x^{2}-3 y^{2}+z^{2}$ volto satistying the Laplacin cp ${ }^{4}$.
($\quad v=r \cos \phi^{\circ}+3$.
the given potential filld is in cylintrical C.S

$$
\begin{aligned}
& \therefore \quad \nabla^{2 r}=\frac{1}{r}\left[\frac{\partial}{\partial r}\left[\gamma \frac{\partial v}{\partial r}\right]\right]+\frac{1}{\gamma^{2}} \frac{\partial^{2} v}{\partial \phi^{2}}+\frac{\partial^{2} y}{\partial z^{2}} . \\
& \frac{\partial V}{\partial r}=\cos \phi, \frac{\partial V}{\partial \phi}=-r \sin \phi ; \frac{\partial^{2} y}{\partial y_{2}}=-r \cos \phi \\
& \frac{\partial y}{\partial z}=1 ;-\frac{\partial^{2} y}{\partial z^{2}}=0 . \\
& \nabla^{2} v=\frac{1}{\gamma} \frac{\partial}{\partial r}[\gamma \cdot \cos \phi]+\frac{1}{\gamma \not 2}[-x \cos \phi]+0 \\
& =\frac{\cos \phi}{r}-\frac{\cos \phi}{r}+0=0 \\
& \text { are } \nabla^{2} v=0
\end{aligned}
$$

- Hegiven potential ficle $V=r \cos \phi+3$ volt'. Satistying the Laplacis cquation.

$$
\begin{aligned}
& \text { Q28) i) } V=x^{2}-y^{2}+z^{2} \text { volin } \\
& \nabla^{2} \dot{F}=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0 . \\
& -\frac{\partial y}{\partial x}=2 x ; \cdot \frac{\partial^{2} y}{\partial x^{2}}=2 \text {. } \\
& \frac{\partial^{2} y^{2}}{\partial y^{2}}=-2 ; \frac{\partial^{2} v}{\partial z^{2}}=2 \text {. } \\
& \not x-\alpha+2=2 \neq 0 \Rightarrow \sqrt{\theta^{2}+0}
\end{aligned}
$$

\therefore the given potential ficld doundofstintying the Laplacein equation.

$$
\begin{aligned}
& V=x^{2}+y^{2}+z^{2} \\
& \nabla^{2} v=\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y^{2}}{\partial y^{2}}+\frac{\partial^{2} y}{\partial z^{2}}=0 \\
& \frac{\partial v}{\partial x}=2 x ; \frac{\partial^{2} y}{\partial x^{2}}=2 \\
& \frac{\partial v}{\partial y}=2 y ; \quad \frac{\partial^{2} y}{\partial y^{2}}=2 \\
& \frac{\partial y}{\partial z}=2 z ; \quad \frac{\partial^{2} v}{\partial z^{2}}=2 \\
& 2+2+2=6 \neq 0 \\
& 2
\end{aligned}
$$

Hegiven potential fild $U=x^{2}+y^{2}+z^{2}$ volt?

$$
\begin{aligned}
& \text { Vii) } J=r \cos \theta+\phi \quad i v=\rho^{2}+z^{2} \\
& \text { viix) } \nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial y}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial y}{\partial \theta}\right]+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} y}{\partial \phi^{2}} \\
& \frac{\partial V}{\partial r}=\cos \theta ; \quad \overline{\frac{\partial V}{\partial \theta}}=-r \sin \theta \quad \frac{\partial^{2} \nu}{\partial \phi^{2}}=0 . \\
& \nabla^{2} r=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cos \theta\right]+\frac{1}{r^{2} \sin \theta}\left[-r \sin ^{2} \theta\right]+0 \\
& =\frac{\cos \theta}{r^{2}}(2 x)+\frac{1}{r^{2} \sin \theta}-x \times 2 \sin \theta \cos \theta \\
& =\frac{2 \cos \theta}{\gamma r}-\frac{2 \cos \theta}{\gamma}=0 \quad \mathrm{ac} ब^{2} v=0 \text { y/m }
\end{aligned}
$$

\therefore The given potential freld $\quad X=r \cos \theta+\phi$ roltin scatisfying the Laplacin Cqu.

Solu

$$
\text { ix>> } v=\rho^{2}+3^{2}
$$

$$
\text { 3) } \begin{aligned}
& V=\rho^{2}+z^{2} \\
& T^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\xi \frac{\partial y}{\partial \rho}\right]+\frac{1}{\rho^{2}} \frac{\partial^{2 y}}{\partial \phi^{2}}+\frac{\partial^{2} y}{\partial z^{2}} \\
& \frac{\partial V}{\partial \rho}=2 \rho ; \quad \frac{\partial y}{\partial z}=2 z ; \frac{\partial^{2 y}}{\partial z}=2 ; \frac{\partial^{2} y}{\partial \phi}=0 \\
& V^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}[\rho \cdot 2 \rho]+0+2 \\
&=\frac{2 \times 28}{8}+g=4+2=6 \neq 0 \\
& i \cdot e\left[a^{2} v \neq 0\right.
\end{aligned}
$$

\therefore given potertial feld $V=s^{2}+3^{2}$ volt'n downof Sutiotying the Laplain e^{φ}.
troblem ${ }^{2}$

$10 \mathrm{~J} / \mathrm{J} 2013$ (7m)

$$
v=\frac{4 y^{2} z}{x^{2}+1}
$$

$$
\rightarrow V=\frac{2 \cos \phi}{r^{2}} \text { at } p\left(\gamma=0.5, \theta=45^{\circ}, \phi=60^{\circ}\right)
$$

 (07) Mandsx)
(a) Soki: $\quad V=\frac{4 y z}{\left(x^{2}+1\right)}$ voltio

$$
\text { i) } V_{p}=\frac{4(2)(3)}{(1)^{2}+1}=12 \text { voth } \nabla_{p}=12 \text { volt's }
$$

ii) to find ly ie volume cherge dussity

$$
\begin{aligned}
& \text { Find } f_{V} \text { ie volume } \\
& \text { uoing poinori' } \varphi^{4} \quad \nabla^{2} I=-S_{H} \mid \epsilon_{0} \text { v/m }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f v=-\nabla^{2} v\left(\epsilon_{0}\right) d m^{3} \\
& \nabla^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}+\frac{\partial^{2} y}{\partial z^{2}} \\
& V=4 y z\left(x^{2}+1\right)^{-1} \\
& \frac{\partial v}{\partial x}=-4 y z\left(x^{2}+1\right)^{-2}(2 x)=-8 x y z\left(x^{2}+1\right)^{-2} \\
& \frac{\partial^{2} u}{\partial x^{2}}=-8 x y z\left[-2\left(x^{2}+1\right)^{-3}(2 x)\right]+\left(x^{2}+1\right)^{-2}(-8 y z) \\
&=+32 x^{2} y z\left(x^{2}+1\right)^{-3}-8 y z\left(x^{2}+1\right)^{-2}
\end{aligned}
$$

$$
\frac{\partial^{2} v}{\partial y^{2}}=0 \text { and } \frac{\partial^{2} v}{\partial z^{2}} \equiv 0
$$

$$
\begin{aligned}
& \therefore \nabla^{2} V=\frac{\partial^{2} y}{\partial x^{2}}=32 x^{2} y z\left(x^{2}+1\right)^{-3}-8 y z\left(x^{2}+1\right)^{-2} \\
& f_{y}=-\epsilon \nabla^{2} V @ p(1,2,3) \\
& \nabla^{2} U_{p}=32(1)^{2}(2)(3)(1+1)^{-3}-8(2)(3)(1+1)^{-2} \\
& =192(2)^{-3}-48(2)^{-2} \\
& =24-12=12 \\
& \nabla^{2} v_{p}=12 \quad v / m^{2} \\
& \int_{v_{p}}=-\epsilon \nabla^{2} U_{p}=-12 \epsilon \varphi_{m^{3}} \\
& \int_{v_{p}}=-106.248 \text { pd } P_{m}^{3}
\end{aligned}
$$

b) $\quad i=5 \rho^{2} \cos (2 \phi)$ at $p(\rho=3, \phi=\pi / 3, \quad 之=2)$

$$
\begin{aligned}
v_{p}= & 5(3)^{2} \cos (2 \pi / 3)=-22.5 \text { volto } \\
& \bar{V}_{p}=-22.5 \text { volt? }
\end{aligned}
$$

using provin $\varphi^{\mu} \nabla^{2} v=-S_{u} \mid \epsilon$

$$
l_{y}=-\epsilon \nabla^{2} \nabla c_{m} \cdot
$$

$$
\begin{aligned}
& \because T^{2} V \text { in Cylindrical } C \cdot S \\
& \begin{array}{l}
\nabla^{2} V \text { in } C_{y} \text { in } \\
\nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial s}\left[\rho \frac{\partial v}{\partial s}\right]+\frac{1}{\rho^{2}} \frac{\partial^{2} y}{\partial \alpha^{2}}+\frac{\partial^{2} f^{0}}{\partial z^{2}} \quad . \quad f^{n}(z)
\end{array} \\
& V=5 \rho^{2} \cos (2 \phi) \\
& \frac{\partial V}{\partial S}=10 \rho \cos (2 \phi) \text { and } \frac{\partial V}{\partial \phi}=1 \rho^{2} \sin (2 \phi) \\
& \frac{\partial^{2} y}{\partial \phi^{2}}=-2 \theta \theta^{2} \cos (2 \phi) \\
& \nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}[\rho \times 10 \rho \cos (2 \phi)]-\frac{2 \rho^{2} \rho \cos (2 \phi)}{\rho^{2}}+0 \\
& =\frac{10 \cos (2 \phi)}{8} \times 28-2 \theta \cos (2 \phi) \\
& =20 \cos (2 \phi)-20 \cos (2 \phi) \\
& \Rightarrow \square^{2} v=04 / m^{2} \\
& =0 V / m^{2} \\
& \therefore f_{H_{p}}=-E Q^{2 v_{p}}=-\epsilon(0) \operatorname{cm}^{3} \\
& f_{v_{p}}=0 \quad p f_{m^{3}} \\
& \text { (0) } \quad \rho_{u_{p}}=0 \quad f_{m}{ }^{3} \Rightarrow 0 \varphi_{m}{ }^{3}
\end{aligned}
$$

(17) $\quad \rho_{4}=0 \rho_{m^{3}}$
c) $V=\frac{2 \cos \phi}{r^{2}}$ at $p\left(r=0.5, \theta=45^{\circ}, \phi=60^{\circ}\right)$

$$
\begin{aligned}
& \bar{f}_{p}=\frac{\left.2 \cos 60^{\circ}\right)}{(0.5)^{2}}= \\
& \bar{V}_{p}=4 \text { volt' } \quad 4=4 \text { volto } \\
& \rho_{v}=-E \nabla^{2} v \quad \rho_{m^{3}} \\
& a^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial v}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial v}{\partial \theta}\right] \\
& +\frac{1}{\gamma \sin ^{2} \theta} \frac{\gamma^{2} y}{\partial \phi^{2}} \\
& \frac{\partial V}{\partial r}=\frac{-4 \cos \phi}{\gamma^{3}} \quad-\frac{\partial V}{\partial \theta}=0 \\
& \text { and } \frac{\partial v}{\partial \phi}=\frac{-2 \sin \phi}{\gamma^{2}} ; \frac{\gamma^{2} y}{\gamma \phi^{2}}=\frac{-2 \operatorname{con} \phi}{\gamma^{2}} \\
& \nabla^{2} \cdot V=\frac{1}{\gamma^{2}} \frac{\partial}{\partial r}\left[x^{2} \frac{(-4 \cos \phi)}{r^{\gamma}}\right]+0-\frac{2 \cos \phi}{r^{2}} \times \frac{1}{r^{2} \sin ^{2} \theta^{\circ}} \\
& =\frac{-4 \cos \phi}{r^{2}} \times \frac{-1}{r^{2}}-\frac{2 \cos \phi}{r^{4} \sin ^{2} \theta}=+\frac{4 \cos \phi}{r^{4}}-\frac{2 \cos \phi}{r^{4} \sin }
\end{aligned}
$$

$$
\begin{aligned}
& =04 m^{3} \\
& \begin{array}{c}
(18) \\
\hline \text { Dept of ERCE. SVCE } \\
\left(J_{1 p}=0\right.
\end{array} 4_{m^{3}}
\end{aligned}
$$

alvin $E=5 \cos (z) \overrightarrow{a_{2}} \mathrm{v} / \mathrm{m}$

Dankan 1-Gowids Mrech, (Ph.D)
Assistant Professor, Dept. of E\&CE
u.ecensucengg.con

06 - June/July 2013

Ti7 Marks
Solis:-
Mate:- E in said to be pamible Eletric field only when it doennof arrived from chorged free regith.

$$
\begin{aligned}
& \text { i.e } \nabla^{2} V \neq 0 \\
& \Rightarrow \nabla \cdot(\square V) \neq 0 \\
& \nabla \cdot(-E) \neq 0
\end{aligned}
$$

(6) $\rightarrow \square \cdot \square \cdot \overline{\bar{E}} \neq 0$

$$
\begin{aligned}
& \text { i) } \bar{F}=\operatorname{sion}^{\prime}(3) \overline{a_{z}} \quad v / m \text {. } \\
& { }_{2} F_{z}=5 \cos (\alpha) \\
& \forall \cdot E=\frac{\partial E_{x}}{\partial x}+\frac{\partial \theta_{y} 刀^{0}}{\partial y}+\frac{\partial E_{z}}{\partial z}=\frac{\partial}{\partial z}[5 \cos z] \\
& =-5 \sin (3) \neq 0 \text { ie } \square \cdot \bar{E} \neq 0
\end{aligned}
$$

\therefore the given field $\bar{E}=5 \cos (z) \overline{a_{z}} V / m$ is a ponible clutricficld.

$$
\begin{aligned}
& \text { ii) } \bar{E}=\left(12 y x^{2}-6 z^{2} x\right) \overline{a_{x}}+\left(4 x^{3}+183 y^{2}\right) \overline{a_{y}} \\
& +\left(6 y^{3}-63 x^{2}\right) \overline{a_{z}} \text { पilm. } \\
& \delta_{x}=12 y x^{2}-6 z^{2} x \mathrm{~V} / m ; \quad E_{y}=4 x^{3}+18 z y^{2} \\
& \frac{\partial E_{x}}{\partial x}=24 y x-6 z 2 ; \quad \frac{\partial E_{y}}{\partial y}=363 y \\
& F_{z}=6 y^{3}-6 z x^{2} \\
& \frac{\partial E_{z}}{\partial z}=-6 x^{2} \\
& \Rightarrow E \cdot E=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z} \\
& 24 y x-6 z^{2}+36 z y-6 x^{2} \neq 0 \\
& \text { जi } \bar{\sigma} \bar{E} \neq 0
\end{aligned}
$$

The given field $\bar{E}=\left(12 y x^{2}-6 z^{2} x\right) \bar{x}+\left(4 x^{3}+18 z y^{2}\right) \bar{a} y$ $+\left(6 y^{3}-6 z x^{2}\right) \overline{a_{z}}$ y/m downof. arrived fromchorged free region \therefore it is a pomible Eletric field.
mobbeny

$$
V=3 x^{2} y z+k y^{3} z \text { volto. }
$$

010-Dec/3an 2015

 i" Find ${ }^{\text {atct.2.3) }} E$ at $(1,2,3)$
Solu': (1) $\overline{1}=3 x^{2} y z+k y^{3} \bar{z} \bar{u}_{0} \| \vec{f}$.
givn $\quad \nabla^{2} y=0$

$$
\begin{gathered}
\text { i.e } \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}+\frac{\partial^{2} y}{\partial z^{2}}=0 \\
\frac{\partial V}{\partial x}=6 x y z ; \frac{\partial^{2} y}{\partial x^{2}}=6 y z \\
\frac{\partial V}{\partial y}=3 x^{2} z+3 k y^{2} z ; \frac{\partial^{2 y}}{\partial y^{2}}=6 k y z . \\
\frac{\partial v}{\partial z}=3 x^{2} y+k y^{3}-\frac{\partial^{2} y}{\partial z^{2}}=0 . \\
\Rightarrow R^{2} v=0 \\
6 y z+6 k y z=0 \\
k=-1
\end{gathered}
$$

the value of $k=-1$ suht at the potential filde $V=3 x^{2} y z+k y^{3} z$ satiofics the Laplacin eq ${ }^{Y}$
ii)

$$
\begin{aligned}
& \bar{E}=-\nabla V=-\frac{\partial V}{\partial x} \overline{a_{x}}-\frac{\partial v}{\partial y} \bar{a}_{y}-\frac{\partial v}{\partial z} \overline{a_{z}} \\
& =-6 a y z \overline{a_{x}}-\left[3 x^{2} z+3(-1) y^{2} z\right] \overline{a_{y}}-\left(3 x^{2} y-y^{3}\right] \overline{a_{z}} \\
& \bar{E}_{p}=-36 \overline{a_{x}}-[9-36] \bar{a}_{y}-[6-8] \overline{a_{z}} \\
& \overline{F_{p}}=-36 \overline{a_{x}}+27 \overline{a_{y}}+2 \overline{a_{z}} \cdot v / m ;\left|E_{p}\right|=45.044 \text { gon }
\end{aligned}
$$

$$
V=x^{2} y^{\circ} z+A y^{3} z V \text { VIf'S }
$$

$\underset{y}{d} v=x^{2} y z+A y^{3} z$ volts determine of ' A ' such that v satisfies
b. A potential fiek is given by $v=x^{\prime} y z+A y^{\prime} z$ volts deternume of ' A ' such that v satisfies

Solui:-

$$
\begin{equation*}
\text { Laplace equation and lence find electric field E an } \stackrel{p(2, \ldots,-1)}{\longrightarrow} p(2,1,-1) \tag{6m}
\end{equation*}
$$

given $\nabla^{2} V=0$.

$$
\begin{gathered}
\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y_{2}}+\frac{\partial^{2} y}{\partial z^{2}}=0 . \\
\frac{\partial V}{\partial x}=2 x y z ; \frac{\partial^{2} y}{\partial x^{2}}=2 y^{2} . \\
\frac{\partial V}{\partial y}=x^{2} z+3 A y^{2} z ; \frac{\partial^{2} y}{\partial y^{2}}=6 A y z \\
\frac{\partial y}{\partial z}=x^{2} y+A y^{3} \quad \frac{\partial^{2} y}{\partial z^{2}}=0 . \\
\nabla^{2} V=2 y z+6 A y z+0=0 \\
A=2 y / 3=-6 A y \alpha \\
A=-1 / 3 . A=-1 / 3
\end{gathered}
$$

\therefore the valug A Suchthat given Is satintionthe Laplace's

$$
q^{4} \text { in } A=-1 / 3
$$

$$
\begin{aligned}
& \rightarrow \bar{E}=-\nabla V=-\frac{\partial V}{\partial x} \bar{a}_{x}-\frac{\partial V}{\partial y} \bar{a}_{y}-\frac{\partial V}{\partial z} \bar{a}_{z} \bar{u} / \mathrm{m} . \\
& =-2 x y z \overline{a_{x}}-\left[x^{2} z-y^{2} z\right] \overline{a_{y}}-\left[x^{2} y-1 / 3 y^{3}\right] \overline{a_{z}} 4 / n \\
& \overline{F_{p}}=+4 \overline{a_{x}}+3 \overline{a_{y}}-11 / 3 \overline{a_{z}} \mathrm{Mm}
\end{aligned}
$$

Dept.of E\&CE, SVCE

$$
\int\left|F_{p}\right|=6.20035 \int V / \mathrm{m} / 2
$$

problumb

$$
v=A \ln \left[\frac{B(1-\cos \theta)}{1+\cos \theta}\right] \text { voltin. }
$$

06-DEC2009/Jan 2010
Given $V=A \ln \left[B \frac{(1-\cos \theta)}{1+\cos \theta}\right]$ voits $-V$
i) Show that V shishes Explace equation in spherical coordinates. $t r=5 \mathrm{~m}, \theta=90$,

Solu:-

$$
\begin{aligned}
& A \text { } B \quad v=100 \mathrm{v} \text { ity } \\
& \text { using vutor identi }=500 \mathrm{~V} / \mathrm{m} \\
& \frac{1-\cos \theta}{1+\cos \theta}=\tan ^{2}(\theta / 2)
\end{aligned}
$$

$$
\therefore \quad V=A \ln \left[B \frac{1+\cos \theta}{(1-\cos \theta)}\right] \operatorname{volin}=A \ln \left[B \tan ^{2} \theta_{2}\right] \operatorname{von} \|
$$

$\square^{2} V$ in Spherical coordinate System is

$$
\begin{aligned}
& \neq \frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} y}{\sigma \phi^{2}} \geqslant 0 \text { bus } \sigma \neq f^{n}(\phi) \\
& \frac{\partial V}{\partial \theta}=A \frac{1}{B \tan ^{2} \theta / 2} \times 2 \not B \tan \theta / 2 \cdot \sec ^{2} \theta / 2 \times y / \beta \\
& \frac{\partial V}{\partial \theta}=A \times \frac{\cos \theta / 2}{\sin \theta / 2} \times \frac{1}{\cos ^{2} \theta / 2}=\frac{A}{1 / 2 \sin (\theta)} \\
& \frac{\partial y}{\partial \theta}=\frac{2 A}{\sin \theta}
\end{aligned}
$$

$$
\nabla^{2} V=\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{2 A}{\sin \theta}\right]=\frac{1}{r^{2} \sin \theta} \frac{\partial\left(\gamma^{2} A\right)}{\partial \theta}
$$

$$
\therefore \frac{i \cdot e}{\therefore c^{2} r=0}
$$

\therefore givan potential field $V=A \ln \left[B \frac{(1-\cos \theta)}{(1+\cos \theta)}\right]$ sadinfiy.ing
the Laplain φ^{φ}. the Laplain φ^{φ}.
ii) $V=A \ln \left[B \frac{(1-\cos \theta)}{(1+\cos \theta)}\right]$ volt \quad.
given $V=100 \mathrm{VolH}, \quad|\dot{\bar{E}}|=500 \mathrm{~V} / \mathrm{m} @ p\left(5,90^{\circ}, 60^{\circ}\right)$

$$
\begin{aligned}
& A=? \quad B=? \\
& 100=A \ln \left[B \frac{1-\cos 90^{\circ}}{1+\cos 90^{\circ}}\right]=A \ln (B) \\
& 100=A \ln (B) \rightarrow \text {. } \\
& \bar{F}=-\nabla V=-\frac{1}{r} \frac{\partial V}{\partial \theta} \overline{a_{\theta}} V / m \Rightarrow \begin{array}{c}
\text { Since } T f^{\prime} \text { of } \\
\text { only } \theta^{\prime}
\end{array} \\
& F=-\frac{1}{\gamma} \cdot \frac{2 A}{\sin \theta} \overline{a_{\theta}} \quad v / m . \\
& \left|\dot{\varepsilon}_{p}\right|=\frac{1}{r} \frac{2 A}{\operatorname{Sin}(\theta)}=500 \mathrm{v} / \mathrm{m} \\
& \text { i.e } \quad A=\frac{500(5) \sin \left(90^{\circ}\right)}{2}=\frac{2500}{2}=1250 \\
& \text { using } \varphi^{1}(a) \quad B=e^{100 / A}=e^{100 / 1250}=1.083 \dot{28}
\end{aligned}
$$

problent

$$
v=\left[A r^{4}+B r^{-u}\right] \operatorname{Sin}(u \phi)
$$

Given the potental feld $V=\left[A A^{4}+B r^{-4}\right] \sin 46$:

 $z=2)$.

- soluic - from bit (ii) it can be concuuctectl at the given potential field is in cylinctrical Coordinate System. $p(r, \phi, z)$.

$$
\begin{aligned}
& \nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial V}{\partial r}\right]+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2}}{\frac{\partial}{2}}=0 \\
& \frac{\partial v}{\partial r}=\left[4 A r^{3}-4 B r^{-5}\right] \sin \left(\varphi \varphi^{9}\right) \\
& \frac{\partial V}{\partial \phi}=\left[A \gamma^{4}+B \gamma^{-4}\right] \cos (4 \phi)(4) \\
& \frac{\partial^{2} V}{\partial \phi^{2}}=\left[A \gamma^{4}+B \gamma^{4}\right][-\sin (4 \phi)] 4 \times 4 \text {. } \\
& =-16\left[A r^{4}+B r^{-4}\right] \sin (4 \phi) \\
& \frac{\partial^{2} \psi^{2}}{\partial \phi^{2}}=-16 \mathrm{~V} \\
& \Rightarrow \Delta^{2} y=\frac{1}{r} \frac{\partial}{\partial r}\left[r \cdot\left[4 A r^{3}-4 B \gamma^{-5}\right] \sin (4 \phi)\right]-16 V / r^{2} \\
& =\frac{1}{\gamma}\left[\frac{\partial}{\partial r}\left[4 A r^{4}-4 B r^{-4}\right] \sin 4 \phi\right]-\frac{16 V}{r^{2}} \\
& x^{2}=\frac{1}{r}\left[\left(16 A r^{3}+16 B \gamma^{-5}\right) \sin (4 \phi)\right]-\frac{16 V}{\gamma^{2}} \\
& =\frac{16}{\gamma^{2}}\left[\left(A r^{4}+B f^{-4}\right) \sin (4 \phi)\right]-\frac{16 V}{r^{2}}
\end{aligned}
$$

$$
=\frac{16 / j}{r^{2}}-\frac{16 \not t^{2}}{t^{2}}=0 \Rightarrow \text { ie }\left(\nabla^{2} V=0\right)
$$

\therefore given potential $V^{-}=\left[A r^{4}+B r^{-4}\right] \sin (4 \phi)$ volt's
Satistying the Laplacin ρ^{4}.

$$
\begin{aligned}
& \mathcal{F}=-\left[4 A r^{3}-4 B r{ }^{2} \quad P\left(1,22.5^{\circ}, 2\right) \Rightarrow r=1 m, \phi=22.5^{\circ}, 3=2 .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{g^{\prime}}{E_{p}}=\frac{-[4 A-4 B] \sin \left(\left(90^{\circ}\right) \overline{a_{1}}-\frac{4}{\gamma}[A-B] \operatorname{cog}\left(90^{\circ}\right) \overline{a_{\phi}} v / m\right.}{E_{p}=-(4 A-4 B] \overline{a_{n}} y / \mathrm{m} .}
\end{aligned}
$$

$$
\begin{aligned}
& p \bar{E}_{p} \mid=[4 A-4 B] \bar{E}_{p}=-[4 A B] \text { arm. } \quad \text { gimn }\left|\overline{E_{p}}\right|=500 \mathrm{~V} / \mathrm{m} .
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad 4 A-4 B=500 \tag{a}
\end{equation*}
$$

(0) $A-B=125$
$2^{\text {nd cond }}$. $\sigma_{p} 100$ volt'

$$
\begin{aligned}
& \text { and! }{ }^{\prime \prime}=100 \text { volt' } \\
& \text { solve } \left.a^{\prime} \& b=A+B\right] \sin (90) \Rightarrow A+B=100<(5) \\
& \text { Solvan } A=112.5 \text { and } B=-12.5
\end{aligned}
$$

(a) altarnativaly ie $\overline{E_{p}}=-[4 A-4 B]$ ar (a) $\overline{E_{p}}=[4 B-4 A] \overline{a_{r}}$

$$
\begin{equation*}
\left|\bar{E}_{p}\right|=500=4 B-4 A \Rightarrow B-A=125 \tag{ai}
\end{equation*}
$$

Solving (G1) and (b) $\Rightarrow B=112.5$ and $A=-12.5$
xute:- Both the suti of Ans are valid hore.

$$
\begin{aligned}
& \text { ii) } \bar{F}=-\nabla V=-\left[\frac{\partial v}{\gamma r} \overline{a_{r}}+\frac{1}{\gamma} \frac{\partial v}{\partial \phi} \overline{a_{\phi}}+\frac{\partial y}{\partial \beta} \overline{a_{z}}\right] v / m- \\
& \frac{\partial V}{\partial r}=\left[4 A r^{3}-4 B r^{-5}\right] \sin (4 \phi) \text { and } \\
& \frac{\partial V}{\partial \phi}=4\left[A r^{4}-B r^{-4}\right] \cos (4 \phi) \text {. } \\
& \bar{E}=-\left[4 A r^{3}-4 B r^{-5}\right] \sin (4 \phi) \overline{a r}-\frac{4}{r}\left[A r^{4}-B r^{-4}\right] \cos (4 \phi) \overline{a_{\phi}} \psi \pi
\end{aligned}
$$

a. Find the pormiai and volume chatge density at P 0.5 .1 .5 . 1 m in free space given the potential field $V=6 p \phi Z$ volts.

15-Def $\tan 2017$
(08 Marks)

$$
V=6 g_{\phi} \mathrm{V}^{0} \mathrm{H}_{0}
$$

(CBCS S. ${ }^{\text {Dankan } V}$ Gowda miech, (Ph.D) Assistant Professor, Dept. of EECEE Email:dankan.ece@svcengg.com +919844554940
Solvi- given potential field
$u=6 \rho \phi z$ volth... in Cyindrical Cordinate sytem
the point $p(0.5,1.5,1) m \ldots$ in Cartesian cosidinate syttem.

$$
\begin{gathered}
P(0.5,1.5,1) \Leftrightarrow P(\rho, \phi, 3) \\
\rho=\sqrt{x^{2}+y^{2}}=\sqrt{0.5^{2}+1.5^{2}}=\sqrt{2.5} \mathrm{~m} \\
\phi=\tan ^{2}(y / x)=\tan ^{-1}\left(\frac{1.5}{0.5}\right)=71.56^{\circ} \\
3=1 \mathrm{~m}
\end{gathered}
$$

$$
P(0.5,1.5,1) \Longleftrightarrow P\left(\sqrt{2.5}, 71.56^{\circ}, 1\right) .
$$

given medium in free Space $\epsilon=60 \mathrm{Fm}$.

$$
\begin{aligned}
& V=6 \rho \phi z \\
& \pi^{c}=180^{\circ} \\
& 1=\left(\frac{\pi}{180}\right)^{c} \\
& 71.56^{\circ}=\frac{\pi}{180} \times 71.56=1.249^{c} \\
& V_{p}=6(\sqrt{2.5})(1.249)(1) \\
& \left.V_{P}=11.8494\right) \text { Vott? }
\end{aligned}
$$

The volume charge dinsity $f_{u}=$?
using. poimoninge.ge ie $\nabla^{2} u=-\rho_{u} / \epsilon_{0}$

$$
\begin{equation*}
\Rightarrow \rho_{y}=-\nabla^{2} v\left(\epsilon_{0}\right) \quad c_{m^{3}} \tag{1}
\end{equation*}
$$

equation in Cylinarical coordinate sytuem

- in given by

$$
\begin{align*}
& \nabla^{2} v=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial v}{\partial \rho}\right]+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \psi^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \cdot v m^{2} \\
& \dot{u}=6 \rho \phi z \text { volf's } \\
& \frac{\partial y}{\partial \rho}=6 \phi z .\left|\begin{array}{l}
\frac{\partial y}{\partial \phi}=6 \rho 2 \\
\frac{\partial^{2} y}{\partial \phi^{2}}=0
\end{array}\right| \begin{array}{l}
\frac{\partial y}{\partial z}=6 \rho \phi \\
\frac{\partial^{2} y}{\partial z^{2}}=0 .
\end{array} \\
& \nabla^{2} v=\frac{1}{\rho} \frac{\partial}{\partial \rho}[\rho \cdot 6 \phi 3] \\
& \nabla^{2} v \leq \frac{6 \phi z}{\rho} \quad \vartheta \cdot m^{2} \tag{2}
\end{align*}
$$

using $q^{4}(2)$ in $q^{4}(1)$

$$
\rho_{v}=-\frac{6 \phi z}{\rho} \cdot \epsilon_{0} \quad \varphi_{m^{3}}
$$

$h_{1} @ p\left(\sqrt{2.5}, 1.249^{c}, 1\right)$

$$
S_{p}=-41.964 p c_{m^{3}}
$$

Topic 3.2
r. B, in θ rmiqueness theorem

$$
[06 \text {-ocego10, } 06 \operatorname{Jan} 2014,10-J \mid J 2013 \text {, }
$$ $02 \mathrm{~J} \mid \mathrm{J} 2011,10$. $\operatorname{Jan} 2015,10-\mathrm{J} / \mathrm{J} 2015$, 10 -J/J 2014, 06 -June 2010, 06 O6-DE2010 $\operatorname{Jan} 2008$, 06, Jund Joly 2013 ,

CBCS stheme. (0s Madists

$$
[15 \text { Jund July } 2017(5 m) C B C S]
$$

42 Stae and prove the miqueness theorem.

14 Brantw 06 -Dec/fan 2008

06 - June /July 2013
(or)
 cquation.
(05 Marks)

5 a. State and explain uniqueness theorem.
(BCD) Sphene ${ }^{\text {(Os Marks) }}$
Sol:-
Statement:- Any solution of $\begin{gathered}\text { Assistant Professor. Dept oferce } \\ \text { Emailidankanecee@n }\end{gathered}$ Email:dankan.ece@svcengg.com
+919844554940 Laplacis equation that Satisfies the same boundary conditions must be the only solution regardlen of the methock used.
ie. Uniqueness theorem State o that Laplacis equation (and abs poimoris equ) has one and only one Solution. proof. The theorem in proved by contradiction anceme Hat there are two solutions V_{1} and V_{2} of Laplaces equation, both of which satisfy the prescribed boundary conditions.
Thus $\nabla^{2} v=0 \ldots$ Laplaseiseq"
If V_{1} and V_{2} are the two solution'o then $\nabla^{2} v_{1}=0$ and $\sigma^{2} v_{2}=0 \longleftarrow$ (1)
t. E\&CE., SVCE Bangalore

On boundary the solutions ore equal

$$
\text { ie } \quad V_{1}=v_{2}
$$

Eonsider the difference in solution

$$
\begin{equation*}
i \cdot e-v_{2}-v_{-}=v_{d} \tag{3}
\end{equation*}
$$

which obeyj $\nabla^{2} v_{d}=\sigma^{2} v_{2}-\nabla^{2} v_{1}=0$
on boundary

$$
\begin{equation*}
\Rightarrow \bar{\square}^{2} v=0 \tag{5}
\end{equation*}
$$

using divergence theorem

$$
\int_{\langle v 01\rangle}(\bar{\theta} \cdot \bar{A}) d v=\oint_{\langle s\rangle} \bar{A} \cdot \overline{d s}
$$

where ' S ' is the Suftace Sorrounding volume V.
Let vetor field $\bar{A}=v_{d} \nabla v_{d}$ and using the
Vator identity

$$
\begin{aligned}
& \text { Vator identity } \\
& \nabla \cdot \bar{A}=\nabla \cdot\left(v_{d} \nabla v_{d}\right)=v_{d} \nabla^{2} v_{d}+\nabla v_{d} \cdot \nabla v_{d}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \nabla \bar{v} \cdot \nabla v_{d}=\nabla \cdot \bar{A} \tag{7}
\end{equation*}
$$

using $q^{+}(7)$ in c^{4} (6)

$$
\int_{\langle v o 1\rangle}\left(\bar{\nabla} v_{d} \cdot \nabla \cdot \nabla \dot{v}_{d \cdot}\right) d v=\oint_{\langle s\rangle} v_{d} \nabla v_{d} d s
$$

from $c q^{u}(1)$ and $q^{u}(4)$ it in Evidest that the right hand side of cq"(8) vanithes.

$$
\begin{aligned}
& \text { right hand side of } q \text { (fromid } 2) \\
& \text { i.e } v_{d} \pi v_{d}=\left(v_{2}-v_{1}\right)\left[\nabla\left(v_{2}-v_{1}\right)\right]
\end{aligned}
$$

$$
\Rightarrow \quad v_{d} \nabla v_{d}=0
$$

$\therefore \varphi^{4}(8)$ beiomes

$$
\begin{align*}
& \quad \int_{\langle v 01\rangle}^{\langle }\left(\nabla v_{d} \cdot \nabla v_{d}\right) d v=0 \\
& \frac{\text { Note: } \cdot \bar{A} \cdot \bar{A}=|A|^{2}=A^{2}}{u_{\varphi} \nabla v_{d} \cdot \nabla v_{d}=|\nabla v|^{2}} \\
& \Rightarrow \quad \int_{\left\langle v_{0} \mid\right\rangle}\left|\nabla v_{d}\right|^{2} d v=0 \quad \text { (9) }
\end{align*}
$$

Since the integration in abouys positive and cannot be zero.

Q4(9) is true only when $\nabla v_{d}=0$
and $q^{4}(10)$ in true only when

$$
\begin{aligned}
& v_{d}=0 \text { (ब) } v_{d}=1 \text { (comtant) } \\
& i \cdot e \quad v_{d}=0 \Rightarrow v_{2}-v_{1}=0 \\
& \Rightarrow v_{2}=v_{1}
\end{aligned}
$$

(or) $\left(v_{2}-v_{1}\right)=$ corstant Everpuhere.
\Rightarrow Showir Eery where showing that 19 and k_{2} buso different solution's of the same problem.

Sol- given $J=X Y$ is a Sols of Laplace cp ${ }^{4}$.
i.e $\nabla^{2} \bar{V}=0$ and $\nabla^{2}(X Y)=0<0$
and $X=f^{n}(x)$ alone \& $Y=f^{4}(y)$ alone
$i) \quad V=100 \mathrm{X}$
the Laplace $\varphi^{4} \nabla^{2} v=0$

$$
\begin{gathered}
\nabla^{2}(100 x)=100 G^{2} x=100 \frac{\partial^{2} x}{\partial x^{2}} \\
=100 x^{\prime \prime} \neq 0
\end{gathered}
$$

ie $\nabla^{2} x+0$ bl ' x ' in centnown ie cit can by any degree.
$\therefore=100 x$ is not a solution of a Laplace b
equation.
ii) $\quad V=80 X Y$

$$
\begin{aligned}
& \nabla^{2} V=0 \\
& \Rightarrow \nabla^{2}(80 \times y)=80 \nabla^{2}(\times y) \\
&=0 \quad \text { ic } \nabla^{0}\left(\text { from } \varphi^{4}(1)\right)
\end{aligned}
$$

$\therefore V=80 X Y$ is a solution of Laplace φ^{4} :
iii) $\quad V=3 x y+x-b y$
$\nabla^{2} V=0$
-

$$
\begin{aligned}
\Rightarrow \nabla^{2} v & =\nabla^{2}[3 x y+x-b y] \\
& =3 \nabla^{2}(x y)+\nabla^{0}(x)-b \nabla^{2}(y) \\
& =\frac{\partial^{2}}{\partial x^{2}}(x)-b \frac{\partial^{2}}{\partial y^{2}}(y)=0,0(0)=0 \\
\Rightarrow & \square^{2}(3 x y+x-b y)=0
\end{aligned}
$$

\therefore given potential $Y=3 x y+x-b y$ volf'n is a Solution of Laplacen equation.

Show eung shoroingtt at V_{1} and v_{2} canot be
difternt solution's of the sane poroblem. that praved.
Applications: Examples of the solution of Laplace's equation
3.3 3.39. Capacitance of a parapallel
plate capacitor. 10.DEC 2013/an 2014

(or).
(06 Marks)

10- June /July 2014
$\not \subset A^{\prime}$
The two metal plates haveg an ares 'A and a separnion. 't' fom a parmel plate capaitor. The upper phate is held at a potental Xisut buer plate is pronded. Detemine:

1) Potential distribution V_{0} Dankan V Gowida wrect., (Ph. 0,

(o)

x Tig parallel plate
[apcutor plardalong
'z'ain.
@ $z=0 \mathrm{~m} ; \quad V=$ ovolt's
@ $z=d m ; V=v_{0} v o H^{\prime} ?$

Lonsider a porallel plate Capacitor placed along ' 3 ' anis, and plates Seporated by a distance of 'd m . the potential $V=V_{0}$ volt' applicd @ $z=d m$ plate and $V=o v o l f ?$
a) $Z=0 \mathrm{~m}$ plate.

Eonsider a Laplace oq

$$
\begin{gathered}
\nabla^{2} v=0 \quad v / m \\
\frac{\partial^{2} x}{\partial x^{2}}+\frac{\partial z}{\partial y^{2}}+\frac{\partial^{2} x}{\partial z^{2}}=0
\end{gathered}
$$

Since Eapacitor in planed along ' z^{\prime} oxin $: v=f^{\prime \prime}(z)$ alone

$$
\Rightarrow \nabla^{2} v=\frac{\partial^{2} v}{\partial z^{2}}=0
$$

Solve for V
ie integrate w.r.t 3

$$
\begin{align*}
& \frac{\partial v}{\partial z}=c^{2} \leftarrow 0 \tag{1}\\
\Rightarrow & -v=c_{1} z+c_{2}<(B) \tag{8}\\
\Rightarrow &
\end{align*}
$$

$$
0=c_{1}(0)+c_{2} \Rightarrow c_{2}=0
$$

and $B \dot{c}_{2}$ ie $V=V_{0}$ volth @ $z=d \mathrm{~m}$

$$
v_{0}=c_{1}(d)+0 \Rightarrow c_{1}=v_{0} / d
$$

$\therefore c q^{4}(1)$ becomes

$$
V=\frac{V_{0}}{d} z \text { volt'n. }
$$

39 potential dintribution bw porallel plates.
using Gradient concept $\left.\sqrt{E}=-\nabla V / v_{01 t}\right) / m$.

$$
\bar{F}=-\frac{\partial v}{\partial z} \overline{a_{z}} v / m \Rightarrow \text { since } \frac{v=f^{u}(z) \text { only }}{\left(\operatorname{From}^{\prime}(a)\right)}
$$

fromen ${ }^{4}(1)$

$$
\bar{F}=-c_{1} \overline{a_{z}}=-\frac{v_{0}}{d} \overline{a_{3}}
$$

Note:- - ve sign indicat fred E aht towurds - $\mathrm{dran}_{i c}$
\qquad

$$
\therefore \quad \bar{F}=\frac{-v_{0}}{d} \overline{a_{z}}
$$

$$
|\bar{E}|=\frac{V_{0}}{d} v / m
$$

$\bar{E}($ fild $)$ dintribution buu poralle plates.

$$
\bar{D}=\in \bar{E} \varphi_{m}{ }^{2} \Rightarrow|\bar{D}|=\in|E|=\rho_{S}=\theta / A \cdot \varphi_{m}{ }^{2}
$$

$$
\Rightarrow|\bar{D}|=\epsilon \frac{V_{0}}{d}=\int_{S}=\frac{Q / A}{A} \quad \rho_{m^{2}}
$$

$$
\Rightarrow \epsilon \cdot \frac{V_{0}}{d}=\frac{Q}{A}
$$

He Capacitance blw parallel plates is $C=Q / V_{0}$

$$
L=\frac{Q}{V_{0}}=\frac{\varepsilon A}{d} \text { faradn }
$$

$\Rightarrow \rho_{S}= \pm \in|\bar{E}| \rho_{n}{ }^{2}$ suttone chorge demity.
x 0 brocedure to Solve Laplace of Pept. of ECEE, B.M.S.TT \& M

Ly note Laplainget/Boundaryvalue (problemis).
Step1. Eonsider the Laplace eq ${ }^{4}$

$$
\nabla^{2} V=0
$$

$1^{a}-2^{\text {nd }}$ order partial differatial iop
Integrade trwice Solve for V

Constanta sioy C_{1} and C_{2}.

Step2. Wsing Buendary Conditionin solve
Subtitute C_{1} and C_{2} in the Boutt
Expronion of V. 2 potential. diotribation
b
Step 3. lesing Concept of gradirnt i.e $\vec{E}=-\nabla V$ vim find field distribution.

Dept of E\&CE, SVCE

Equating thene two ferm? solve for

problem

$$
2=2=0,2=5 \mathrm{~mm}
$$

equation find surface charge densities on the discs. [Take $e=e_{0}=8.854 \times\left[0^{73} \mathrm{~F} / \mathrm{m}\right]$.

Lonsider the Laplayiecp $\nabla^{2} v=0 . \quad 4 / m^{2}$

$$
\begin{aligned}
& \text { er the Laplayecp } \\
& \frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2} y}{\partial z^{2}}=0 \\
& 0
\end{aligned}
$$

Since parallel conducting dines are planed along 3 anis

$$
\Rightarrow \nabla^{2} v=\frac{\partial^{2} y}{\partial z^{2}}=0
$$

solve for V

$$
\Rightarrow \frac{\partial V}{\partial z}=c_{1}
$$

using BC
@ $z=0 \mathrm{~mm}$
$V=06014{ }^{\prime}$

$$
\Rightarrow C_{2}=0
$$

and @z $2=5 \mathrm{~mm} \quad V=100$ volto

$$
\begin{gathered}
100=c_{1}(5 \mathrm{~m}) \Rightarrow c_{1}=20 \mathrm{k} \\
\therefore \quad G=20 \times 10^{3} \mathrm{z}
\end{gathered}
$$

$$
\text { and } \bar{E}=-\nabla V=-\frac{\partial V}{\partial z} \bar{a}_{z} \xrightarrow[m_{i}]{ } \operatorname{bog}_{\text {ploud }} \text { along }
$$ along z'

but $\frac{\partial v}{\partial z}=c_{1}$ adnio

$$
\begin{aligned}
\bar{F}= & -\left[c_{1}\right] \overline{a_{2}}=-20 k a_{3} \mathrm{v} / m \\
\Rightarrow & |\bar{E}|=\left.20 \mathrm{k} V\right|_{m} \\
|\bar{D}|= & \epsilon|\bar{E}|=\left|\rho_{S}\right|=E(20 \mathrm{k}) \mathrm{cm}_{m}^{2} \\
& \left|\left|\rho_{S}\right|=177.08 \mathrm{nc}_{m}^{2}\right.
\end{aligned}
$$

(00) $\int_{S_{+}}=177.08 \mathrm{ncm}^{2}$ (upperdinc)
and $\rho_{S-}=-177.08 \mathrm{nc}_{\mathrm{m}}{ }^{2}$: (Lowndioc).
$\pm \infty$
(60) $\rho_{s}= \pm 17.7 .08 \mathrm{nem}_{\mathrm{m}}{ }^{2}$

Topic 3-2b Capacitance of a co-axial cable.
Using laplace's equation, prove that the potential distribution at any point in the region betwect two concentric cylinders of radii A and B as $v=v_{0} \frac{\ln (\beta / B)}{\ln (\beta)}$ (Vols)
(or)
\qquad 10-DEC2011/Jan 2012
Use Laplace's equation to find the capacitance per unit length of a co axial cable of inner radius ' a ' m and outer radius ' b ' m. Assume $v=v_{0}$ at $r=a$ and $v=0$ at $r=b$. (0 8Marks)

02 - June / July 2012
Applying Laplace equation show that the potential in the space between the two conductors Appymg Laplace equation show that the potent al in the space between be two
of a co-axial cable of infinite tenge is $V=Y_{0} \frac{\ln \left(R_{2}-n\right)}{\ln \left(R_{2}, R_{1}\right)}$, where $R_{1}<r<R_{2}$
\qquad pub为
$V_{0} \rightarrow$ Potential on the mimer conductor
$R_{1} \rightarrow$ Radius of the inner conductor
$\mathrm{R}_{2} \rightarrow$ Radius of the outer conductor

$$
\left.\xrightarrow\left[{V=V_{0} \ln \xrightarrow{\left.\left(C_{2}\right)\left(R_{2}\right) R_{2}\right)} \rightarrow R_{1}<\gamma<R_{2}, R_{1}}\right)\right]{ }
$$

$$
06-\tan 2013
$$

Derive the expression for capacitance of a co-axial cable using Laplace's equation.

$$
\begin{aligned}
& \text { (117 Marks) }
\end{aligned}
$$

the given probilem related to cylindrical Coordinate System. \therefore the Laplavein cqu in cylindrical [oordinate sjstem is

$$
\begin{gathered}
\cdots i \cdot \nabla^{2} V=0 . \\
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial V}{\partial \rho}\right]+\frac{1}{\rho^{2}} \frac{\partial^{2} / v}{\partial \phi^{2}}+\frac{\partial^{2} A}{\phi^{2}} \\
\nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial V}{\partial \rho}\right]=0 \\
\Rightarrow \rho \neq 0 \quad \therefore \frac{1}{\rho} \neq 0 \\
\frac{\partial}{\partial \rho}\left[\rho \frac{\partial V}{\partial \rho}\right]=0
\end{gathered}
$$

$$
b c_{2} V^{\prime} \neq f^{4}(\phi, z) .
$$

$$
\begin{aligned}
& \text { Ot ony } \\
& \text { Cimponent is } \\
& y=f^{n}(\rho) \text { alor }
\end{aligned}
$$

Integrating once nort f'

$$
\begin{aligned}
& \rho \frac{\partial V}{\partial \rho}=C_{1} \\
& \frac{\partial V}{\partial \rho}=\frac{C_{1}}{\rho} \\
\Rightarrow & -\dot{\rho}=C_{1} \ln \rho+C_{2} \quad \text { volto }
\end{aligned}
$$

using Boundary Condition's

$$
\text { ming Boundary Londition } \quad S=b m ; K I=0 \text { volt. }
$$

$$
\begin{equation*}
0=c_{1} \ln (b)+c_{2} \alpha \tag{1}
\end{equation*}
$$

BC_{2}
(a) $\rho=a m ; V=V_{0}$ volt'

$$
\begin{equation*}
i_{0}=C_{1} \ln (a)+C_{2} \tag{2}
\end{equation*}
$$

q^{4} (2) $-q^{4}(1)$

$$
\bar{V}_{0}=c_{1} \ln (a \mid b) \Rightarrow c_{1}=\frac{V_{0}}{\ln (a \mid b)}
$$

and using $q^{4}(1)$ i.e $c_{2}=-c_{1} \ln (b)$

$$
C_{2}=-\frac{V_{0}}{\ln (a \mid b)} \ln (b)
$$

\therefore the potential dintribation blu [antootriccylinder

$$
\begin{aligned}
& \therefore \text { the potential } \\
& \text { is } \quad V=\frac{V_{0}}{\ln (a \mid b)} \ln (\rho)-\frac{V_{0}}{\ln (a / b)} \ln (b)
\end{aligned}
$$

46
(o)

$$
r i=\frac{V_{0}}{1+0} \ln (\rho \mid b) \underbrace{}_{<\text {poltent }}
$$ <potential dentribution blw the Co-onial cable.

the Electric field Iffornity $\vec{F} v / m$ from conceptof gradient

$$
\bar{E}=-\nabla V V / m=-\frac{\partial V}{\partial \rho} \bar{a}_{\rho} V / m
$$

Snce é fug s'alone from $p^{4}(a)$.

$$
E=-\frac{c_{1}}{\rho} \overline{a_{\rho}} v / m=-\frac{v_{0}}{\rho \ln \left(a_{6}\right)} \overline{a_{\rho}} v / m
$$

(a)

$$
\begin{align*}
& \overline{\mathcal{L}=+\frac{V_{0}}{\rho \ln (b \mid a)} \overline{a_{p}}} \\
& |\bar{E}|=\frac{V_{0}}{\rho \ln (b \mid a)}, V / m
\end{align*}
$$

\leftarrow firld dintribution blw'the Co-anial cable $a \leq \rho \leq b$

$$
\rightarrow \bar{P}=\in E \varphi_{m}{ }^{2}
$$

(6) $|\bar{D}|=E|\bar{\Sigma}|=\rho_{S}=\frac{Q}{4^{A}} \varphi_{m}$?
A-Suertare araof the co-axial cable with radices g'm.

$$
E|E|=\frac{Q}{A} \mathrm{~cm}^{2}
$$

using i9 (i)

$$
\begin{aligned}
& \quad \in\left[\frac{v_{0}}{\rho \ln (b \mid a)}\right]=\frac{\theta}{2 \pi \rho L} \quad \mathrm{~m}^{2} \\
& \Rightarrow \quad \frac{\epsilon V_{0}}{\beta \ln (b / a)}=\frac{Q}{2 \pi \rho \alpha}
\end{aligned}
$$

The Capacitance blw two concentric coorial cable is $G=Q / v_{0}$ Farud'n

$$
\begin{aligned}
& G=\frac{Q}{V_{0}}=\frac{2 \pi \epsilon L}{\ln (b \mid a)} \\
& \therefore \neq C=\frac{2 \pi \epsilon L}{\ln (b \mid a)} \text { Farad' }
\end{aligned}
$$

[apacitance por unit Length $\left[G / \alpha=\frac{2 \pi \epsilon}{\ln (b / a)} \mathrm{fm}\right.$
problem io
cytherical coordinates have wages of zero and V, respectively. It the electric field
intensity $\bar{E}=8.28 * 10^{3}$ ar V / m at $r=15 m m$, starting from Laplace equation find V_{n} and V_{O}

(6) Marks)

Solve:

given
(a) $a=5 \mathrm{~mm} V=0$ volt's
(a) $b=25 \mathrm{~mm}^{-1}-\mathrm{V}_{0}$ voter
and

$$
\frac{\text { ind }}{E}-8.28 \times 10^{3} \dot{a}_{p} \mathrm{~V} / \mathrm{m}
$$

at $\rho=15 \mathrm{~mm}$.
using Laplacincqu $A^{u}=0 \quad v / m^{2}$

$$
\begin{aligned}
& \frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial v}{\partial \rho}\right]+\frac{1}{\rho^{2}} \frac{\partial^{2} x_{1}}{\partial \phi^{2}}+\frac{\partial^{2}{ }_{v}}{\partial z^{2}}=0 \\
& 0 b_{2} v=f^{4}(\rho) \text { only. } \\
& \frac{1}{\rho} \frac{\partial}{\partial s}\left[\rho \frac{\partial v}{\partial s}\right]=0 \\
& \rho \neq 0 \quad \therefore \frac{1}{\rho} \neq 0 \\
& \Rightarrow \quad \frac{\partial}{\partial s}\left[s \frac{\partial v}{\partial s}\right]=0 \\
& \rho \frac{\partial v}{\partial \rho}=c_{1} \\
& \Rightarrow \frac{\partial V}{\partial \rho}=\frac{c_{1}}{\rho}
\end{aligned}
$$

using Boundary Eondition's
i.e@ $a=5 \mathrm{~mm} ; \quad$ = OVOH's

$$
\begin{equation*}
\therefore 0=c_{1} \ln (5 m)+c_{2} \tag{1}
\end{equation*}
$$

and $@ \rho=25 \mathrm{~mm} ; V=V_{0}$ volds

$$
\begin{equation*}
v_{0}=c_{1} \ln (25 m)+c_{2} \tag{2}
\end{equation*}
$$

Solving (1) \& (2)

$$
\begin{aligned}
& V_{0}=c_{1} \ln (25 / 5) \\
& V_{0}=c_{1} \ln (5) \Rightarrow c_{1}=\frac{10}{\ln (5)}
\end{aligned}
$$

\%
fromeq 0

$$
C_{2}=-\frac{V_{0} \ln (5 \mathrm{~m})}{\ln (5)}
$$

\therefore the potential

$$
\begin{aligned}
& \text { Le potential } \\
& V=\frac{V_{0}}{\ln (5)} \ln (\rho)-\frac{V_{0} \ln (5 m)}{\ln (5)} \\
& V=\frac{V_{0}}{\ln (5)} \ln (f \mid 5 m) \quad \text { Volls }
\end{aligned}
$$

the ficld $\bar{F}=-\nabla V=-\frac{\partial v}{\partial \rho} \overline{a s} v / \mathrm{m}$.

$$
\overline{\mathcal{L}}=-\frac{c_{1}}{\rho} \bar{a}_{y} v / m=\frac{-v_{0}}{\rho \ln (5)} \overline{a_{\rho}} v / m
$$

given. $\bar{F}=-8.28 \times 10^{3}$ ay $v / m @ \rho=15 \mathrm{~mm}$.

$$
\begin{aligned}
& \therefore \bar{F}_{\varrho=15 \mathrm{~mm}}=\frac{-V_{0}}{(15 \mathrm{~m}) \ln (5)} \overline{a_{\rho}}=-8.28 \times 10^{3} \overline{a_{\rho}} \\
& V_{0}=15 \mathrm{~m}(\ln 5)\left(8.28 \times 10^{3}\right) \\
& V_{0}=199.892 \text { Volt } \text { or } V_{0} 199.9 \text { volt'n }
\end{aligned}
$$

To find $\rho_{S}^{\prime} @ \rho=25 \mathrm{~mm}$ i eqor cylinder.

$$
\begin{aligned}
& \therefore \varphi \rho \rho_{S}=+43.986 n \rho_{m^{2}} \\
& \rho_{S} \text { atginner.Cyliner ie } \rho=5 \mathrm{~mm} . \\
& \rho_{S}=-8.854 \times 10^{-12} \times \frac{199.8}{(5 \mathrm{~m})(\ln 5)}=-219.83 \mathrm{nc} \rho_{\mathrm{m}^{2}}
\end{aligned}
$$

$$
\nless \rho_{S}=-219.8 \mathrm{ncf}_{\mathrm{m}}{ }^{2}
$$

and $\bar{D}=E \bar{E} @ \rho=25 \mathrm{~mm}$
$\therefore \times \dot{C}=\bar{D}=\bar{D} \cdot \overline{a_{\rho}}=-43.986 \overline{a_{\rho}} \mathrm{n} f_{m}{ }^{2}$

$$
\begin{aligned}
& \rho_{S}=|\bar{D}|=E|\bar{E}|=\epsilon\left[\frac{v_{0}}{\rho \ln (5)}\right] f_{m}{ }^{2} \\
& \rho_{S}=8.8 .54 \times 10^{-12} \frac{199.9}{(25 \mathrm{~m})(\ln (5)]}=43.986 \mathrm{n} \mathrm{gm}^{2} \\
& \dot{x} \\
& \rho_{S}=+43.986 \mathrm{nc}_{\mathrm{m}}{ }^{2}
\end{aligned}
$$

bes. Find $[\mathbb{E} \mid$ at $P(3,1,2)$ for the feld of: (a) wo coaxial conducting cylinders. $V=50 \mathrm{~V}$ at $\rho=2 \mathrm{~m}$, and $V=20 \mathrm{~V}$ at $\rho=3 \mathrm{~m}$; (b) wo mdial onducting phanes $V=50 \mathrm{~V}$ it $\phi=10^{\circ}$, and $\gamma=20 \mathrm{~V}$ at $\phi=30^{\circ}$. $10 J 1 J 2016^{2}$ $A n s .23 .4 \mathrm{~V} / \mathrm{mm} ; 27.2 \mathrm{Vmn} \quad \phi=10^{\circ} \quad V=20 \mathrm{~V}$ at $\phi=30^{\circ}$

06 - sune/suly 20112

solu (a). $v=20 \mathrm{~V} \quad \mathrm{~s}=3 \mathrm{~m}$
Boundeny Conditionin ($B C$ 'n)
@ $\rho=2 \mathrm{~m} \quad V=50$ Volt:
and
@ $\rho=3 \mathrm{~m} \quad V=20$ volti.

(0)
$\rho, 3^{m}$

She \bar{T} in of $\overline{\text { of radial component ' } \rho \text { alone }}$

$$
\begin{aligned}
& V^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial l}{\partial \rho}\right]=0 . \\
& \Rightarrow \rho \neq 0 f \frac{1}{\rho} \neq 0 \\
& \therefore \quad \frac{\partial}{\partial \rho}\left[\rho \frac{\partial V}{\partial \rho}\right]=0 \\
& \Rightarrow \rho \frac{\partial Y}{\partial \rho}=c_{1} \quad \text { and } V=c_{1} \ln (\rho)+c_{2} \text { uol } \rho
\end{aligned}
$$

using Boundary Condition's
(a) $\rho=2 \mathrm{~m}, \quad V=50$ volt's

$$
\begin{equation*}
50=c_{1} \ln (2)+c_{2} \tag{1}
\end{equation*}
$$

(a) $\rho=3 \mathrm{~m} ; \quad \bar{V}=20$ Volts

$$
\begin{equation*}
20=c_{1} \ln (3)+c_{2} \tag{2}
\end{equation*}
$$

Solving (1) and (2)
and from $Q^{4}(2) \quad C_{2}=20-C_{\ln }(3)$

$$
\begin{aligned}
& C_{2}=20-\frac{30}{\ln (2 / 5)} \times \ln (3) \\
& C_{2}=-61.2853
\end{aligned}
$$

$$
\therefore \quad V=-73.989 \ln (\rho)-61.28
$$

Volto

$$
2 m \leq 1 \leq 3 m .
$$

Thefiald dintribution

$$
\begin{aligned}
& \bar{E}=-\nabla V=-\frac{\partial V}{\partial \rho} \bar{a}_{\rho} v / m . \\
& \bar{F}=\frac{-c_{1}}{\rho} \overline{a_{\rho}}=+\frac{73.989}{\rho} \bar{a}_{\rho} \mathrm{v} / \mathrm{m} . \\
& \bar{F} @ P(3,1,2) \Rightarrow \begin{array}{l}
\rho=\sqrt{x^{2}+y^{2}}=\sqrt{9+1}=\sqrt{10} \mathrm{~m} \\
x, y, z
\end{array} \Rightarrow \tan ^{2}(y / x)=18.43^{\circ} .
\end{aligned}
$$

少。

$$
\overline{\bar{F}_{p}}=224969 \overline{a_{x}}+7.396 \overline{a_{y}} \quad \times 1 m \text { - In [artesian } \quad \begin{gathered}
\text { Coordinate } \\
\text { System. }
\end{gathered}
$$

Coordinate system.
and $\left|\bar{E}_{p}\right|=\sqrt{22.1969^{2}+7.396^{2}}$

$$
=23.397 \simeq 23.4 \text { volt's }
$$

$$
\hat{x p}\left[\left|\bar{E}_{p}\right|=23.4\right. \text { woltin }
$$

$$
\begin{aligned}
& P(3,1,2) \Longrightarrow P\left(\sqrt{10}, 18.43^{\circ}, 2\right) . \\
& \text { and } \rho=\sqrt{10} \mathrm{~m} \text {. } \\
& \overline{\mathcal{F}}=\frac{7.3 .989}{\sqrt{10}} \overline{a_{s}} v /_{m}=23.397 \overline{a_{\rho}} \mathrm{v} /_{\mathrm{m}} \\
& \begin{array}{r}
\overline{\mathcal{L}_{p}}=23.397 \bar{a}_{\rho}
\end{array} \psi_{m} \begin{array}{c}
\text { in Cylindricef } \\
{\left[\cdot S^{\prime}\right.}
\end{array} \\
& E_{9}=23.397 \mathrm{v} / \mathrm{m} . \\
& E_{\phi}=0 \mathrm{~V} / \mathrm{m} E_{z}=0 \mathrm{~V} / \mathrm{m} \\
& \mathcal{E}_{p} \\
& \overline{F_{p}}=\dot{F}_{x} \overline{a_{x}}+E_{y} \overline{a_{y}}+E_{z^{\prime}}^{0} \overline{a_{z}} \quad \text {./m. } \\
& F_{x}=F_{\rho} \cos (\phi)=23.397 \cos \left(18.43^{\circ}\right)=22.1969 \mathrm{~V} / \mathrm{m} \\
& F_{y}=E_{\rho} \sin (\phi)=23.397 \sin \left(18.43^{\circ}\right)=7.396 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

using Laplace φ^{4}

$$
\begin{aligned}
& T^{2} U=0 \\
& B C^{\prime} D \\
& @ \phi=10^{\circ} ; V=50 \text { voli }
\end{aligned}
$$

@ $\phi=30^{\circ}, \theta^{2} 20$ volt

$$
\nabla^{2} V=\frac{1}{8} \frac{\partial^{2} v}{\partial \phi^{2}}=0
$$

$$
\rho \neq 0 \quad \therefore \frac{1}{\rho} \neq 0
$$

$$
\Rightarrow \frac{\partial^{2} v}{\partial \phi^{2}}=0
$$

Intyrating ort ϕ '

$$
\begin{aligned}
& \frac{\partial v}{\partial \phi}=c_{1} \\
& V=c_{1} \phi+c_{2}
\end{aligned}
$$

$$
V=c_{1} \phi+c_{2} \quad V_{0} H^{b}
$$

using boundary cond" @ $\phi=10^{\circ} \quad \bar{y}=50$ voltin

$$
\begin{align*}
& 50=\frac{\pi}{18} c_{1}+c_{2}<0 \\
& \text { a } \phi=30^{\circ} ; \quad V=20 \text { volt's } \\
& (a)(3 \pi 18)^{\circ} \\
& 90=\frac{3 \pi c_{1}}{18}+c_{2}<(2)
\end{align*}
$$

$$
=\left(\frac{\pi}{18}\right)^{G}
$$

$$
\pi^{c}=180^{\circ}
$$

$$
\overline{1^{\circ}}=\left(\frac{11}{180}\right)^{c}
$$

$$
10^{\circ}=\left(\frac{\pi}{18}\right)^{c}
$$

$$
30^{\circ}=\left(\frac{3 \pi}{88}\right)^{a^{\circ}}
$$

Solving eq"(1) and (2)

$$
\begin{aligned}
30 & =-\frac{2 \pi C_{1}}{18} \Rightarrow C_{1}=-85-943 \\
C_{2} & =20-\frac{3 \pi 6}{18} \\
C_{2}=90-\frac{318}{18}(-85943)=64.999 & \approx 65
\end{aligned}
$$ fromep"(2)

- potential cintribution
$V==^{-85.94} \phi+65$
blw planes $\begin{aligned} & \phi=10^{\circ} \text { to } \\ & \phi=30^{\circ} .\end{aligned}$

$$
\begin{aligned}
& \overline{\mathcal{F}}=-\left.\frac{\partial v}{\rho \partial \phi} \overline{a_{\rho}} v\right|_{m}=-\frac{c_{1}}{\rho} \bar{a}_{\rho} \\
& \therefore \bar{F}=\left.\frac{8544}{\rho} a_{\rho} \quad v\right|_{m}=+\frac{85.943}{\rho} \bar{a}_{\rho} v /_{m} .
\end{aligned}
$$

Let GInorial

$$
\begin{aligned}
& P(3,1,2) \Longleftrightarrow \frac{1}{P\left(\sqrt{10}, 18.43^{\circ}, 2\right)} \\
& \bar{L}_{p}=\frac{85.94}{(\sqrt{10})} \overline{a_{9}}=27.1766 \bar{a}_{9} v / \mathrm{m} \\
& \overrightarrow{F_{p}}=27.1766 \bar{a}_{p} \quad \mathrm{~V} / \mathrm{m}, \quad \delta_{f}=27.1766 \mathrm{~V} / \mathrm{m} \\
& E_{\phi}=E_{3}=0 \mathrm{~V} / \mathrm{m} \\
& \overline{F_{p}}=F_{x} \overline{a_{x}}+F_{y} \overline{a_{y}}=F_{\rho} \operatorname{con} \phi \overline{a_{x}}+E_{\rho} \sin \phi \overline{a_{y}} \quad V / m \\
& =27.176 \cos \left(18.43^{\circ}\right)+27.176 \sin \left(18.43^{\circ}\right) \overline{a_{y}}
\end{aligned}
$$

$$
\therefore \vec{F}_{p}=25.782 \overline{a_{x}}+8.5915 \bar{a}_{y} y / m .
$$

In rutagulor G S
(6) $\left(\left|\bar{E}_{p}\right|=\left.\left.27.176\right|_{n}\right|_{n}\right.$.

06-DEC2011/fan 2012
(or)

$$
\begin{aligned}
& 3.3 \mathrm{C} \\
& \text { on of Coinentric } \\
& \text { (r) } \\
& \text { Sol:- @any radial ditanairs } \\
& \text { BCD. }
\end{aligned}
$$

Assistant Professor, Dept. of E\&CE 10-Jan 2013
Emal:dankan.ecelasvengg.com
c. Solve the Laplace equation for the potential field and find the capacitance in homodec/Jan 2016 region between two conenatic conducting spheres with radii and b such that $b>a$ if $v=0$ at $t=b, V=V$ at $t=a$. \quad (os Marks)
radius ' $a m$ and outerradive $b \mathrm{~m}$. where $b>a m$.
@ $r=b m$. Fig. Concentric Sphene. $V=0$ volts $\quad \begin{array}{ll}(b>a)^{m} \\ & a \leq r \leq b m .\end{array}$ at $r=b m$.
the given problem related to spherical $C, S \therefore$ the Laplace $\operatorname{sinu} V=f^{u}(\gamma)$

$$
\begin{aligned}
& \text { equation in S.C.S is } \\
& \begin{aligned}
\nabla^{2} V= & \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial y}{\partial r}\right]
\end{aligned} \quad+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial y}{\partial \theta}\right] \\
& \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}(v}{\partial \phi^{2}}=0 \\
& 0 \text { sine } V=f^{4}(r)
\end{aligned}
$$

W.K.t the potential V is afuntion of radial component ' r ' only \therefore the Laplace eq" becomes

$$
\begin{aligned}
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[\gamma^{2} \frac{\partial v}{\partial r}\right] \\
& =0 \\
& r^{2} \neq 0 \quad \therefore \frac{1}{r^{2}} \neq 0 \\
\Rightarrow & \frac{\partial}{\partial r}\left[r^{2} \frac{\partial v}{\partial r}\right]=0
\end{aligned}
$$

Integrating writ ir.

$$
\begin{aligned}
& r^{2} \frac{\partial v}{\partial r}=c_{1} \\
& \frac{\partial v}{\partial r}=\frac{c_{1}}{r^{2}}
\end{aligned}
$$

again Integrating w.r.t r

$$
V=-\frac{c_{1}}{r}+c_{2} \text { volt? }
$$

using Boundary conditions.
$B C^{n} @ r=a m \quad v e V_{0} u_{0} l i$.

$$
\begin{equation*}
\dot{v}_{0}=-\frac{c_{1}}{a}+c_{2} \tag{1}
\end{equation*}
$$

(a) $\gamma^{\circ}=b m \quad V=O \mathrm{VOH}^{\circ} \mathrm{n}$

$$
\begin{align*}
& 0=\frac{c_{1}}{b}+c_{2} \tag{2}\\
& e_{q^{4}}(1)-\varphi^{4}(2) \\
& v_{0}= c_{1}\left[\frac{1}{b}-\frac{1}{a}\right] \\
& \Rightarrow c_{1}=\frac{V_{0}(a b)}{a-b}
\end{align*}
$$

from $c_{q}^{4}(2)$
and

$$
c_{2}=+c_{1} / b
$$

$$
C_{2}=\frac{V_{0} a}{(a-b)}
$$

\therefore the potertial V becomes

$$
\begin{aligned}
& V=-\frac{V_{0}(a b)}{(a-b)}+\frac{V_{0} a}{(a-b)} \\
& \text { (o) } \\
& V=+\frac{V_{0}(a b)}{(b-a)}-\frac{V_{0} a}{(b-a)} \text { Votiontial dentribution } \quad a \leq r \leq b m .
\end{aligned}
$$

The fild $\overline{\mathcal{E}}=-\frac{\partial v}{\partial r} \overline{a r}=-\nabla v \quad v / \mathrm{m}$
bus U in $f^{n}(\gamma)$ alone

$$
\epsilon \frac{V_{0}(a b)}{(b-a) \gamma^{2}}=\frac{Q}{4 \pi \gamma^{2}}
$$

Areact sphere with radius ' r ' $a<r<b m$
\Rightarrow Capacitance blu Concentric spherio

$$
\begin{array}{r}
\text { Capacitance }=\frac{4 \pi \epsilon(a b)}{(b-a)}=\frac{4 \pi \epsilon}{V_{0}}=\frac{4 \pi \epsilon}{a b} \\
=4 \pi \epsilon /\left[\frac{1}{a}-\frac{1}{b}\right] \\
V_{\text {Page 315 }}^{b y}-\frac{\alpha}{a b}
\end{array}
$$

$$
\begin{aligned}
& \therefore E=-\frac{c_{1}}{r^{2}} \bar{a}_{r}=-\frac{V_{0}(a b)}{(a-b) r^{2}} a_{r}=\frac{V_{0}(a b)}{(b-a) r^{2}} \text { ar } y_{m} \\
& \pm \infty \quad \bar{E}=\frac{V_{0}(a b)}{(b-a) r^{2}} \text { ar } V / m \in \begin{array}{c}
\text { fild dintribution blw } \\
a \leq r \leq b m
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& E \frac{V_{0}(a b)}{(b-a) r^{2}}=\frac{Q}{A}
\end{aligned}
$$

$$
C=\frac{4 \pi \epsilon}{\left[\frac{1}{a}-\frac{1}{b}\right]} \int_{\text {Faradic }}^{\text {Where }}
$$

Conducting spherical shells with radii $a=10 \mathrm{~cm}$ and $b=30$ con are mamamod at a
 - region between the shells. If $\varepsilon_{1}-2.5$ in the region. determine the to tat when induced on the shells and the capminance there on.
solus: Many a dial dentance 'r m $0.1 m<r<0.3 m$

Boundary Condition's?
(a) $a=0.1 \mathrm{~m} \quad \mathrm{~V}=10 \mathrm{y} \mathrm{Y}$ th . and

$$
\text { and } b=0.3 \mathrm{~m} ; \mathrm{V}=0 \text { Volt: }
$$

$\rho_{s}=$?
$c=0 / 1 / 0_{0} \quad$ fig. Concurnicsp $10 \mathrm{~cm}<r<30 \mathrm{~cm}$ $b>a m$.

$$
\epsilon_{r}=2.5 \mathrm{flm}
$$

and $\theta=$?

$$
\epsilon=\epsilon_{0} G_{r} \mathrm{Pl}_{\mathrm{m}}=2.5 \epsilon_{0} \mathrm{Plm} .
$$

Laplacian c qu $\nabla^{2} V=0$

$$
\begin{aligned}
& \text { ide } \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial y}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial y}{\partial \theta}\right] \text {. } \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} 4}{\partial \phi^{2}}=0 \\
& \begin{array}{r}
\text { O bes } v=\text { full } \\
\text { alone }
\end{array} \\
& r^{2} \neq 0 \therefore \frac{1}{r^{2}} \neq 0 . \\
& \Rightarrow \nabla^{2} v=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial v}{\partial r}\right]=0 \\
& \Rightarrow r^{2} \frac{\partial v}{\partial r}=c_{1}
\end{aligned}
$$

$$
\Rightarrow \frac{\partial V}{\partial \gamma}=\frac{c_{1}}{\gamma^{2}}
$$

$$
V=\frac{-c_{1}}{r}+c_{2}
$$

using $B C$? @ $a=r=0.1 \mathrm{~m} \quad V=100$ Volt's

$$
\begin{equation*}
10 \overline{0}=\frac{-c_{1}}{0.1}+c_{2} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
@ r=b & =0.3 m ; v=0 \text { volt' } \\
0 & =-\frac{c_{1}}{0.3}+c_{2} \not 2 \\
c_{1} & =\frac{100(0.1 \times 0.3)}{(0.1-0.3)}=-15 \Rightarrow c_{1}=-15 \tag{2}\\
c_{2} & =\frac{100(0.1)}{(0.1-0.3)}=-50 \Rightarrow c_{2}=-50
\end{align*}
$$

$V=+\frac{15}{\gamma}-50$ volt' potential dintribution

$$
\begin{aligned}
& E=-\nabla V=\frac{\partial y}{\partial r} \bar{a}_{r}=-\frac{c_{1}}{r^{2}} \bar{a}_{r}=\frac{+15}{r^{2}} \text { or } v / m \\
& \bar{E}=\frac{15}{r^{2}} \bar{a}_{r} \quad \mathrm{~V} / \mathrm{m} \\
& ;|\bar{E}|=\frac{15}{r^{2}} v / m \\
& \Rightarrow \bar{D}=\epsilon \bar{E} \mathrm{~cm}^{2} \\
& \Rightarrow \quad|\bar{D}|=E|\bar{E}|=\rho_{S}=Q / A \rho_{n^{2}} \\
& \rho_{S}=E|\bar{E}|=\frac{15}{r^{2}} \epsilon \Rightarrow \rho_{S}=\frac{15}{r^{2}} 6 \rho_{m^{2}}
\end{aligned}
$$

(a) Outer sphere $\gamma=0.3 m \therefore \rho_{s_{-}}=\frac{-15}{0.3^{2}} \epsilon_{0} \cdot t \mathrm{~cm}^{2}$

B-ve charged

$$
\frac{-3.689 \mathrm{n}}{\text { Page } 317} \times \mathrm{m}^{2}
$$

$$
\rho_{s_{-}}=-3.689 \mathrm{nc} \mathrm{fn}^{2}
$$

$S_{S} @$ inner spture that in at $r=0.1 \mathrm{~m}\binom{\rho_{s}+$ re }{ charged }

$$
\begin{aligned}
& \dot{\rho}_{S_{+}}=+\frac{15}{r^{2}} \in \mathrm{qm}^{2}=\frac{15}{r^{2}} \epsilon_{0} E_{r} \mathrm{\varphi m}_{\mathrm{m}^{2}} \\
& \rho_{S_{+}}=\frac{15}{0.1^{2}} \times 8.854 \times 10^{-12} \times 2.5 \mathrm{qm}^{2} \\
& \rho_{S_{+}}=33.20 \mathrm{ndm}
\end{aligned}
$$

and Capacitance blw concuntric spherin

$$
\begin{aligned}
& G= Q / v_{0}=\frac{4 \pi \epsilon}{\left[\frac{1}{a}-\frac{1}{b}\right]}=\frac{4 \pi \times \epsilon_{0} G r}{\left[\frac{1}{a}-\frac{1}{b}\right]} \\
& G=\frac{4 \pi \times 8.854 \times 10^{12} \times 2.5}{\left[\frac{1.1}{0.1}-\frac{1}{0.3}\right]}=\frac{41.7234 \text { p/forad'r }}{c} \\
& \times \dot{C}=41.7234 p F
\end{aligned}
$$

\rightarrow Netotal charge indued on the shelb as

$$
|Q|=C V_{0} \Rightarrow|Q|=100 \times 41.723 p
$$

$=$ Lp.1723n Caclomb'n
(o) $\quad Q= \pm 4.1723 \mathrm{~A} \cdot$

$$
\begin{aligned}
& \text { ammphere } \\
& Q=+4.1723 n C \\
& Q a=0.1 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& +1723 n c \\
& @ a=0.1 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& Q=-4.1723 n c \\
& \square a=0.31
\end{aligned}
$$

$@ a=0.3 \mathrm{~m}$
outur spher Page 318 .
(5c. Find V at $(2,1,3)$ for the field of
i) 2 co-axial conducting cylinders $V=20 \mathrm{~V}$ at $\rho=3 \mathrm{~m}$
ii) 2 concentric conducting spheres $V=50 \mathrm{~V}$ at $\mathrm{r}=3 \mathrm{~m}$ and $\mathrm{V}=20 \mathrm{~V}$ at $\mathrm{r}=5 \mathrm{~m}$. (08 Marks)

Sons i> given Boundary condition io $V=20 \mathrm{~V}$ at $\rho=3 \mathrm{~m}$.
Note:- in the given problem only one Borendary condition is given, with one boundary condition firing two unknowns is not pomible. anume another Boundary condition

Say $V=50 \mathrm{~V}$ at $\rho=2 \mathrm{~m}$.

Boundary conditioning at $\rho=2 \mathrm{~m}, V=50 \mathrm{voln}$ and at $\rho=3 \mathrm{~m}, V=20$ volt,
using Lap
aplacin equation

$$
\nabla^{2} V=0 \quad \text { of } m^{2}
$$

Since Vis a function of radial Component ' ρ ' alone.

$$
\begin{gathered}
\nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial v}{\partial \rho}\right]=0 \\
\Rightarrow \rho \neq 0 \text { and } \frac{1}{\rho} \neq 0 \\
\therefore \frac{\partial}{\partial \rho}\left[\rho \frac{\partial V}{\partial \rho}\right]=0
\end{gathered}
$$

\Rightarrow Integrating w.r.t ' ρ '

$$
\rho \frac{\partial v}{\partial \rho}=c_{1}
$$

$$
\text { and } \frac{\partial v}{\partial \rho}=\frac{c_{1}}{\rho}
$$

again integrating w.r.t ' ρ '

$$
V=c_{1} \ln (\rho)+c_{2} \text { volt, }
$$

using Boundary condition's
i.e @ $\rho=2 \mathrm{~m}, \quad v=50$ volid

$$
\begin{equation*}
50=c_{1} \ln (2)+c_{2} \tag{1}
\end{equation*}
$$

@ $\rho=3 \mathrm{~m}, V=20$ volts

$$
\begin{equation*}
20=c_{1} \ln (3)+c_{2} \tag{2}
\end{equation*}
$$

Solving φ (1) and $\varphi^{\varphi}(2)$

$$
\begin{aligned}
& {\left[\begin{array}{l}
C_{1}=\frac{30}{\ln (2 / 3)}=-73.989 \\
\text { and } C_{2}=20-C_{1} \ln (3)=20-\frac{30}{\ln (2 / 3)} \ln (3) \\
\\
\therefore \quad C_{2}=101.2853 \\
\end{array} \quad \text { volt } 6\right.} \\
& \quad V=-73.989 \ln (\rho)+101.285
\end{aligned}
$$

potential ata point $\begin{gathered}p(2,1,3) \text { is } \\ x y z\end{gathered}$

$$
\rho=\sqrt{x^{2}+y^{2}} \quad m \Rightarrow \rho=\sqrt{4+1}=\sqrt{5} \mathrm{~m}
$$

$$
\begin{array}{r}
V_{p}=[-73.989 \ln (\sqrt{5})+101.285] \text { Voltn } \\
V_{p}=41.744 \cdots \text { volth }
\end{array}
$$

ii. given V at $(2,1,3)$ in ...Cartesion C.S.

$$
\begin{aligned}
& x=2, y=1, z=3 . \quad p(x, y, z) \Leftrightarrow p(r, \theta, \phi) \\
& r=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{2^{2}+1^{2}+3^{2}}=\sqrt{4+1+9} \\
& r=\sqrt{14} \mathrm{~m}
\end{aligned}
$$

Boundary conditions at $r=3 \mathrm{~m} ; \quad V=50 \mathrm{~V}$. and at $r=5 \mathrm{~m} ; \quad V=20 \mathrm{~V}$.

Since ' V ' in a function of radial component ir only.

$$
\nabla^{2} V=\frac{1}{\gamma^{2}} \frac{\partial}{\partial \gamma}\left[r^{2} \frac{\partial V}{\partial r}\right]=0 \quad \text { in spherical } C \cdot S
$$

$$
\begin{aligned}
& r^{2} \neq 0 \quad \therefore \frac{1}{r^{2}} \neq 0 \\
& \nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial V}{\partial r}\right]=0
\end{aligned}
$$

Intgrating $w \cdot r \cdot t^{\prime} \gamma$ '
$\gamma^{2} \partial V$

$$
\begin{aligned}
\gamma^{2} \frac{\partial V}{\partial r} & =c_{1} \\
\Rightarrow & \frac{\partial V}{\partial r}=\frac{c_{1}}{r^{2}}
\end{aligned}
$$

again Entegrating w.rt r.

$$
V=-\frac{C_{1}}{\gamma}+C_{2}
$$

uning Boundary condition's i.e
(a) $r=3 \mathrm{~m} ; \quad V=50 \mathrm{~V}$.

$$
\begin{equation*}
50=-\frac{c_{1}}{3}+c_{2} \tag{1}
\end{equation*}
$$

@

$$
\begin{align*}
& r=5 \mathrm{~m} ; \quad v=20 \mathrm{~V} \\
& 20=-\frac{c_{1}}{5}+c_{2} \tag{2}
\end{align*}
$$

Solving cqu and equ(2)

$$
C_{1}=-225 \text { and } C_{2}=-25
$$

cq@ becomes

$$
\underbrace{\mathrm{V}=+\frac{225}{\gamma}-25<5 \mathrm{~m}}_{3 \mathrm{~m}} \text { Vol6n }
$$

the potential at a point $P(2,1,3)$ i.e

$$
\begin{gathered}
r=\sqrt{14} \mathrm{~m} \\
V_{p}=\frac{225}{\sqrt{14}}-25 \\
V_{p}=35.133 \text { voll? }
\end{gathered}
$$

6 a A spherical capacitor has a capacitance of 54 pF . It consists of rwo concentric spheres with niner and onfer radio differng by 4 cin. Diefectio in between is aur. Detemme iumer and outer radii.

左um
Solu:

the Capacitance ble two Concuntric sphercify

$$
C=\frac{4 \pi E}{[1 / a-1 / b} F
$$

and given $b-a=4 c \mathrm{~cm}$

$$
\begin{equation*}
b-a=0.04 \tag{2}
\end{equation*}
$$

c giva $G=5 L P R$

$$
\begin{aligned}
& \text { given } G=5 \varphi P F \\
& \therefore p^{*} D=54 p F=\frac{4 \pi \epsilon}{\left[a^{-1}-b^{-1}\right]} F \\
& h=0.04+a
\end{aligned}
$$

$$
\Rightarrow \text { uing qu (2) } b=0.04+a<\text { (4) }
$$

ct(4) in (3)

$$
\begin{aligned}
& 54 p F\left[a^{-1}-(0.04+a)^{-1}\right]=4 \pi \epsilon \\
& 54 p\left[a^{-1}-(0.04+a)^{-1}\right]-4 \pi \times 8.854 \times 10^{-12}=0 \\
& 5 \text { in }
\end{aligned}
$$

using Calulater: Solve p^{-1} in Calci
from sfy (4) $b=0.04+0.12076=0.16076 \mathrm{~m}$
Dept. of EQCE. SCCE
(63) $\therefore \quad b=0.1607 \mathrm{~m}$
(7) $b=16 \cdot 076$

Topic 3.4. Applications of primon in Equation.
problem ll
In fire space the volume charge density $\rho_{v}=\frac{200 \varepsilon_{0}}{z^{2 i}} c / \mathrm{mm}$, use Poisson's equation to timed
 onumed that $r^{2} E_{r} \rightarrow 0$ as $\quad \bar{r} \rightarrow 0$ and $\theta \rightarrow 0$ a $r \rightarrow 0$.

Use Spherical coordinate System.
ito Find potential V as afuntion of it wing Gown haw and Line Intural.
Solu'- i> Method. I using poimorin equation.

$$
\begin{aligned}
& \text { ie } \left.\nabla^{2} V=-S_{1} / \epsilon V\right)_{m^{2}} \\
& \text { given } \rho_{u}=\frac{200 \epsilon_{0}}{\gamma^{2} \cdot 4} \varphi_{m}{ }^{3} \\
& \text { in free space } \epsilon=\epsilon_{0} \text {. } \\
& \therefore \Rightarrow \nabla^{2} v=-\rho_{V} / \epsilon_{0} \\
& \nabla^{2} v=\frac{-200}{r^{2.4}} \quad v / m^{2}
\end{aligned}
$$

the poimorinct, in spherical C :s

$$
\begin{aligned}
& \nabla^{2} U=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial y}{\partial r}\right] \\
& +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial_{1}}{\partial \theta}\right]+\frac{1}{r^{2} \sin ^{2} \theta} \frac{r^{2} / 1}{\partial \alpha^{2}} \\
& b c_{2} V=f^{n}(r) \text { clone. } \\
& G^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial y}{\partial r}\right] \\
& \text { singer@ } \\
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial u}{\partial r}\right]=\frac{-200}{r^{2} 4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { non equation } \\
& \frac{\partial}{\partial r}\left[\gamma^{2} \frac{\partial y}{\partial r}\right]=-200 r^{-0.4}
\end{aligned}
$$

Integrating w. rt ${ }^{-}{ }^{\prime}$.

$$
\begin{aligned}
& r^{2} \frac{\partial y}{\partial r}=-200 \gamma^{0.6} \\
& 0.6 \\
& r^{2} \frac{\partial v}{\partial r}=-333.33 \gamma^{0.6}+c_{1}<0
\end{aligned}
$$

the clutric field in spherical C.S

$$
\begin{aligned}
& E=-\nabla V=-\frac{\partial y}{\partial r} \bar{a}_{r} v / m . \\
& E_{r}=-\frac{\partial V}{\partial r} \\
& -r^{2} E_{r}=-333.33 r^{0.6}+C_{1}
\end{aligned}
$$

given lond ${ }^{\circ}$.

$$
\text { as } \gamma \rightarrow 0 ; r^{2} L_{r} \rightarrow 0
$$

$$
0=0+c_{1} \Rightarrow C_{1}=0
$$

$\therefore q^{4}(1)$ become s

$$
\frac{\partial v}{\partial r}=-333.33 r^{-1.4}
$$

$$
\text { Integrating w.r.t } \gamma
$$

$$
\frac{V_{1}=\frac{833.32}{\gamma^{0.4}}+C_{2}}{\text { Page 321. }}
$$

using $2^{\text {nd }}$ cond u. $u \rightarrow 0$ as $\gamma \rightarrow \infty$
\therefore the potential fidd $\bar{V}(r)=\frac{833.32}{\gamma^{0.4}}$ voltin
(6)
i.) Method- -1.:- Ucritication using Gawrin Law and Line Integral. w.k.t from Maxnilinfint $\therefore r^{2} E_{\gamma}=333.33 \gamma^{0.6}-$

$$
\begin{gathered}
{\epsilon q^{u}}_{\nabla \cdot \rho_{v}} \rho_{m^{3}} \\
\nabla \cdot\left(\epsilon_{0} \bar{E}\right)=\rho_{u} \\
\nabla \cdot \bar{E}=\rho_{u} / \epsilon_{0}=\frac{200}{r^{2 \cdot 4}}
\end{gathered}
$$

the divergence of E inspherical Co.ordinate System is

$$
\text { ie } \left.\nabla \cdot \bar{E}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} E_{-\gamma}\right]=f_{\psi} / \epsilon_{0}\right)
$$

$$
b c_{2} E \text { inf" of } \gamma^{\prime} \text { only }
$$

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} E_{r}\right]=\frac{200}{r^{2} \cdot 4}
$$

$$
\frac{\partial}{\partial r}\left[r^{2} F_{r}\right]=\frac{200}{r 0.4}
$$

Integrating wort ${ }^{\prime}$ '

$$
\begin{aligned}
& r^{2} E_{r}=200 \frac{r^{-0.4+1}}{0.6}+C_{1} \\
& r^{2} E_{r}=333 \cdot 33 \gamma^{0.6}+C_{1}
\end{aligned}
$$

$$
\text { as } r^{2} E_{r} \rightarrow 0 \text { as } r \rightarrow 0
$$

$$
\therefore C_{1}=0
$$

(D) and potential field

$$
\begin{aligned}
& V=-\int \bar{E} \cdot d t \\
& =-\int 333 \cdot 33 r^{-1 \cdot \varphi} a_{r} \cdot d r \overline{a_{r}} \\
& =-333.33 \int r^{-1.4} d r \text { } \overline{a_{r}} \int \frac{1}{a_{r}}
\end{aligned}
$$

$$
V=-333.33 \frac{\gamma^{-0.4}}{-0.4}+C_{2}
$$

as $U \rightarrow 0$ when $\gamma \rightarrow \infty$

$$
\begin{aligned}
& \Rightarrow 0=0+c_{2} \\
& \therefore G=2 \\
& \therefore C_{2}=0 \\
& G(r)=+\frac{833.33}{r^{0.4}} \text { volt: }
\end{aligned}
$$

In both the mithod'n the potential feld $v(r)$ in same $\therefore \dot{x} \quad \bar{i}(\gamma)=\frac{833.33}{\gamma^{0.4}}$ voHº
frobtem1s

$$
\rho_{v}=-2 \times 10^{7} \epsilon_{0} \sqrt{x} c_{m^{3}} .
$$

(10) Given the volume charge density $\beta_{0}=-2 \times 10^{7} x_{0} \sqrt{x} C / m^{3}$ in free space, id

$V=0$ at $x=0 \quad V=2 V$ at $x=2.5 \mathrm{~mm}$. at $x=1 \mathrm{~mm} V+E_{x} . \quad$ ans. $\quad .302 V ;-55 \mathrm{Vm}$

$$
A n s .0 .302 \mathrm{~V} ;-555 \mathrm{~V} / \mathrm{m}
$$

So lu:- given $f_{U}=-2 \times 10^{7}$ Ea $\sqrt{x} f_{m^{3}} \ldots$
using poimonin qu $\nabla^{2} V=-\rho_{4} / \epsilon_{0} V / m^{2}$.
$\Rightarrow S_{4} / \epsilon_{0}=2 \times 10^{7} \sqrt{x}$

$$
\begin{aligned}
& \text { using } \quad \Rightarrow S_{4} / \epsilon_{0}=2 \times 10^{7} \sqrt{x} \\
& \nabla^{2} V=-S_{4} / \epsilon_{0}=+2 \times 10^{7} \sqrt{x} \quad 6 / \mathrm{m}^{2}
\end{aligned}
$$

Since \bar{T} is of ${ }^{\prime \prime}(x)$ alone

$$
\begin{aligned}
\therefore & \nabla^{2} V=\frac{\partial^{2} v}{\partial x^{2}} v / m^{2} \\
\Rightarrow & \nabla^{2} V=\frac{\partial^{2} U}{\partial x^{2}}=+0^{2} \sqrt{x}
\end{aligned}
$$

Integrating D rit ' x '

$$
\begin{align*}
& \frac{\partial U}{\partial x}=+2 \times 10^{7} \frac{x^{1 / 2+1}}{\left(y_{2}+1\right)}+c_{11} \\
& \frac{\partial V}{\partial x}=\frac{2 \times 10^{7}}{(3 / 2)} x^{3 / 2}+c_{11}^{1}
\end{align*}
$$

again Integrating n.r.F' x '

$$
\begin{array}{r}
V=\frac{+2 \times 10^{7}}{(3 / 2)} \frac{x^{3 / 2+1}}{(3 / 2+1)}+c_{1} x+c_{2} \\
V=\frac{8 \times 10^{7}}{15} x^{3 / 2+1}+c_{1} x+c_{2}
\end{array}
$$

Dept. of E\&CE., SVCE

$$
V=+\frac{8 \times 10^{7}}{15} x^{5 / 2}+c_{1} x+c_{2} \text { volt io }
$$

$$
\text { i.e } V=+\frac{8 \times 10^{7}}{15} x^{5 / 2}+c_{1} x+c_{2}
$$

using - Boundery [ordition's
i.e@ $\quad x=0 \mathrm{~m} \quad V=0 \mathrm{Molt}$'s

$$
0=0+c_{1}(0)+C_{2} \Rightarrow C_{2}=0
$$

@ $\quad x=2.5 \mathrm{~mm} \quad V=2$ volt's

$$
\text { (a) } \begin{align*}
x & =2.5 \mathrm{~mm} \\
g & =\frac{+8 \times 10^{7}}{15}(2.5 \mathrm{~m})^{5 / 2}+c_{1}(2.5 \mathrm{~m})+0 \\
g & =+1.6667+c_{1}(2.5 \mathrm{~m}) \\
& \Rightarrow C_{1}(2.5 \mathrm{~m})=0.2(0) C_{1}=0.3333 \\
V(x) & =+\frac{8 \times 10^{7}}{15}{ }^{512}+133.332 x \tag{}
\end{align*}
$$

U@ $x=1 \mathrm{~mm}$ in

$$
\begin{aligned}
& @ x=1 \mathrm{~mm} \\
& V=+\frac{8 \times 10^{5}}{5}(1 \mathrm{~m})^{512}+133.332 \times(1 \mathrm{~m}) \\
& \quad=0.168654+0.133332=0.301986
\end{aligned}
$$

(o) $\sum_{@ x=1 \mathrm{~mm}}=0.302 \mathrm{VOH}^{\prime} \mathrm{n}$
from cq(\%)
and $\bar{F}=-\frac{\partial v}{\partial x} \overline{a_{x}}=-\left[\frac{4 \times 10^{7}}{3} x^{1.5}+133.332\right] \overline{a_{x}}$

$$
\begin{gathered}
E_{x=1 \mathrm{~mm}}=-\left[\frac{4 \times 10^{7}}{3}(1 \mathrm{~m})^{1.5}+133.332\right] \overline{a_{x}} \mathrm{~V} / \mathrm{m} . \\
=-554.957 \overline{a_{x}} \mathrm{~V} / \mathrm{m}
\end{gathered}
$$

(क) $\overline{\sqrt{l}_{x=1 \mathrm{~mm}}} \simeq-555 \overline{a_{x}} v / m=\mathcal{E}_{x} \overline{a_{x}} \mathrm{v} / \mathrm{m}$

A [apacitor has square plates Each of side ' a ' m.
pontomb the plates make an angle θ with each other. Show that for small θ, the Capacitance is Ito 2008

$$
\begin{equation*}
G=\frac{\varepsilon_{0} a^{2}}{d}\left[1-\frac{a \theta}{2 d}\right] \text { Farad. } \tag{7M}
\end{equation*}
$$

Solus:-
bluparall $\rightarrow=t \leq$
plates how $\overrightarrow{a^{\prime} m}$

Note':- for a small angle ' θ ', ten $\sim \theta$,
anume capacitor planned along x axis.
the incremental capacitance

due to angle ' θ ' ingiven

Now the distance blu the plates

$$
d c=\frac{\epsilon a}{(d+x \theta)} \cdot d x
$$

the total $\begin{gathered}\text { Capacitance } \\ x=\dot{a} \text {. }\end{gathered}$

$$
\begin{aligned}
& \text { The distance blu the plate o } \quad C_{1}=\int_{x=0}^{x=a} \frac{\varepsilon a}{(d+x \theta)} d x \\
& \Rightarrow C=\left.\frac{\varepsilon a}{\theta}\right|_{x=0} ^{a} \frac{1}{(x+d / \theta)} d x \\
& \quad=\left.\frac{\varepsilon a}{\theta} \log (x+d / \theta)\right|_{0} ^{a}
\end{aligned}
$$

by $d c=\frac{\epsilon a}{d^{\prime}} d x$.

$$
\begin{align*}
& G=\frac{\varepsilon a}{\theta}[\log (a+d / \theta)-\log (d / \theta)] \\
& G=\frac{\varepsilon a}{\theta} \log \left[\frac{a+d / \theta}{d / \theta}\right]=\frac{\varepsilon a}{\theta} \log \left[\frac{a \theta+d}{d}\right] \\
& G=\frac{\varepsilon a}{\theta} \log \left[1+\frac{a \theta}{d}\right] \quad \text { foradn }<(1)
\end{align*}
$$

using Taylorin Sorim

$$
\begin{align*}
& \text { Using Taylorn Suris } \\
& \log [1+x]=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+ \\
& \log \left[1+\frac{a \theta}{d}\right]^{\prime}=\frac{a \theta}{d}-\frac{(a \theta / d)^{2}}{2}+\frac{(a \theta / d)^{3}}{3}- \tag{2}\\
& \simeq\left[\frac{a \theta}{d}-\frac{(a \theta / d)^{2}}{2}\right] \leftarrow(2)
\end{align*}
$$

$q^{4}(2)$ in $द^{4}(1)$

$$
\begin{aligned}
& C=\frac{\varepsilon a}{\theta}\left[\frac{a \theta}{d}-\frac{(a \theta / d)^{2}}{2}\right] \\
& G=\frac{\varepsilon a}{\theta} \cdot \frac{a \theta}{d}\left[1-\frac{a \theta}{2 d}\right] \\
& C=\frac{\varepsilon a^{2}}{d}\left[1-\frac{a \theta}{2 d}\right] \text { Forad } \\
& \quad \therefore \\
& \therefore G=\frac{\delta a^{2}}{d}\left[1-\frac{a \theta}{2 d}\right] \text { Fradin }
\end{aligned}
$$

X. A parallel plate Capacitor is filled with a diclutric of
brook 0.03 pow r factor and $E_{r}=10$. The plates have an area of $250 \mathrm{~mm}^{2}$ and the distance blu them is 10 mm . If 5000 V (ms) at $1 \mathrm{MH}_{3}$ is applied to the capacitor find the power dimipated as ticat.- $10-J \bar{I}_{J}(10 \mathrm{~m})$.
Solve:- given $p f=\cos \phi=0.03$

$$
\begin{gathered}
G_{r}=10 \mathrm{Fm}, A_{\text {ra ca }}(A)=250 \mathrm{~mm}^{2} \\
=250 \times\left(10^{-3}\right)^{2} \mathrm{~m}^{2} \\
A=250 \mathrm{M} \mathrm{~m}^{2} \\
d=10 \mathrm{~mm}=10 \times 10^{-3} \mathrm{~m} \\
V_{m s}=500 \mathrm{voli} \quad f=1 \mathrm{MHz}
\end{gathered}
$$

the Capacitance 'c' of a parallel plate is

$$
\begin{aligned}
& C=\frac{\delta A}{d}=\frac{\mathcal{E}_{0} \delta_{r} A}{d} \\
& G=\frac{8.854 \times 0^{12} \times 10 \times 250 \times 10^{-6}}{10 \times 10^{-3}} \\
& G=2.2135 \times 10^{-3} \mathrm{~F} \\
& C=2.2135 \mathrm{PF}
\end{aligned}
$$

Solut- Lon sider a pn junction which is placed along Xéarin.

the Barive petential (6) junation potential $\begin{aligned} & y \\ & y\end{aligned}=-\int E d x$ volf

* Ioncider the Concentration of toles in p-suction and elutronis in n-section. This concutration is unform. i.e the chorge density $l_{4} \mathrm{Clm}_{3}$ in constant almost entiraly over the rupective Sutions.
* But In diplation region charge concentration in Sultjuted to - Varcation.
* Let us Consider the width of the depletion region to be ' l '.

Boundary Conditions:-.
from Fig@ $M=0=x ; V_{j}=0 v^{\prime}$ tr is r

$$
\begin{aligned}
& \therefore x= \pm i / 2 ; v_{j}=\text { constant. } \\
& \therefore \frac{\partial v}{\partial x}=0 @ x=w / 2 .
\end{aligned}
$$

the junction potential i) $V_{j}=$? and ii) Elutricideld acton the junction $\bar{E}=$?
Let potential $V_{j}=v_{1}$ @ $x=+w / 2=$ and $v_{j}=v_{2} @ x=-x_{12}$
\therefore the junction potential

$$
\begin{aligned}
& \text { unction potential } \\
& V_{j}=\left[\begin{array}{l}
\text { potential } \\
@ x=w / 2
\end{array}\right)-\binom{\text { potential }}{@ x=-w / 2} . \\
& i \cdot e \quad V_{/}=V_{1}-V_{2}
\end{aligned}
$$

using poimonin equation

$$
\operatorname{L}_{2} \theta=-|v| E \quad v / m^{2}
$$

Since P-N junction placedalong x-axis $\therefore Y^{Y} V=\frac{\partial^{2} \varphi}{\partial x^{2}}$

$$
\left.\Rightarrow \frac{\partial^{2} y}{\partial x^{2}}=-\operatorname{su}^{2} \right\rvert\, \epsilon
$$

Integrating wort x

$$
\begin{equation*}
\frac{\partial v}{\partial x}=-\left.f_{4}\right|_{E} x+c_{1} \tag{1}
\end{equation*}
$$

Dept. of E\&CE., SVCE
using $B C$ ie $\frac{\partial Y}{\partial x}=0$
@ $x=k / 2$
72

$$
\begin{align*}
& 0=\frac{-\rho_{v}}{\epsilon} \frac{w}{2}+c_{1} \\
& \Rightarrow c_{1}=\frac{\rho_{v} w}{2 \epsilon} \tag{2}
\end{align*}
$$

again intyrating $\varphi^{\prime}(1)$ N.r ${ }^{-} x$

$$
\begin{aligned}
& V=-5 y / \epsilon \frac{x^{2}}{2}+c_{1} x+c_{2} \\
& V=\frac{-f_{4} x^{2}}{2 t}+c_{1} x+c_{2} \\
& \text { @ } x=u=0 \Rightarrow V=0 \text { volt: } \\
& \mathrm{O}+\mathrm{O}+\mathrm{O}+\mathrm{C}_{2} \\
& \Rightarrow c_{2}=0 \\
& \therefore V=\frac{-\rho_{4} x^{2}}{2 \epsilon}+\frac{\rho_{y u l}}{2 \epsilon} x \\
& \text { + } V=\frac{h^{\prime} w}{2 \epsilon} x-\frac{l_{y}}{2 \epsilon} v_{0} \text { volt: } \\
& \text { (@) } x=\frac{w}{2} ; v=v_{1} \\
& \therefore v_{1}=\frac{\rho v w_{1}}{2 \epsilon} \frac{w}{2}-\frac{\rho v}{2 \epsilon} \frac{w^{2}}{4} \\
& V_{1}=\frac{\rho_{y}}{4 E} w^{2}-\frac{\rho_{v}}{8 E} w^{2} \\
& v_{1}=\frac{\rho_{y}}{8 \epsilon} w^{2} \text { voltio. }
\end{aligned}
$$

@

$$
\begin{aligned}
& x=-w / 2 ; v=v_{2} \\
& V_{2}=\frac{\rho_{1}(w)}{2 t}\left(\frac{-w}{2}\right)-\frac{f_{y}}{2 t} \frac{w^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\rho_{v} w^{2}}{4 \epsilon}-\frac{\rho_{4}}{8 \epsilon} w^{2} \\
& V_{2}=-3 / 8 \frac{\rho_{v}}{\epsilon} w^{2} \text { volto }
\end{aligned}
$$

a) \therefore the junction pontential V_{j}

$$
\begin{aligned}
& @ V_{j}=V_{1}-V_{2} \\
& =\frac{\rho_{y}}{8 \epsilon} w^{2}+3 / 8 S^{2} / \epsilon^{2} h^{2} \\
& V_{j}=\frac{\rho r^{2}}{2 t} \text { volfo }
\end{aligned}
$$

ii) the Elutric firld aeron the junction

$$
\bar{E}=-\nabla V=-\frac{\partial y}{\partial x} \overline{a_{x}} v / m .
$$

using $\varphi^{4}(1)$ and (2)

$$
\begin{aligned}
& \bar{E}=-\left[\frac{-\rho v x}{\epsilon}+c_{1}\right] \overline{a_{x}} v / m \\
& E=\left(\frac{\rho v x}{\epsilon}-\frac{\rho_{v} w}{2 \epsilon}\right) \overline{a_{x}} v / m \\
& \left.\bar{E}=\frac{\rho_{1}}{\epsilon}(x-w / 2) \overline{a_{x}}\right] v / m
\end{aligned}
$$

∞

Summory:-
(i) Junction potential xix $V_{j}=\frac{-\operatorname{su} W^{2}}{2 t}$ volt's
(2i) Elutricficld Intersity (E)

prob beng
A large spherical cloud of radius 'b' has a uniform volume charge dismbution ot $\rho \mathrm{\rho}_{\mathrm{w}} \mathrm{cm}^{3}$ find the potential distribution and electric field intensity at any point in space using Laplace
Sola: anime Boundary Gond"? (10 Marks)
as $r \rightarrow \infty ; \quad V=0$ and $\gamma \rightarrow 0 ; \gamma^{2} \mathrm{E}_{r} \rightarrow 0$

fig. Spherical cloud of radius $b \mathrm{~m}$.

- for $r<b m$ use $\sigma^{2} v=-s_{u} / \in \sigma$
$b_{2} f_{u} \neq 0$.icpomonning
\Rightarrow for $r>b m$ use $\nabla^{2} Y=0$ $b_{y} \rho_{4}=0, \operatorname{cic}_{\text {Laplanis }}^{4}$.
cone.
I1. the potstial V_{0} oudside the [loud (ie $\gamma>b m$).

$$
\nabla^{2} v_{0}=0 \quad v / m^{2}
$$

Since $V_{0} f^{u}(r)$ only

$$
\therefore \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[\gamma^{2} \frac{\partial V_{0}}{\partial r}\right]=0
$$

$$
\frac{-\partial}{\partial r}\left[r^{2} \frac{\partial V_{0}}{\partial r}\right]=0
$$

Integrating w. rt ' γ.

$$
\gamma^{2} \frac{\partial v_{0}}{\partial r}=C_{1}
$$

$$
\frac{\partial V_{0}}{\partial r}=\frac{C}{Q^{2}}
$$

Integrating N. rt ir.

$$
V_{\sigma}=\frac{-C_{1}}{\gamma}+C_{2} \text { Volt's }
$$

using Boundary condition's
$B G_{1}$. as $r \rightarrow \infty \quad V_{0} \rightarrow 0$

$$
\begin{aligned}
& \therefore 0=0+c_{2} \Rightarrow c_{2}=0 \\
& \therefore V_{0}=-c_{1} / r \text { olin }<0 \\
& E_{0}=-N_{0}=-\frac{\partial Y_{0}}{\partial r} \overline{a_{r}} V_{m} \\
& \overline{E_{0}}=-\frac{c_{1}}{r^{2}} \overline{a_{r}} v / m
\end{aligned}
$$

Loneii. potential and field inside the cloud ie $(\gamma<\mathrm{bm})$.

$$
\nabla^{2} u_{i}=-b_{v} \mid E_{0} \quad v m_{m^{2}}
$$

Since $v_{i} f^{\prime \prime}(\gamma)$ only

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial Y_{i}}{\partial r}\right]=-f_{4} / \epsilon_{0}
$$

$$
\frac{\partial}{\partial r}\left[r^{2} \frac{\partial V_{i}}{\partial r}\right]=-f_{Y / \epsilon_{D}} r^{2}
$$

Integrating N.rt ' γ '

$$
r^{2}-\frac{\partial V_{i}}{\partial r}=\frac{-f_{4}}{\epsilon_{0}} \frac{r^{3}}{3}+C_{3}
$$

$$
\frac{\partial V_{i}}{\partial r}=-\frac{f_{4}}{G_{0}} \frac{r}{3}+c_{3} r^{-2} / 1 / m
$$

\therefore cqu(a) becoms

$$
\frac{\partial v_{i}}{\partial r}=-\frac{\rho_{V} r}{3 \epsilon_{0}} \mathrm{v} / \mathrm{m} \text {. }
$$

($)$ Bounday of (b)
@ Bounday of Interface

$$
\therefore r=b m
$$

the potential $V_{i}=V_{0}$ Volis and Nomial Componinta of
\bar{D} ar equal
@ $r=b m$

$$
\begin{aligned}
& \epsilon_{0} \overline{E_{i}}=\ell_{0} \overline{E_{0}} \\
& \frac{\rho_{v} b}{3 \epsilon_{0}}=-c_{1} / b^{2} \\
& \Rightarrow c_{1}=\frac{-S_{4} b^{3}}{3 \epsilon_{0}}
\end{aligned}
$$

$\therefore Q^{4}(1)$ becoms

$$
\begin{aligned}
& \dot{V}_{0}=\frac{-c_{1}}{r} \text { volll } \\
& V_{0}=+\frac{\rho_{u} b^{3}}{3 \epsilon_{0} \gamma}
\end{aligned}
$$

$$
@ r=b m
$$

$$
v_{0}=\frac{\rho_{4} b^{3}}{3 \epsilon_{0} b}=\frac{\rho_{4} b^{2}}{3 \epsilon_{0}}
$$

$$
V_{0}=\frac{\rho_{4} b^{2}}{3 G_{0}} \text { voll? }
$$

and from equ (b)

$$
\frac{\partial V_{i}}{\partial \gamma}=\frac{-\int_{4} \gamma}{3 \epsilon_{0}}
$$

-Intgrating. N.r.t ' γ '

$$
\begin{aligned}
& V_{i}=-\frac{S_{y}}{3 \epsilon_{0}} \frac{\gamma^{2}}{2}+C_{\varphi} \\
& V_{i}=-\frac{f_{y}}{6 \epsilon_{0}} \gamma^{2}+c_{4}
\end{aligned}
$$

(a) Boundary $\begin{aligned} \bar{V}_{i} & =v_{0} \\ r & =b \mathrm{~m}\end{aligned}$

$$
-\frac{\rho_{v} r^{2}}{6 \epsilon_{0}}+c_{4}=\frac{\rho_{v} b^{2}}{3 \epsilon_{0}}
$$

$$
c_{\varphi}=\frac{\rho_{u} b^{2}}{3 G_{0}}+\frac{\rho_{u} b^{2}}{6 \epsilon_{0}}
$$

$$
\Rightarrow c_{\varphi}=\frac{\rho_{v} b^{2}}{2 \epsilon_{0}}
$$

$$
\therefore \bar{V}_{i}=\frac{\rho_{v} r^{2}}{6 \epsilon_{0}}+\frac{\rho_{u} b^{2}}{2 \epsilon_{0}}
$$

I. Summanf:

$$
\begin{aligned}
& V_{i}=\frac{\rho_{v}}{2 \epsilon_{0}}\left[b^{2}-r^{2} / 3\right] \\
& \overline{F_{i}}=\frac{\rho_{y} \gamma}{3 \epsilon_{a}} \overline{a_{r}} v / m \\
& \gamma
\end{aligned}
$$

potential and fild mirride the Cloud $9<b m$.
II.

$$
\begin{aligned}
& v_{0}=\frac{3 b^{3}}{3 c_{0}} \text { volf' }^{\prime} \\
& E_{0}=-\frac{c_{1}}{r^{2}} \bar{a}_{r} \mathrm{u} / \mathrm{m} \\
& i e \bar{F}_{0}=+\frac{\rho_{1} b^{3}}{3 c_{0} r^{2}} \bar{a}_{r} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

potential and fild oudaide the cloud i.e $\gamma>b m$.

IIOtheBoundary
ie $r=6 \mathrm{~m}$

$$
V_{i}=V_{p} \text { and }
$$

$$
F_{i}=E_{0}
$$

The annular space blu inner and outer Conductors at a Long To-axial Cylindrical structure is filled with an elution cloud having a volume charge density $J_{v}=k J_{\rho} \mathrm{cm}_{3}$ for $a<\dot{\rho}<b$, where ' a ' and ' b ' are $\overline{r a d i t ~ o f ~ i n n e r ~ a n d ~ o u t e r ~[o n d u t o r i o ~}$ rupputively. anume that, the inner conductor is maintained at a potential U_{0} and the outer conductor is grounded. Determine the potential distribution in the region $a<\rho<b$.

Sola:-

$$
\Rightarrow \frac{\partial}{\partial \rho}\left[\rho \frac{\partial v}{\partial \rho}\right]=-k_{/ \epsilon}
$$

Intgrating w.r.t's'

$$
\begin{aligned}
& \rho \frac{\partial V}{\partial \rho}=-k / \epsilon \rho+c_{1} \\
& \frac{\partial V}{\partial \rho}=-k / \epsilon+c_{1} / \rho
\end{aligned}
$$

$$
\text { again Integrating w.t. ' } \rho \text { ' }
$$

$$
V=-k_{/ \epsilon} \rho+c_{1} \ln \rho+c_{2}
$$

1.@ $\rho=a \mathrm{~m} ; \quad V=V_{0}$ volt'
2.@ $\rho=b \mathrm{~m}, V=0$ volt?

BCO

$$
\begin{align*}
& 0=-k_{\epsilon} b+c_{1} \ln b+c_{2} \\
& c_{1} \ln b+c_{2}=\frac{k b}{\epsilon} \leftarrow 2 \tag{2}
\end{align*}
$$

BC
using $\rho=a m ; V=V_{0}$.

$$
\begin{equation*}
V_{0}=\frac{-k}{E} a+c_{1} \ln a+c_{2} \tag{3}
\end{equation*}
$$

Solving $\varphi^{-1}(2)$ and $\varphi^{*}(3)$
solving φ^{+}
(2) $-\varphi^{4}(3)$

$$
C_{1} \ln (b \mid a)=\frac{K}{\epsilon}(b-a)-V_{0}
$$

$$
C_{1}=\left[\frac{K}{\epsilon}(b-a)-V_{0}\right](\ln (b \mid a)
$$

and

$$
\begin{aligned}
& c_{2}=\frac{k b}{\epsilon}-c_{1} \ln \bar{b} \\
& c_{2}=\frac{V_{0} \ln b+\frac{k}{6}[\ln b-b \ln a]}{\ln (a)}
\end{aligned}
$$

Going $\varphi^{1}(4)$ and (5) in $\varphi^{\prime \prime}(1)$

$$
\left[\begin{array}{c}
\bar{\sigma}=\frac{-k}{\epsilon} \rho+\left[\frac{\frac{k}{\epsilon}(b-a)-V_{0}}{\ln (b / a)}\right] \ln (\rho) \\
+\frac{V_{0} \ln b+\frac{k}{\epsilon}[a \ln b-b \ln a]}{\ln (b \mid a)} \\
\text { VoH'o } \\
\text { potential dintribution. } \\
\text { blw } \\
a<\rho<b .
\end{array}\right.
$$

valid

$$
a \operatorname{alid}<\rho<b \text {. }
$$

$$
\begin{aligned}
& V_{0} \ln (b)+\frac{k}{\epsilon}[a \ln b-b \ln a] \\
& V=\frac{-k}{\epsilon} \rho+\left[\frac{\frac{k}{\epsilon}(b-a)-V_{0}}{\ln (b \mid a)}\right] \ln (\rho)+\frac{V_{0} \ln (b)+\frac{k}{\epsilon}[a \ln b-b \ln a]}{652}
\end{aligned}
$$

Q2ese). The annular Space b/w inner and outer eondu tors of Long [o-oxial cylindrical structure is filled with a an clutron cloud taxing a volume charge density $f_{V}=1 / \rho$ for $a<\rho<b m$, where ' a ' and b ' are radii of inner and outer conductors ropetively anume that the inner conductor in maintained at a potential of Vo volts and outercondutor in grounded. Detumine the potential distribution in the region $a<\rho<b_{m}$.
Soly:- given $f_{u}=1 / \mathrm{s} \mathrm{cm}^{3} ; a<\rho<b \mathrm{bm}$.
Note: put $k=1$ in the proton froblerni:e Q2. page so r $31+Q_{1}=Q_{2}$

Ans.
the potential distribution blew $a<1<b m$ 1 iD

$$
\begin{aligned}
& {\left[=-\frac{1}{\epsilon} \rho+\left[\frac{\frac{1}{\epsilon}(b-a)-V_{0}}{\ln (b \mid a)}\right] \ln (\rho)\right.} \\
&+\left[\frac{V_{0} \ln (b)+\frac{1}{\epsilon}[a \ln (b)-b \ln (a)]}{\ln (b \mid a)}\right]
\end{aligned}
$$

$\because o l f_{0}$
problem 1 Module 3 Pant A
Determine whether (σ) not the potential equation's Satisfying Laplacian equation.
i) $V=2 x^{2}-4 y^{2}+z^{2}$.
ii $\rangle \quad V=\gamma^{2} \cos \phi+\theta$.
iii) $V=20 x^{2} y z+10 x y^{2} z^{2}$.
iv) $y=15 x^{2}+10 y^{2}-25 z^{2}$.
v) $V=2 x^{2}-3 y^{2}+z^{2}$
vi> $V=r \cos \phi+z$.
vii) $V=x^{2}+y^{2}+z^{2}$
(iii) $V=r \cos \theta+\phi$
ix) $v=\rho^{2}+z^{2}$.
problem 2. Calculate numerical values for V and ρV at point p in tree space if:
a) $y=\frac{4 y z}{x^{2}+1}$ at $p(1,2,3)$
b) $v=5 \rho^{2} \cos (2 \phi)$ at $p\left(\rho=3, \phi=\frac{\pi}{3}, z=2\right)$.
c) $V=\frac{2 \cos \phi}{\gamma^{2}}$ at $p\left(r=0.5, \theta=45^{\circ}, \phi=60^{\circ}\right)$
problem g.
Two parallel conducting dines are separated by distance 5 mm at $z=0$ and $z=5 \mathrm{~mm}$. $V=0$ volt at $Z=0$; and $V=100 \mathrm{volti}$ at $z=5 \mathrm{~mm}$ and it is only in z direction. Starting from Laplace equation find Surface charge densities on the discs $\left[\right.$ take $\left.\epsilon=60=8.854 \times 10^{-12} \mathrm{flm}\right]$.
problem 10.
Long concentric and right condurting cylinders in free space at $\gamma=5 \mathrm{~mm}$ and $r=25 \mathrm{~mm}$ in Cylindrical co-ordinaten have voltages of zero and v_{0} resputivly. if the clutric field intensity $E=-8.28 \times 10^{3} \bar{a}_{r} \mathrm{v} / \mathrm{m}$ at $r=15 \mathrm{~mm}$, starting from Laplace equation find V_{0} and charge density on the outer con duator [Take $\left.\epsilon=C_{0}=8.854 \times 10^{-12} \mathrm{Pm}\right]$ Fin..
problem 11
Find $|E|$ at $p(3,1,2)$ for the field of a) two con axial conducting cylinders, $V=50 \mathrm{~V}$ at $\rho=2 \mathrm{~m}$ and $V=20 \mathrm{~V}$ at $\rho=3 \mathrm{~m}$.
b) two radial conderting planes, $V=50 \mathrm{~V}$ at $\phi=10^{\circ}$ and $V=20 \mathrm{~V}$ at $\phi=30^{\circ}$.
problem 12
Condurting spherical shells with radii $a=10 \mathrm{~cm}$ and $b=30 \mathrm{~cm}$ are maintained at a potential difference of 100 V Sun that $V=0$ at $\gamma=b$ and $V=100 \mathrm{~V}$ at $r=a$. Determine V and E in He region between the shells if $E r=2.5 \mathrm{in}$ the region, determine the total charge induced on the shall s and the capacitance there on.
problem 13
A Spherical capacitor han a capacitance of $54 p P^{2}$. it consists of two concentric Spheres with inncrand outer radii differing by 4 cm . Dielutric in between is air. Determine inner and outer radii.

Module-3 [Semmary]
(part-A)
List of Formulaes.:

1. poimoris Equation

$$
\nabla^{2} v=-S_{v} \mid \epsilon \quad v / m^{2}
$$

2. Laplaces equation

$$
\nabla^{2} v=0
$$

3. Laplacein Equation in all thire co-ordinate system.
a. Lartesian C oordinate sytem. $P_{\llcorner }(x, y, z){ }_{L}{ }_{d y}{ }_{d y}$

$$
\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

$\therefore L^{L-y l i n d r i a l . ~ C o-o r d i n a t e ~ S y s t e m ~} p(s, \phi, z)$

$$
d v=\int d s d \phi d s
$$

$$
\nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial v}{\partial \rho}\right]+\frac{1}{\rho 2} \frac{\partial^{2} v}{\partial \phi^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0
$$

c. Spherical Coordinate System

$$
L_{d r}^{P(r, \theta, \phi)} \zeta_{r d \theta} \zeta_{r \sin \theta d \phi}
$$

$$
d v=r^{2} \sin \theta d r d \theta d \phi
$$

$$
\left.\begin{array}{r}
\nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial V}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial V}{\partial \theta}\right] \\
+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}=0
\end{array}\right] /{ }^{2} / \mathrm{m} / \mathrm{m}
$$

4. Uniquenum theorem
"Any solution of Laplace equation that Satisfies the same boundary Conditions must be the only solution regarduen of the method cred."

$$
\begin{aligned}
& i \cdot e \cdot \Rightarrow{ }^{2} v=0 \\
& v_{1}=u_{2}
\end{aligned}
$$

* OMmarir equation $\nabla^{2} V=-\rho V / \epsilon \quad v / m^{2}$ is used to: find $V, \bar{E}, \bar{D}, \rho_{S}=|\bar{D}|$ and capacitance (C), C_{L}, total charge (Q) te, within a region where $\rho_{v} \neq 0$.
- Wy the Laplacian equation $\nabla^{2} V=0 \mathrm{ofm}^{2}$ is coed to find $\quad V \rightarrow \bar{E} \rightarrow \bar{D} \rightarrow|\bar{D}|=\rho_{s} c_{m}^{2} \rightarrow Q=\rho_{s} \cdot A$ $\rightarrow C \rightarrow C / L$ etc, within a region where
$\rho_{u}=0$ [ie charge free region].
Note! for a charged free region $\rho_{u}=0 \mathrm{~cm}^{3}$
* Application is of Laplacian equation.
- Capacitance of a parallel plate capacitor

$$
C=\frac{\S A}{d} \text { Farads. }
$$

* Capacitance of Co-axial cable using Laplais

$$
\begin{aligned}
& \text { equation. } \\
& +=\frac{2 \pi E L}{\ln (b \mid a)} \\
& F\left(\sigma\left[\frac{C}{L}=\frac{2 \pi E}{\ln (b \mid a)}\right] \mathrm{F} / \mathrm{m}\right. \\
& |\bar{D}|=\rho_{S}=E|E| \quad \mathrm{cm}^{2}
\end{aligned}
$$

* Capacitance of a concentric Spheres 1 -

$$
\frac{\left[C=\frac{6 \pi \epsilon L}{\left[\frac{1}{a}-\frac{1}{b}\right]}\right], \frac{c}{L}=\frac{4 \pi \epsilon}{\left[\frac{1}{a}+\frac{1}{b}\right]}}{\frac{\text { where. } b>a}{\text { Capacitance }} f_{m}}
$$

* Eapacitance of a Isolated Sphore of radius
'a' meter.
$C=4 \pi \in a$ Forads.

6. procedure to solve poimorin (3) Laplacies equation:-
using $\sigma^{2} v=0$
(8) $\nabla^{2} v=-P_{v} \mid \epsilon$
use boundary solve for condition potential (VE)
find

(6) $C_{i}=\frac{\theta}{v}$ Foradh.
7. If given vector (E) represents a pomible clutric fied only when $\nabla^{2} v \neq 0$.
i.e given firld should not be arise from chorged free region. Than \bar{E} is a ponible representation of slutric field.
: prochure giva $(\bar{E}) \xrightarrow{\text { che }} E=-\nabla v \mathrm{~lm}_{\mathrm{m}}$

$$
\nabla^{2} V=-\nabla \cdot \vec{E}
$$

chack?

$$
\nabla^{2} v=0
$$

(6) $\nabla^{2} V \neq 0$

If $\nabla^{2} V=0$; then given fild is nota pornible dutricticld.

* if $\nabla^{2} V \neq 0$; then given freld io pomible represertation of elutricfield.

Part-B: Steady Magnetic Field

Biot-Savart Law, Ampere's circuital law, Curl, Stokes' theorem, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic Potentials.

Topics:

3.5 Biot-Savart Law

Applications of Biot-Savart Law
a. Magnetic Field Intensity due to Infinite Long Straight Filament
b. Magnetic Field Intensity due to finite length Filament
c. Magnetic Field Intensity on the axis of a Circular Loop.
d. Magnetic Field Intensity at a point on the axis of a solenoid.
e. Magnetic Field Intensity at center of a square current loop.

3.6 Ampere's circuital law

3.7 Applications of Ampere's Circuital Law
a. Magnetic Field Intensity due to Infinite Long Straight Filament
b. Magnetic Field Intensity of a Co-axial cable
c. Magnetic Field Intensity of a Toroidal coil
3.8 Concept of Curl
a. Point form of Ampere's Law
b. Curl in all three co-ordinate systems
3.9 Stokes' theorem
3.10 Magnetic flux and magnetic flux density
3.11 Scalar and Vector Magnetic Potentials Summary

- List of Symbols
- List of Formulae

Dept. of ECE, B.M.S.I.T \& M

Module -3 (part B)
Steady Magnetic Field.

Introduction:-
The source for elutric field is charge similarly In addition to the clutric field. mantic filed in abs prosit in the medium bit the source for magnetic field is
a. permanent puget.
b. Elutric fifty changing with time.
[modified Ampere's Law $\left.\bar{X} \times \bar{H}=\bar{J}_{C}+\frac{\partial D}{\partial t} A / \mathrm{m}^{2}\right]$
c. Wc current.

In It in module we will dincum only magnetic field dive to do current canning filament.
dc curint candying conductor roust's steady magnetic field. Steady means constant (or)
not changing with time. not changing with time.

Biot-Savart Law".

Deme:

1. Bros-Sarars I. aw
1.1 Apphrations of Biot-Sararts Law

- Magnetic Kield Intensity due to Intinite Long Straight Filament
- Magnetic FieldAnensity due to finite lengh Filament
- Magnetic Fiellyafensixy on the axis of a Circular Loop.

Question'
Stater and explain Biot-Savart Law. (4m)
State and explain, vector-form of Biot-Savast Law. Explain unito of all physial quantities involved (6 m) (di)

State and explain Biot-Savart Law for a Small ditterntial Cument Element. (4m)
[02-Jan 2009, 06-Jan 2012, 10-Jan2013, 06-Jan 2014, 02-June 1 uly 2010, 06 -Jume 2010].
[15- Juat July 2017 (4m) CBCs]
3.5. Biot - Savart Law:-

* Thir Law is alsu Called as

Anpurin haw for the Cumenteleant

* it gives differntial magneticifile Intensity (\sqrt{H}) due to differntial curint element.
* Fonsider a Filament through which curent of amp is paning. to Find Magnatic firld intensity at point P? Consider a small section of filament of Length $d l$, the differntial Curnnt dement is 工詨.
Statement:- Magnitude ofdt at point P_{2} is proportional to
a) Product of [urrent f deffesintial Length $d e$.
b) the sine of the angle blw the filamint and Line conneting differntial Length to the p pint of intrist $P_{2} ?$ And it in invorscly proportionat to the Square of the distance from \&ilament to point P.
\Rightarrow Combindly i.e $d H \propto \frac{I d l \sin \theta}{R_{12}^{2}}$
the Constant of proportionality is $1 / 4 \pi$

$$
\frac{\therefore d H=\frac{I d l \sin \theta}{4 \pi R_{12}^{2}}}{\sqrt{3}} \text { A/m N/Wb.}
$$

The direction of $d H$ is normal to the plane containing the differential. element and the line drawn from the filament to the point P.
In Vector notation the ditential Mag. field at point P_{2}.

$$
\begin{equation*}
d \bar{H}_{2}=\frac{I \overline{d l} \times \overline{a_{R_{12}}}}{4 \pi R_{12}^{2}} A_{m} \tag{0}
\end{equation*}
$$

Where x indicates Cromprodort operation.
$\bar{a}_{R_{12}}$ - unit valor from difterntte Peurent element to point P.
$I \overline{d l}$ - differential Earnest element.
R_{12} - distance of dIfferential current element from point $^{\text {P }}$

$$
P_{2}
$$

$$
\begin{aligned}
& \hat{Q}_{R_{12}}=\frac{\overline{R_{12}}}{\left|\overline{R_{12}}\right|} \\
& d \bar{H}_{2}=\frac{I d l}{4 \pi R_{12}^{3}}
\end{aligned} \mathrm{~A} / \mathrm{m}
$$

The Integral form of Biot-Savast Law (ie the ut field at point P_{2}) is

$$
\dot{X}^{x}\left[\bar{H}_{2}=\oint_{\langle l\rangle} \frac{I \overline{d l} \times \bar{R}_{12}}{4 \pi R_{12}^{3}}\right] \quad A l_{m} .
$$

neceneng ratherratical reprosntations. 10-sune fuly 2014

represemations.
Application' of Biot-Savorts Law. ..ened to Find
:Mogntic Fild intensity at a point due to Enfinite Long straight Fuerint-Carying fillament.
ii. Magntic ficld intersity ata point dive to Finite Length Eurrent Carging filament.
iii. Magnatic field Intensity ata point due to aris of a circuler Larorent-carrying Loop.
iv. Magnctic filed Intensily at a point on the erexis of a solenvid.

Noter Dotive any one application using Biot-savartis Law.
probtum 1
Find the magnetic field strength at the point (1, 3, 2) caused by a current element $2 \pi\left(0.6 u_{x}-0.8 \mathrm{u}_{y} \mu \mathrm{~A} / \mathrm{m}\right.$ situated $\operatorname{at}(4,-2,3)$.
(04 Marks)

Question
Find the Magnatic ficld strength at the point $P(1,3,2)$. Eaued by a curent clemente a Eurrent ebment $\mathscr{I}_{11}\left(0.6 \overline{a x}-0.8 \bar{a}_{y}\right)$ int $A-m$ Situated at $(4,-2,3)$. $(4 m)$...

Solvir

$$
\begin{aligned}
& 4,-2,3) \cdot(4 m) \\
& I d l=2 \pi\left(0, a_{x}-0.8 a_{y}\right) \mu \mathrm{Am}
\end{aligned}
$$

The magnatic fied strungth
"at point p due to Cement dement is giverby

$$
\begin{aligned}
& v_{0} b y \\
& d \overline{H_{p}}=\frac{I \overline{d e} \times \overline{a_{o p}}}{u \pi|\overline{O P}|^{2}} \quad A l_{m} . \\
& \frac{I \overline{H_{p}}}{}=\frac{I \overline{x p}}{4 \pi|\overline{O p}|^{3}}: A l_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{O P}=(1-4) \overline{a_{x}}+(3+2) \overline{a_{y}}+(2-3) \overline{a_{z}} \\
& \overline{o p}=-3 \overline{a_{x}}+5 \overline{a_{y}}-\overline{a_{2}} \\
& |\overrightarrow{O p}|=\sqrt{9+25+1}=\sqrt{35} \mathrm{~m} \text {. } \\
& d \bar{H}=\frac{I \overline{d e} \times \overline{o p}}{4 \pi(\sqrt{35})^{3}} A m_{m} \\
& I \overline{d e}=2 \pi(0.6) \overline{a_{x}}-2 \pi(0.8) \overline{a_{y}} M A_{m} \\
& \overline{I d}=102 \pi \overline{a_{x}}+1,1 \pi \overrightarrow{a_{y}} \quad \mu A-m \text {. } \\
& I \overline{d l} \times \overline{o p}=\left|\begin{array}{ccc}
\overline{a_{2}} & \overline{a_{y}} & \overline{a_{3}} \\
102 \pi \mu & -1.6 \pi \mu & 0 \\
-3 & 5 & -1
\end{array}\right| \\
& =[+1.6 \pi \mu-0] \overrightarrow{a_{x}}-[-1.2 \pi \mu-0] \overline{a_{y}} \\
& +[6 \pi \mu-4 \cdot 8 \pi \mu] \overline{a_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& I \overline{d l} \times \overline{O P}=1.6 \pi \overline{a_{x}}+1.2 \pi \overline{a_{y}}+1.2 \pi \overline{a_{z}}: \mu A_{m}^{2} \\
& d \overline{H_{p}}=\frac{I \overline{d e} \times \overline{o p}}{u \pi|\overrightarrow{o p}|^{3}} \\
& d \bar{H}_{p}=\frac{1.6 \pi \overline{a_{x}}+1.2 \pi \overline{a_{y}}+1.2 \pi \overline{a_{2}}}{4 \pi(\sqrt{35})^{3}} \cdot \mu A / m \\
& d \overline{H_{p}}=1.9317 \times 10^{-3} \overline{a_{x}}+1.448 \times 1 \overline{\bar{a}}+1.448 \times 10^{-3} \overline{a_{z}} \cdot \mu \mathrm{~m} / m \\
& d \overline{H_{p}}=1.9317 \overline{a_{x}}+1.448 \overline{a_{y}}+1.468 \overline{a_{2}} \mathrm{yA} / \mathrm{m} . \\
& \left|d H_{p}\right|=2.81511 \eta \text { A } m_{m}
\end{aligned}
$$

problem 2
Find the magnitude of magnatic fied at $A(2,3,-2) m$ due to curent slement $I \overline{d e}=\pi\left(0.5 \overline{a_{x}}-0.6 \overline{a_{y}}+08 \bar{a}\right.$ MAm situated at $B(3,-2,4) \mathrm{m}$.
($8 m$)
Ded Jan 2005.
Soluir

$$
\underset{\substack{\text { Ide }}}{\stackrel{\rightharpoonup}{B A}} \underset{\overline{a_{B A}}}{\substack{A(2,3,-2)}} d \overline{H_{A}}=\text { ? }
$$

The magnatic fild struggh at point A is calculated by using Biot-savert Law
Curuntearying clement.

$$
\begin{gathered}
d \overline{H_{A}}=\frac{I \overline{d l} \times \cdot \overline{a_{B A}}}{u \pi|\overline{B A}|^{2}} \mathrm{~A} / m \\
\therefore \overline{H_{A}}=\frac{I \overline{d l} \times \overline{B A}}{4 \pi\left|\overline{B_{A}}\right|^{3}} \mathrm{~A} l_{m} \\
I \overline{d l}=\pi\left(0.5 \overline{a_{1}}-0.6 \overline{a_{y}}+0.8 \overline{a_{3}}\right) \mathrm{MA}-\mathrm{m}
\end{gathered}
$$

$$
\begin{aligned}
& \overline{B A}=(2-3) \overline{a_{x}}+(3+2) \overline{a_{y}}+(-2-4) \overline{a_{z}} \\
& \overline{B A}=-\overline{a_{x}}+5 \overline{a_{y}}-6 \overline{a_{z}} . \\
& |\overrightarrow{B A}|=\sqrt{1+25+36}=\sqrt{62} \mathrm{~m} . \\
& I \overline{d l} \times \overline{B_{A}}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
0.5 & -0.6 & 0.8 \\
-1 & 5 & -6
\end{array}\right| \times \pi(\mu) . \\
& =(\mu \times \pi)\left\{[+3.6-4] \overline{a_{x}}-[-3+0.8] \overline{a_{y}}+[2.5-0.6] \overline{a_{z}}\right] \\
& \text { Idx } \times \overline{B A}=\pi\left[-0.4 \overline{a_{x}}+2.2 \overline{a_{y}}+1.9 \bar{a}_{\underline{z}}\right] \mu A \cdot m^{2} . \\
& d \vec{H}_{A}=\frac{I \overline{d l} \times \overline{B A}}{4 \pi|\overline{B A}|^{3}} \\
& =\frac{\pi\left[-0.4 \overline{a_{x}}+2.2 \overline{a_{y}}+1.9 \bar{a}_{z}\right] \mu A \rightarrow x^{22}}{\text { ut }(\sqrt{62})^{3} \mathrm{~m}^{3}} \\
& =-2.048 \times 10^{-4} \overline{a_{x}}+1.1266 \times 10^{-3} \overline{a_{y}}+9.729 \times 10^{-4} \cdot \mu \mathrm{mt}
\end{aligned}
$$

$$
\begin{aligned}
& d \overline{H_{A}}=-0.2048 \overline{a_{x}}+1.126 \overline{a_{y}}+0.972 \overline{a_{z}} n A I_{m} . \\
& d \overline{H_{A}}=-0.2048 \overline{a_{x}}+1.1266 \overline{a_{y}}+0.972 \overline{a_{z}}
\end{aligned} n_{m} .
$$

the magnitude of Magnatic field strangth at point
A isgiven by

$$
\begin{aligned}
& \left|d \vec{H}_{A}\right|=\sqrt{(-0.2048)^{2}+(1.1266)^{2}+(0.972)^{2}} \mathrm{yA} I_{\mathrm{m}} \\
& \left|d \bar{H}_{A}\right|=1.50198 \mathrm{HA} \mathrm{~m}
\end{aligned}
$$

Applications of Biot-Savarts Law
a. Magnetic Field Intensity due to Infinite Long Straight Filament

10-June/July 2013
Serve an expression bor magnetic heidi intensity at a point P due to an infinity lone

(or) nett 06 - June /July 2012

 Trontrigin
(or) (in) H (arlin)
02 - June /July 2012
On be basis of Bion-satan law. obtain an expression tor the mane tic fed density at wa:
 (08 Marts)
(e)

06- June /July 2009

Question.
Derive an cxpromion for magnticified intensity at a
point ip dee to an infinitely, 2 , straight filament
Consing a current I. (8 m)

Togic $\frac{3.5 a}{35 a}$ Magnetic Field Intensity (\bar{H}) due to Intinte Long Straight Filament:-
㖣.

- Eonsider a Infinite Length Long-straight Filament placed along 3 -avis, anume that dc current of I amperces Flow's in $+z$ diration.

fig. Infinit kinth
Cumnt camping filament: $\overline{O p}=\rho \overline{a_{y}}-3 \overline{a_{z}}$

$$
\begin{aligned}
& \text { and } \frac{d}{d l}=I d_{z} \overline{a_{z}} . \\
& \overline{O_{p}}=(5-0) \overline{a_{3}}+(\phi-\phi) \overline{a_{p}}+(0-z) \overline{a_{z}}
\end{aligned}
$$

$$
|\overrightarrow{o p}|=\sqrt{\rho^{2}+z^{2}}
$$

$$
\overline{a_{o p}}=\frac{\overrightarrow{o p}}{|\overline{p p}|}=\frac{\rho \overline{a_{p}}-z \overline{a_{z}}}{\sqrt{\rho^{2}+z^{2}}}
$$

using Biot-Savart Law, ata point: ie. the differential Mogatic fild. $\quad(d \bar{H})^{\wedge} d$ au to to currenf carying filament is

$$
d \bar{H}_{p}=\frac{I \overline{d l} \times \overline{a_{R}}}{4 \pi R^{2}}=\frac{I \overline{d z} \times \overline{a_{o p}}}{4 \pi|\overline{o p}|^{2}}
$$

$$
-\cdots d \overline{H_{p}}=\frac{I d z \overline{a_{z}}}{4 \pi\left(\rho^{2}+z^{2}\right)} \times-\left(\frac{\rho \overline{a_{p}}-z \overline{a_{z}}}{\sqrt{\rho^{2}+z^{2}}}\right)
$$

from conupt of Crom prodert
the net fild at apont'p due to Infinite Length Cument Canying filamant is
pot $z=\rho \tan \theta ; \quad d z=\rho \sec ^{2} \theta d \theta$

$$
\begin{gathered}
\rho^{2}+z^{2}=\rho^{2}+\rho^{2} \tan ^{2} \theta=\rho^{2} \sec ^{2} \theta \\
\left(\rho^{2}+z^{2}\right)^{3 / 2}=(\rho \sec \theta)^{3}=\rho^{3} \sec ^{3} \theta
\end{gathered} \quad \theta=\tan ^{-1} .
$$

나

$$
\begin{aligned}
& \left.\begin{array}{l}
z=-\infty \Rightarrow \theta=-\pi / 2 \\
\Rightarrow \\
=\theta=+\infty \Rightarrow \theta=+\pi / 2
\end{array}\right\} \theta=\tan ^{-1}\left(\frac{3}{9}\right) . \\
& \text { Dept of EACE, SVCE }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{H}_{p}=\frac{I \int \overrightarrow{a_{\phi}}}{4 \pi} \int_{\theta=-\pi / 2}^{\pi / 2} \frac{8 \sec ^{2} \theta d \theta}{\rho^{3} \sec ^{3} \theta} \\
& \overline{H_{p}}=\frac{I}{4 \pi \rho} \overline{a_{\phi}} \int_{\theta=-\pi / 2}^{\pi / 2} \pi / 00 \theta d \theta \\
& \bar{H}_{p}=\frac{I}{4_{2} \pi \rho} \bar{a}_{\phi}(\alpha) \\
& \therefore \quad \dot{x} \bar{H}_{\varphi}=\frac{I}{2 \pi \rho} \overline{a_{\phi}} \text { A/m N/ } \omega \mathrm{b}
\end{aligned}
$$

obs:-

* Where ρ^{\prime} is duntance fiom point ρ to infinite Lergth [urrent conying filament.
* the direction $\overline{a_{\phi}}$ is obtecined by right thand rule. i.e 4 you grip the currint filamint in right hand with thurbs in the dircation of Current, the diration of fingero around the Current filament gives the diration of F.
* The unit vector $\overrightarrow{a_{p}}$ is perpundicular to the [ument-Canging filamint.
Ingeniral $x^{\circ}\left[\bar{H}=\frac{I}{2 \pi \rho} \overline{a_{\phi}} \quad A I_{m}<(Q)\right.$
* fromç ${ }^{1}$ (ω Mapnctic ficld is Erculor in nature.

Applications of Biot-Savarts Law
b. Magnetic Field Intensity due to fuite lengh Filanent

10-DEC2011/Jan 2012
Startne from bion savart law derive an expression for the magnetic fidd minsity at a posin due to mite lengts of curent carying conductor. (06 Marks)

For he fig Q5th, ase Biot-Savart haw to find magntic hed It at pomp.

Staning fom Bot Savorty law, derive the expression for the maghenc ford monsty at a point due te fite tengh corren arrying conductor. (08 Marhs) Dec/Jan 2016
Derve expression for \vec{H} due to straigh conductor of finite lengh. (0S Matks)

Starting from Biot-Savart's Law, derive the

$$
\left[\begin{array}{l}
10-\operatorname{De}|\operatorname{Jan} 2012,02-J| J 2010,10-\operatorname{Ded} / \operatorname{Jan} 2015, \\
\operatorname{Dec}|\operatorname{Jan} 2016,10-J| J 2012] .
\end{array}\right.
$$

$$
\operatorname{Dec}|\operatorname{Jan} 2016,10-J| J 2012]
$$

3.5 Magnetic Fild Intensity du to Finite Length [urrent

Carying Filamint:-

$$
d l=d z \quad \quad z_{2} 1^{2}
$$

Eonsider a Curent filament through which
the Current of I ampis in paning is plaud along z-axis from $z=z_{1}$ to $z=z_{2}$.
The fild \vec{H}_{p} at donit p on xyplane iox ic p $(3, \phi, 0)]$ to be catculated by Eonsidering the difterntial Current clement $(I d l)$.
fig. Field ducto
Conying Filament
the vector $\overline{O P}=\rho \overline{a_{\rho}}-3 \overline{a_{z}}$;
the difterintial curnent clement in $I \overline{d l}=I d_{z} \overline{a_{z}}$.
the difterntial ficle at point ' P ' is $d \overline{H_{p}}$

$$
\begin{aligned}
& \text { the difterntial } \overline{d H_{p}}=\frac{I \overline{d l} \times \overline{a_{R}}}{4 \pi R^{2}}=\frac{I \overline{d l} \times \overline{a_{o p}}}{4 \pi|\overline{O p}|^{2}} \\
& d \overline{H_{p}}=\frac{I d z \overline{a_{z}}}{4 \pi\left(\rho^{2}+z^{2}\right)} \times\left[\frac{\rho \overline{a_{\rho}}-3 \overline{a_{z}}}{\sqrt{\rho^{2}+z^{2}}}\right]
\end{aligned}
$$

using [romproduct of unit vectors

$$
\begin{aligned}
& \overline{a_{z}} \times \overline{a_{1}}=\overline{a_{\phi}} ; \quad \overline{a_{z}} \times \overline{a_{z}}=0 . \\
& d \overline{A_{p}}=\frac{I d z}{4 \pi\left(\rho^{2}+z^{2}\right)^{3 / 2}}\left[\rho \overline{a_{\phi}}\right] \quad \mathrm{A} / m
\end{aligned}
$$

the net Fild at point ' p ' is

$$
\begin{aligned}
& \text { the net Firld } \\
& \overline{H_{p}}=\int_{z_{1}}^{z_{2}} d \overline{H_{p}}=\int_{z_{1}}^{z_{2}} \frac{I \rho d z}{4 \pi\left(\rho^{2}+z^{2}\right)^{3}} \cdot \alpha_{1} \\
& \overline{H_{p}}=\frac{I \rho}{4 \pi} \bar{a}_{\phi} \int_{z_{1}}^{z_{2}} \frac{d z^{2}}{\left(f^{2} \alpha^{2}\right)^{3 / 2}}
\end{aligned}
$$

$$
\text { put } z=\rho \tan \alpha 1\}\left(\rho^{2}+3^{2}\right)^{3 / 2}=s^{3} \sec ^{3} \alpha
$$

$$
d_{z}=\rho \sec ^{2} \alpha d \alpha \int
$$

$$
\cdot 3 \rightarrow 3_{1} \quad, \quad \alpha \rightarrow \alpha_{1}
$$

and $\tan \left(\alpha_{2}\right)=\frac{z_{2}}{\rho} \Rightarrow z_{2}=\rho \tan \left(\alpha_{2}\right)$

$$
z \rightarrow 3_{2} ; \quad \alpha \rightarrow \alpha_{2}
$$

$$
\overline{H_{p}}=\left.\frac{I 8}{4 \pi} \overline{a_{\phi}}\right|_{\alpha_{1}} ^{\alpha_{2}} \frac{8 \sec ^{2} \alpha d \alpha}{\rho^{3} \sec ^{6} \alpha}
$$

$$
\begin{aligned}
& \overline{H_{p}}=\frac{I}{4 \pi \rho} \overline{a_{\phi}} \int_{\alpha_{1}}^{\alpha_{2}} \frac{1}{\sec \alpha} d \alpha \\
& \overline{H_{p}}=\frac{I}{4 \pi \rho} \overline{a_{\phi}} \int_{\alpha_{1}}^{\alpha_{2}} \cos (\alpha) d \alpha \\
& \overline{H_{p}}=\frac{I}{4 \pi \rho} \overline{a_{\phi}}\left[\left.\sin (\alpha)\right|_{\alpha_{1}} ^{\alpha_{2}}\right] \\
& \overline{H_{p}}=\frac{I}{4 \pi \rho} \overline{a_{\phi}}\left[\sin \left(\alpha_{2}\right)+\sin _{1}\left(\alpha_{1}\right)\right] \\
& \left.\overline{H_{p}}=\frac{I}{4 \pi \rho}\left[\sin \left(\alpha_{2}\right)-\sin \left(\alpha_{1}\right)\right] \overline{a_{\phi}}\right] A \rho_{m}
\end{aligned}
$$

$\left.\begin{array}{l}\text { Note: when } \alpha_{2} \rightarrow \pi / 2 \text { and } \\ \alpha_{1} \rightarrow-\pi / 2\end{array}\right\} \Rightarrow \begin{aligned} & \text { Infinte }\end{aligned}$

$$
\begin{aligned}
\therefore \quad \bar{H}_{p} & =\frac{I}{4 \pi \rho}[\sin (\pi / 2)-\sin (-\pi / 2)] \overline{a_{\phi}} \\
= & \frac{I}{2 \pi \pi \rho} \times 2 \overline{a_{\phi}} \\
& \times \times \sqrt{H_{p}}=\frac{I}{2 \pi \rho} \overline{a_{\phi}} \quad A I_{m}
\end{aligned}
$$

the fild H_{x} in given by

$$
\begin{aligned}
& \vec{H}_{x}=\frac{I}{4 \pi \rho}\left[\sin \theta_{2}-\sin \theta_{3}\right] \overline{a_{\phi}} A l_{m} \\
& \bar{H}_{x}=\frac{8}{4 \pi \times 0.3}\left[\sin \left(53.13^{\circ}\right)-\sin \left(-90^{\circ}\right)\right] \overline{a_{\phi}} \\
& \bar{H}_{x}=3.819 \overline{a_{\phi}} \mathrm{Alm}
\end{aligned}
$$

from the concept of right-hand screw rule the unit vator $\overline{a_{\phi}}=-\overline{a_{z}}$

$$
\Rightarrow \bar{H}_{x}=-3.819 \overline{a_{z}} \quad A_{m}
$$

M_{P} Freld H_{y} due to Cumentfilament along y-direl.

$$
\begin{aligned}
& \overline{H_{y}}=\frac{I}{4 \pi}\left[\sin \theta_{4}-\sin \theta_{1}\right] \overline{a_{\varphi}} \quad A_{m} \\
& \overline{H_{y}}=\frac{8}{4 \pi(0.4)} \text { and } \rho=0.4 m \\
& \left.\sin 90^{\circ}-\sin (-36.86)\right] \overline{a_{\varphi}} \mathrm{A} / \mathrm{m}
\end{aligned}
$$

$$
\overline{H_{y}}=2.546 \overline{a_{\phi}} A_{m} .
$$

from the conceptof righthend screw rule, the unit vator $\overline{a_{q}}$ refenced to y-axisin in $\overline{a_{y}}$

$$
\begin{aligned}
& \text { the unit } \bar{a}_{\phi}=-\overline{a_{2}} \\
& \therefore \bar{H}_{y}=-2.546 \overline{a_{2}} A_{m}
\end{aligned}
$$

the net fild at point ' p ingiven by

$$
\begin{aligned}
& \vec{H}_{p}=\overline{H_{x}}+\overline{H_{y}} \mathrm{Alm} \\
& \overline{H_{p}}=-3.819 \overline{a_{z}}-2.546 \overline{a_{z}} \\
& \overline{H_{p}}=-6.365 \overline{a_{z}} A_{m} \\
& \mid \bar{H}_{p}=6.365 \mathrm{Alm}
\end{aligned}
$$

Applications of Biot-Savarts Law
c. Magnetic Field Intensity on the axis of a Circular Loop

06-DEC2008/Jan 2009
State and explain Bot - savant law. Using this, find the magnetic flux density at the centre of a circular current loop of radius ' a ' (m)
(07 Marks)
06-DEC 2013/Jan 2014
Gene Biot-Savat law derive an expression for magnet ie fred intoning on the a as as

Ohain the expression for the magnetic flux density at any port on the axis of a chat cutest hop of a turns.
60 Mat ks

02 - June /July 2011
State Blol-Savart law. Apply this law to determine the magnetic flux density at the center of ficroular current loop.

$$
06-\operatorname{Jan} 2013
$$

State and explain Biol - Savant lay Sing this, fond the magnetic Dux density at the conte of a circular loop of radius 'aam.
(08 Marks) 06 - May/June 2010

 (or Marks)

State. Dot Savant huuluapply thin haw to determine
the magnetic funusidensity at the center of a circular [06- Jon 2 209, 06- 0602014 ,

$$
06-\operatorname{Jan} 2013,06 \text { may } \mid \text { June 2010]. }
$$

3.5c. Magnetic Firld Intencity(H) on the axin of a Circular Loop.

Eonsider a [urrent Corrying Eircular doop. placed on $x y$-plane. the Filld Intensity on the axis of a [ircular Loop ie @olo.中2) in obtaine 6 sy Comising aditerential curbfecement - Id on circulor

$$
\begin{aligned}
& \text { Leop } \\
& \therefore I d e=I \rho d \phi \widehat{a_{p}} . \\
& \therefore \text { blu th }
\end{aligned}
$$

the vator joining blw the points p to 0 is a Circular Loop pland on $x y$-axis:

- using Eromprodutaf un it vutors

$$
\text { i.e } \overline{a_{\phi}} \times \overline{a_{1}}=-\overline{a_{3}} \text { and } \overline{a_{\phi}} \times \overline{a_{2}}=\overline{a_{1}}
$$

$$
\begin{equation*}
\therefore d \bar{H}_{0}=\frac{I \rho d \phi}{4 \pi\left(\rho^{2}+z^{2}\right)^{3 / 2}}\left[\rho \bar{a}_{z}+3 / \bar{a}_{\rho}\right] \tag{20}
\end{equation*}
$$

the $c q^{4}$ (a) Shown that $d \bar{H}_{0}$ has two component $\left(\bar{a}_{2}\right.$ and $\left.\overline{a_{\rho}}\right)$. when we considered a filament at (ρ, ϕ, z) in the abovefgo there is one more small filament at excutly diametrically opposite side point p^{\prime} (show infigb).

The FidGe Intensity due to differential filament at p^{\prime} abs has two components When these two field. Intensities (dH_{0} and dress) added, the horizontal components get cancelled. and rourtin only Vertical components.
Thus the result is only the vertical component.

$$
\overline{H_{0}}=\int_{\phi=0}^{2 \pi} \frac{I \rho^{2}}{4 \pi} \frac{d \phi}{\left[\rho^{2}+z^{2}\right]^{3 / 2}} \overline{a_{3}} \text { AIm. }
$$

$$
\begin{aligned}
& \bar{H}_{0}=\left.\frac{I \rho^{2} \overline{a_{2}}}{4 \pi\left(\rho^{2}+z^{2}\right)^{3 / 2}}\right|_{\phi=0} ^{2 \pi} d \phi 2 \pi \\
& \cdots \\
& \bar{H}_{0}=\frac{I \rho^{2}}{\frac{4 \pi}{2}\left(\rho^{2}+z^{2}\right)^{3 / 2}} \times 2 \pi \overline{a_{z}}
\end{aligned}
$$

$$
\dot{x \times i} \overline{H_{0}}=\frac{I \rho^{2}}{2\left(\rho^{2}+3^{2}\right)^{3 / 2}} \bar{a}_{3}{ }^{1} \mu_{0}=\frac{\mu I \rho^{2}}{2\left(\rho^{2}\right.}
$$

(a)Tula

The magnatic. Flux density $\bar{B}=\mu_{0} H=\frac{\mu I \rho^{2}}{2\left(s^{2}+z^{2}\right)^{3 / 2}} \overrightarrow{a_{2}}$
$\rightarrow F$ at any point onthe axio is always papendiulan to plane of the Ciruilar Loop.
\rightarrow the diration of H in upward/downivard in obtained by theright hand rule.
\rightarrow the obove rosult is for any point on the axis at a dintance z. if \bar{H} at the center of the Loop is desired ie put $z=0, \bar{H}$ becoms

$$
\infty \quad \bar{H}=\frac{I}{2 \rho} \bar{a}_{3} \quad A / m=\frac{I}{2 \rho} \overline{a_{3}} A / m
$$

My nagntictluedensity $\frac{\text { Pield at Centerg drop: }}{B}=\mu_{0} I$

$$
\frac{B=\frac{\mu_{0} I}{2 \rho} \overline{a_{3}} \mathrm{\omega b} / \mathrm{m}^{2}}{\text { P1 }}
$$

problem 4
10-DEC2011/Jan 2012
A singe run circular coil 5 cm diameter carries a current of 28 A . Detemme me mate me
flux density \vec{B} at a point on the axis $\mathbf{i} 0 \mathrm{~cm}$ from the center. Derive the formula used.
(08 Marks)
Question.
A single turn circular coil 5 cm diameter carries a current of $2 \cdot 8 \mathrm{~A}$. Determine the magnetic flux density \bar{B} at a point onthe axis 10 cm fromithe center. Derive the formula used. $(8 \mathrm{~m})$.
Sola'. Stepl. derive an exprimion Magnetic flux density (\bar{B}) on the axis of a crrulan loop i.e $\bar{B}=\frac{\mu+\rho^{2}}{2^{2}\left(\rho^{2}+3^{2}\right)^{3 / 2}} \overline{a_{3}} \quad \omega b / m^{2}$.

$$
\overline{\text { Dept. of ERCE. SVCE }}
$$

$$
\begin{aligned}
& \bar{B}=1.00397 \times 10^{-6} \overline{a_{3}} \quad \omega b / m^{2} \\
& \bar{B}=1.00397 \overline{a_{2}} \quad \mu \omega b / \mathrm{m}^{2}
\end{aligned}
$$

and

$$
|\bar{B}|=1.00397 \mu \omega b / \mathrm{m}^{2}
$$

the magnutic Fild Intensity

$$
\begin{aligned}
& \bar{H}=\frac{\bar{B}}{\mu_{0}}=\frac{1.0039 .710,10}{4 T 107} \mathrm{Alm} \\
& \text { (1) } \bar{H}=0.798933 \widehat{A}_{2} \\
& \bar{H}=0.798933 a_{2} \quad \mathrm{Alm} \\
& |\vec{H}|=0.79893 \mathrm{~A} / \mathrm{m} .
\end{aligned}
$$

problem 5 .
Fid du medawar
A single turn Circular coil of 50 m in diameter carrion a current of $28 \times 10^{4} \mathrm{~A}$. Determine the Magnetic field intensity \bar{H} at a point on the axis of the coil and 100 m from the coil. the Mr of freespace Surrounding the coil is unity. Feb 2001 (6 m) sole'.

F due to Axis of a circular carrint camping Loop is given by

$$
\begin{equation*}
p(0,0,3) \quad \underset{H}{H}=\frac{I \rho^{2}}{2\left(\rho^{2}+2^{2}\right)^{3}} \tag{a}
\end{equation*}
$$

i. If at the axis of the coil. i.e $z \rightarrow 0$. inc@

$$
\bar{H}=\frac{I \rho^{2}}{2 \rho^{3}} \bar{a}_{3} A_{m}
$$

$$
\begin{aligned}
& \bar{H}=\frac{I}{2 \rho} \overline{a_{2}} \quad \mathrm{Am} . \\
& I=28 \times 10^{4} \mathrm{~A} ; \rho=25 \mathrm{~m} . \\
& \bar{H}=\frac{28 \times 104}{2(25)} \overline{a_{2}} \mathrm{~A} \rho_{m} \\
& \bar{H}=5.6 \overline{a_{2}} \mathrm{KAlm}=5600 \bar{a}_{2} \mathrm{Alm}
\end{aligned}
$$

ii. \bar{H} at a point onthe anin 100 m from the coil id

$$
\begin{aligned}
& \bar{H}=\frac{I \rho^{2}}{2\left(\rho^{2}+z^{2}\right)^{3 / 2}} \overline{a_{z}} \quad \text { Alm. } \\
& z=100 \mathrm{~m} . \\
& \bar{H}=\frac{\left(28 \times 10^{4}\right)(25)^{2}}{2\left(25^{2}+100^{2}\right)^{1.5}} \overline{a_{2}}-A l_{n} \\
& \bar{H}=79.894088 \overline{a_{2}} \mathrm{Alm} \text {. } \\
& |\vec{H}|=79.894 \quad \mathrm{Alm} .
\end{aligned}
$$

Topics
 Quentione.

02-DEC2010

b. Derive an expression for Magnetic flux density at any point on the axis of Solenoid.

Derive an expranion for magnetic flux density and field intensity at any point on the ain of solenoid. (gm)

$$
\begin{aligned}
& {[02-\operatorname{Dec} 2010,10 \text { Decl } \operatorname{Jan} 2014,02-\operatorname{Jan} 2009,} \\
& 06-\operatorname{June}[\text { Faintly } 2014] .
\end{aligned}
$$

solute
Consider a solenoid of Length 'L' meters and a point P on its axis mating angler ϕ_{1} and ϕ_{2} with both ards as shown in the fig.
the incremental flux density at point of ECEMB.M.S.I.T \& M
given by

$$
d_{B_{p}}=\frac{\mu \mu I}{2} \sin \phi d \phi
$$

from fig. ϕ varies from ϕ_{1} to ϕ_{2}
\therefore The magnetic the density at is point p is

$$
\begin{align*}
& B_{p}=\int_{\phi_{1}}^{\phi_{2}} \frac{\mu \mu I}{2} \sin \phi d \phi \\
& \left.B_{p}=\frac{\mu N I}{2}\left[\cos \phi_{1}-\cos \phi_{2}\right]\right]
\end{align*}
$$

The magnetic Field intensity at a point P is

$$
\left.H_{p}=\frac{B_{p}}{\mu}=\frac{N_{1}}{2}\left[\cos \phi_{1}-\cos \phi_{2}\right]\right] A / m .
$$

Problem 6.

:ab Ant -aton

mom the manama at the aroma t
(HS Mart is:

Question.
A solenoid of 10 cm diameter and 30 cm length is word with 150 turns and caries a Current 5A. Find the magnetic flux density at a point on the axis at a distance of 10 cm from the midpoint of the solenoid.

Sole: -

$$
\alpha=30 \mathrm{~cm}=0.3 \mathrm{~m} . \quad \begin{aligned}
& \text { Sig. Solenoid of Length } \\
& 30 \mathrm{~cm} .
\end{aligned}
$$

and $d=10 \mathrm{~cm}=0.1 \mathrm{~m}$.

$$
\text { from fig. } \begin{aligned}
\phi_{1} & =\tan ^{-1}\left(\frac{0.1}{0.05}\right) \Rightarrow \tan \phi_{1}=\left(\frac{0.1}{0.05}\right) \\
\Rightarrow \phi_{1} & =\tan ^{-1}\left(\frac{0.1}{0.05}\right)=63.435^{\circ}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \phi_{1}=\tan ^{-1}\left(\frac{0.1}{0.05}\right)=63.435^{\circ} \tag{34}
\end{equation*}
$$

Dept. of ECE, B.M.S.I.T \& M
the magnstic fluxdensity at any point p along the axis is given by

$$
\begin{align*}
& B_{p}=\frac{\mu \mu I}{g}\left[\cos \phi_{1}-\cos \phi_{2}\right] . \\
& N=\text { Number of turns permeter } \frac{150}{\frac{1}{\alpha}}=\frac{150}{0.3} \\
& N=500 \text { turns/miter. } \\
& \phi_{1}=63.4359^{\circ} \\
& \text { and } \quad \phi_{2}=180^{\circ}-\therefore \tan ^{-1}\left(\frac{0.1}{0.25}\right) \\
& \phi_{2}=180^{\circ} \\
& \phi_{2}=158.2^{\circ} \\
& \therefore B_{p}=\frac{4 \pi \times 10^{-7} \times 500 \times 5}{2}\left[\cos \left(630435^{\circ}\right)-\cos \left(158.2^{\circ}\right)\right] \\
& B_{p}=2.16106 \times 10^{-3}=2.16106 \mathrm{~m} \mathrm{\omega h} / \mathrm{m}^{2} \text { ()) Tulc } \\
& \text { Deptof frace, scie the magnatic fuld intensity at poinf Page ' } P \text { ' is } \\
& H_{p}=\frac{B_{p}}{\mu_{0}}=1.7196 \times 10^{3} \mathrm{Am} \tag{65}
\end{align*}
$$

Topic 305 Be Magnetic Fluxdensity at the
Question: 3.5 Be Tenter of Square Current Loop.
Find the magnetic flux density at the
square Dement loop of side ' a '.
Lonsider a Square Current Loop of side ' a ' m carrying a current I, situated in tree space. it is required to Find the magnetic. Flux density at point P, the center of the square.

The flux density at point p due tocurnt.
it Flowing from id' to ' a ' in given by

$$
\bar{B}=\frac{\mu_{0} I}{u \pi r}\left[\cos \theta_{2}-\cos \theta_{1}\right] \overline{a_{2}} \sim b /_{m^{2}}
$$

$$
\begin{aligned}
& \theta_{2}=45^{\circ} \text { and } \theta_{1}=135^{\circ}, r=\frac{a}{2} m \\
& \bar{B}=\frac{\mu_{0} I}{4 \pi\left(\frac{a}{2}\right)}\left[\operatorname{con}\left(45^{\circ}\right)-\cos \left(135^{\circ}\right)\right] \overline{a_{3}} \omega b / m 2 \\
& \bar{B}=\frac{\mu_{0} I}{2 \pi a}\left[\frac{1}{\sqrt{2}}-\left(-\frac{1}{\sqrt{2}}\right)\right] \overline{a_{3}} \\
& \bar{B}=\frac{\mu_{0} I}{\sqrt{2} \pi a} \overline{a_{3}}
\end{aligned}
$$

Since square has 'four' sides and the Current through cont wire caus the magnetic flux density \bar{B} pointing 1 Is to paper and into it, the overall magnetic Thuxdurity $\overline{B_{n c t}}=4 \bar{B} \quad \mathrm{wb} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \left.B_{\text {nut }}=4 \frac{\mu_{0} I}{\sqrt{2} \pi a^{2}} \bar{a}_{2} \omega \right\rvert\, m^{2} \\
& \left.\overline{B_{n+t}}=\frac{2 \sqrt{2} \mu_{0} I}{\pi a} \right\rvert\, a_{2} \omega b / m^{2}
\end{aligned}
$$

problum 7

Question.
Find F at the cunter of a square Curint Loop of side 4 moters, if a currunt of 5 m parin in paring through it. (8m).

Soluir

Nofe:- ftep $\frac{\text { experive the general exprion of }}{}$ $\frac{14}{B}$ and \bar{H} due to Square Cument Leop.

Stepi 2 . Using the equation

$$
\bar{H}_{\text {nct }}=\frac{2 \sqrt{2} I}{\pi a} \quad \bar{a}_{3} \quad A I_{m}
$$

$$
\begin{aligned}
& \overline{H_{0}}=\frac{2 \sqrt{2}(5)}{\pi(4)} \overline{a_{2}} A_{m} . \\
& \overline{H_{0}}=1.125 \overline{a_{2}} \mathrm{Alm} . \\
& \left|\bar{H}_{0}\right|=1.12539 \mathrm{Alm} .
\end{aligned}
$$

 condu ctor of each side equal to 5 m and canying a current of 10 A . tate $\mu=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$. 06 - J J 2012 ((σ) 06-DEC2011//an 2012
 Io ampres of corren.

Question.
Find the magnatir flue dinsity at the contre ' O ' of a Find the magnatic the density at carying 10 A of cument.
Squara equal to 5 m and
$135^{\circ}=0$ 5m
Solu:-

fig. Square Cument \quad at $2=0 \mathrm{~m}$. plane.

Step1. denive quaual" Exprosion of \bar{H} at centere of Square curnt hoop.

Stepz, Cesing above obtained coprenion

$$
\begin{aligned}
& \text { i.e } \quad \frac{U}{H}=\frac{2 \sqrt{2} I}{\pi a} \overline{a_{3}} A_{m} . \\
& a=5 \mathrm{~m} \text { and } I=10 \mathrm{~A} .
\end{aligned}
$$

$$
\bar{H}_{n t}=\frac{2 \sqrt{2}(10)}{\pi(5)} \bar{a}_{3} \quad A f_{m} .
$$

$$
\bar{H}_{n t}=1.800632 \overline{a_{2}} \mathrm{Am}_{\mathrm{m}} .
$$

problurg.
02 - June /July 2012
 Gatculate the magnetic thas density at the conter of the ctrme hexagon fromme the nedium is tre space
(06) Marhos)

(04 Marks)
Quention
A Circuit carrying currnt-5A, from rutenghtar hexagon in socribed in a circle of radius 1 m . Eaculate B at the center of fresuggon.

using pythagorous thorem

$$
\begin{aligned}
d^{2}+(A O)^{2}= & 1^{2} \\
\Rightarrow d= & \sqrt{1-(40)^{2}}=\sqrt{1-0.5^{2}} \\
& d=0.866 \mathrm{~m}
\end{aligned}
$$

Magnetic flux density \therefore tut a point 'p' tue
Current Carrying element: BA is given by

$$
\begin{gathered}
B=\frac{\mu_{0} I}{6 \pi d}\left[\cos \theta_{2}-\cos \theta_{1}\right] \\
B=\frac{4 \pi \times 10^{-7} \times 5}{4 \pi(0.866)}\left[\cos 60^{\circ}-\cos \left(20^{\circ}\right]\right. \\
B=5.77367 \times 10^{-7}+\left.b\right|_{m} ^{2}
\end{gathered}
$$

\therefore Magnetic flux density at point p due to
Current in ofter'six sides is

$$
\begin{aligned}
& B=6 \times 5.77367 \times 10^{-7} \mathrm{Nb} / \mathrm{m}^{2} \\
& B=3.46420 \times 10^{-6} \mathrm{\omega b} / \mathrm{m}^{2} \\
& B=3.4642 \mu \omega \mathrm{~m} / \mathrm{m}^{2}
\end{aligned}
$$

Notep for a Eondutor in the form of regular polygon of n-side inscribed in a circle of radius ' r ' m
Dept oferces. svCe Flux density B at the centre is Page
the
43

$$
B=\frac{\mu_{0} n I}{2 \pi r} \tan \left(\frac{\pi}{n}\right) \quad \omega b / m^{2}
$$

Method II
usig above sttd rosult.

$$
B=\frac{\mu_{0} n I}{2 \pi r} \tan \left(\frac{\pi}{n}\right) \omega b / m^{2}
$$

given $I=5 \mathrm{~A}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.
hexagon no.of sides $n=6$

$$
\begin{aligned}
& \text { radius of } O^{2} \hat{\gamma=1 m} \\
& B=\frac{4 \pi \times 10^{7} \times 6 \times 5}{2 \pi(1)} \tan \left(\frac{\pi}{6}\right) \\
& B=3.4641016 \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}
\end{aligned}
$$

(G)

$$
B=3.4641 \mu \omega b / \mathrm{m}^{2}
$$

problem 10.
Find the value of the magnatic flusdensity at the point p for the Currint Circuit shown blow

Solvi- He magnatic field Intansity at poist ' p ' is

$$
\overline{H_{P}}=\overline{H_{B A}}+\bar{H}_{A D}+\bar{H}_{D C}+\bar{H}_{C B}
$$

Since current (I) is in clocbwine diration, the direng $\bar{H}\left(\bar{B} \rightarrow-\overline{a_{3}}\right.$. [using Flimuing rightitand rule]

$$
\begin{aligned}
& \rightarrow \bar{H}_{B A}=?_{0}
\end{aligned}
$$

$$
\begin{aligned}
& r=4 \mathrm{~m}, \quad I=10 \mathrm{~A} . \\
& \theta_{2}=\tan ^{-1}\left(\frac{4}{1}\right)=75.9637^{\circ} \\
& \theta_{1}=180^{\circ}-\theta_{2}=104.0362^{\circ} \\
& H_{B A}=\frac{I}{4 \pi \gamma}\left[\cos \theta_{2}-\cos \theta_{1}\right] \\
& H_{B A}=\frac{10}{4 \pi(4)}\left[\operatorname{con}\left(750963^{\circ}\right)-\cos \left(10400362^{\circ}\right)\right] \\
& H_{B A}=0.096504 \mathrm{Am} \\
& H_{A D}=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=1 m \text {. } \\
& \theta_{1}=90^{\circ} \\
& \theta_{2}=\tan ^{-1}\left(\frac{1}{4}\right)=14.03624^{\circ} .
\end{aligned}
$$

$$
\begin{aligned}
& H_{A D}=\frac{I}{4 \pi r}\left[\cos \theta_{2}-\cos \theta_{1}\right] \\
& H_{A D}=\frac{10}{4 \pi(1)}\left[\cos \left(14.03624^{\circ}\right)-\operatorname{con}\left(90^{\circ}\right)\right] \\
& H_{A D}=0.772014 \mathrm{~A} / \mathrm{m} \\
& \rightarrow H_{C B}=\Omega \\
& H_{C B}=H_{A D}=0.772014 \quad A l_{m} \\
& H_{D C}=\text { ? } \\
& H_{D C}=\frac{I}{4 \gamma} A l_{m} \ldots \text { due Smicircle. } \\
& P L_{C}^{D} \\
& H_{D C}=2.5 \mathrm{Am}
\end{aligned}
$$

not fied at point p

$$
\begin{aligned}
& \overline{H_{p}}=\overline{H_{B A}}+\overline{H_{A_{D}}}+\overline{H_{D C}}+\overline{H_{C B}} \\
& \overline{H_{p}}=[0.096504+0.172014+2.5+0.712014]\left(-\bar{a}_{2}\right) \\
& \bar{H}_{p}=-4.1405 \bar{a}_{3}
\end{aligned}
$$

the magatic thex densing at point p is

$$
\begin{aligned}
\overrightarrow{B_{p}} & =\bar{H}_{p} \cdot \mu_{0} \mathrm{Nb} / \mathrm{m}^{2} \\
\overline{B_{p}} & =\left(-4.1405 \overline{a_{2}}\right)\left(4 \pi \times 10^{-7}\right) \\
\bar{B}_{p} & =5.203148 \mathrm{\mu} \mathrm{Nb} / \mathrm{m}^{2} \\
& =5.203148 \times 10^{-6} \mathrm{Nb} / \mathrm{m}^{2}
\end{aligned}
$$

Question 11.
Find the magnetic field intensity at point p for the Circuit shown in the fig.

Sole:-

$H_{P}=H_{\text {due to Current filament ab }}+\mathrm{H}_{b c}+\mathrm{H}_{c d}+\mathrm{H}_{d a} \mathrm{~A}_{m}$

$$
I=10 \mathrm{~A}
$$

Step.

$$
\begin{aligned}
& \theta_{2}=\tan ^{-1}\left(\frac{20}{5}\right)=75.963^{\circ} \\
& \theta_{1}=180^{\circ}-\theta_{2}=104.036^{\circ}
\end{aligned}
$$

and $\gamma=20 \mathrm{~m}$.

$$
\begin{aligned}
H_{a b} & =\frac{I}{4 \pi r}\left[\cos \theta_{2}-\cos \theta_{1}\right] \mathrm{Alm} \\
H_{a b} & =\frac{10}{4 \pi(20)}\left[\cos \left(75.963^{\circ}\right)-\cos \left(104.036^{\circ}\right)\right] \\
H_{a b} & =0.0193007 \mathrm{Alm} .
\end{aligned}
$$

Step 2. $\quad H_{b c}=$?

$$
\begin{aligned}
& H_{b c}=\frac{I}{4 \pi r} \cdot\left[\cos \theta_{2}-\cos \theta_{1}\right] \mathrm{Alm} . \\
& H_{b c}=\frac{10}{4 \pi(5)}\left[\cos \left(14.036^{\circ}\right)-\cos \left(90^{\circ}\right)\right] \\
& H_{b c}=\frac{0.1544031^{\circ}}{5 / m} \\
&=\frac{0.1544031}{50} \mathrm{Alm} \\
& \text { SVCE }
\end{aligned}
$$

Step 3. $\quad H_{d a}=$?

$$
\begin{gathered}
a \quad \theta_{2}=\tan ^{-1}\left(\frac{5}{20}\right)=14.03624^{\circ} \\
H_{d a}=\frac{I}{4 \pi r}\left[\cos \theta_{2}-\cos \theta_{1}\right] \\
H_{d a}=\frac{10}{4 \pi}(5) \\
\left.H_{d a}=0.00\left(14.036^{\circ}\right)-\operatorname{con}\left(90^{\circ}\right)\right]
\end{gathered}
$$

$$
\begin{aligned}
& \text { Step } 4 . \\
& H_{c d}=\frac{I}{4 \gamma} \quad A l_{m} \ldots \text { Semicircle } \\
& \text { Comping curing } \\
& \text { IJ campers } \\
& H_{c d}=\frac{10}{4(5)} \mathrm{Am} \\
& H_{c d}=0.5 \mathrm{Alm} \\
& \bar{H}_{\text {net }}=\bar{H}_{P_{\text {net }}}=0.0193007+0.154403+0.154403+0.5
\end{aligned}
$$

$\bar{H}_{\text {net }}=0.8281 \mathrm{Alm} \cdots$ acth down wands bes burnet is Comping along lack 1 wine dat
problem 12.
Find the magnatic field at point p in the fig. shown

Solu:-

$$
\vec{H}_{P_{\text {nat }}}=\bar{H}_{A B}+\overline{H_{B C}}+\bar{H}_{C_{D}}+\overline{H_{D A}} \text { Alm. }
$$

Since the Corrent is in An-clalewire diretion the \bar{H} (a) \bar{B} autrolong $\left(+\overline{a_{2}}\right)$

$$
\begin{aligned}
\rightarrow H_{A B} & =? \\
& H_{A B}=\frac{I}{4 \pi r}\left[\cos g-\cos \theta_{1}\right]
\end{aligned}
$$

$$
H_{A B}=\frac{10}{u \pi(0.1)}\left[\operatorname{Con}\left(63.434^{\circ}\right)-\operatorname{Con}\left(116.56^{\circ}\right)\right] \begin{aligned}
& \theta_{2}=63.634^{\circ} \\
& \theta_{1}=180^{\circ}-\theta_{2} \\
& \theta_{1}=116.56^{\circ}
\end{aligned}
$$

$$
H_{A B}=7.117 \mathrm{Alm}
$$

(a) $\bar{H}_{A B}=7.117 \overline{a_{3}} \mathrm{Alm}$.

$$
H_{B C}=H_{D A}=?
$$

$$
\begin{aligned}
H_{B C} & =H_{D A}=\frac{I}{4 \pi r}\left[\cos \theta_{2}-\cos \theta_{1}\right] \\
& =\frac{10}{4 \pi(0.05)}\left[\cos \left(26.565^{\circ}\right)-\cos \left(90^{\circ}\right)\right] \\
H_{B C} & =H_{D A}=14.235 \mathrm{~A} l_{\mathrm{m}} . \\
H_{B C} & =H_{D A}=14.235 \bar{a}_{3} \mathrm{~A} l_{\mathrm{M}} \\
H_{C D} & =?
\end{aligned}
$$

$$
H_{C D}=\frac{I}{4 r} A l_{m}
$$

$$
\begin{aligned}
& \text { Semi are corle } \\
& r=0.05 \mathrm{n}
\end{aligned}
$$

$$
=\frac{10}{4(0.05)}
$$

$$
H_{C D}=50 \mathrm{Alm}
$$

$$
\bar{H}_{C_{D}}=50 \bar{a}_{2} \mathrm{Alm}
$$

$$
\begin{gathered}
\bar{H}_{p_{\text {ut }}}=\overline{F_{A B}+\overline{H_{B C}}+\overline{H_{A A}}+\overline{H_{C D}}=7011 \overline{a_{2}}+14.23 \overline{a_{3}}+14.23 \overline{a_{3}}} \begin{array}{l}
\overline{H_{\text {pht }}}=85.577 \overline{a_{2}} \mathrm{Alm}
\end{array} .50 a_{2}
\end{gathered}
$$

problem 13
10 - June /July 2015
 anticiockwise dimection in the metallic block shown in Fie. Q4 bo.
(O6 Marks)

Suastion
Calculate the magnatic fied intensity at point pidue to 10 A current flowing in the antidactwniditition in the matallic block shown in fig. $(6 \mathrm{~m})$

Solur

$$
\therefore \bar{H} O \bar{B} \rightarrow+\overline{a_{z}}
$$

$H_{\text {at }}=H_{\text {due }} f_{\text {ilament } a b+H_{\text {duento }} \text { filament } b c}$ $+H$ due to filament $C d+H$ due tofilament da.
$\rightarrow B$ ata point p dee to Eument-tanyng filament $a b$.

$$
\begin{aligned}
& \tan \theta_{2}=\frac{3}{0.025} \\
& \theta_{2}=89.5225^{9} \\
& \theta_{1}=180^{\circ}-\theta_{2}=180^{\circ}-89.5205^{\circ}=90.477^{\circ} . \\
& \gamma=3 \mathrm{~m} \quad \theta_{1}=90.477^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{a b}=\frac{\mu_{0} I}{4 \pi \gamma}\left[\cos \theta_{2}-\cos \theta_{1}\right] \quad \omega b / m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& H_{a b}=5.55299 \times 10^{-9} \omega_{6} \mathrm{~m}^{2} . \\
& H_{a b}=5.55299 \text { nutim }{ }^{2}
\end{aligned}
$$

B at a point p due to Lumnt- Lamping filament $b c$.

$p \quad \theta_{1}=90^{\circ}$, and $r=0.0 \mathrm{ggm}$.

$$
\begin{gathered}
\tan \theta_{2}=\frac{0.025}{3} \Rightarrow \gamma=0.025 \mathrm{~m} \\
\theta_{2}=0.47745^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& B_{b c}=\frac{\mu_{0} I}{u \pi r}\left[\cos \theta_{2}-\cos \theta_{1}\right] \operatorname{lib} / m^{2} \\
& B_{b c}=\frac{4 \pi \times 10^{-7} \times 10}{4 \pi(0.025)}\left[\cos \left(0.47745^{\circ}\right)-\operatorname{cop}\left(90^{\circ}\right)\right] \\
& B_{b c}=39.9986 \times 10^{-6} \mathrm{utblm}^{2} \\
& B_{b c}=39.9986 \mathrm{MAlm}
\end{aligned}
$$

B At a point due to cument canying filament
$d a$.
p

$$
\begin{aligned}
& \theta_{1}=90^{\circ} \quad \gamma=0.025 \mathrm{~m} \\
& \theta_{2}=\tan ^{-1}\left(\frac{0.025}{3}\right) \\
& \theta_{2}=0.47745^{\circ} \\
& B_{d a}=\frac{\mu_{0} I}{4 \pi r}\left[\cos \theta_{2}-\cos \theta_{1}\right] \text { cobl } m^{2}
\end{aligned}
$$

$$
B_{d a}=39.986 \mu \mathrm{~L} \mathrm{\phi} / \mathrm{m} /=39986 \times 10^{-6}, \mathrm{~Wh} / \mathrm{m}^{2}
$$

\rightarrow due to Eurrent-Carryng clement cd (i.e Semi Circle).
N. Et $|\overrightarrow{F P}|$ dat the center of a Criculan current Loop is

$$
|\bar{B}|=\left.\frac{I \mu_{0}}{2 r} H_{b}\right|_{m^{2}}
$$

$|\bar{B}|$ at the center of a Sumicriculas Loop with conticloctwine. Current is

$$
\begin{aligned}
& |\bar{B}|=\frac{I \mu_{0}}{4 r} d_{m^{2}}^{2} ; r=0.025 \mathrm{~m} \\
& B_{c d}=\frac{10 \times 4 \pi \times 10^{-7}}{4(0.025)}{ }^{4} /_{\mathrm{m}^{2}} \\
& B_{c d}=, 12566 \times 10^{-6}=125.66 \mu \mathrm{Alm} .
\end{aligned}
$$

the not field $/ H$ at point P in given by

$$
\begin{aligned}
& B_{n c t}=B_{a b}+B_{b c}+B_{c d}+B_{d a} \\
& B_{\text {nut }}=5.55299 \eta+39986 \mu+39986 \mu+12566 \mu \\
& \text { (5) } B_{n 4} \simeq \\
& 205.637 \mu \mathrm{~m} / \mathrm{m}^{2} \\
& 2=205 \cdot 63 \overline{a_{3}}
\end{aligned}
$$

problem/le
June/juiy 2016 EF

problem.
(B)

Determine magnatic thex density at P for or uirent Loop shown in fig. (9m)

Solu:-
Heptoint

$$
\bar{H}_{P_{1}}=H_{A D}+\overline{H_{D E}}+\overline{H_{E A}}
$$

$$
|A D|=\sqrt{3^{2}+4^{2}}=5 \mathrm{~m} .
$$

Since the corrent is in clate winedirection

$$
\because \bar{H}\left(\bar{B} \longrightarrow-\bar{a}_{2}\right.
$$

acts down Hands.
$\rightarrow \overline{H_{A D}}=$?

Semiarc circle.

$$
\overline{H_{A O}}=\frac{I}{4 r}\left(-\overline{a_{2}}\right) A \rho_{n}
$$

P

$$
\begin{aligned}
& \bar{H}_{A D}=\frac{10}{4(2,5)}\left(-\overline{a_{2}}\right) A_{m} \\
& \overline{H_{A D}}=-\overline{a_{3}} \text { an } \\
& \rightarrow \bar{H}_{D E}=\text { ? } \\
& 2 \cdot 5^{2}=r^{2}+2^{2} \\
& \Rightarrow 2.5^{2}-2^{2} \\
& r^{2}=2.5-2 \\
& r=1.5 \mathrm{~m} \\
& \theta_{2}=\tan ^{-1}\left(\frac{r}{2}\right)=\tan ^{-1}\left(\frac{15}{2}\right)=36.869^{\circ} \\
& \theta_{1}=180^{\circ}-\theta_{2}=143.13^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{H_{D E}}=\frac{I}{4 \pi \gamma}\left[\left[\cos \theta_{2}-\cos \theta\right]\left(-\overline{a_{2}}\right)\right. \\
& =\frac{10}{4 \pi(1.5)}\left[\operatorname{con}\left(36.869^{\circ}\right)-\cos \left(143^{.1} 13^{\circ}\right)\right] \\
& \overline{H_{D E}}=-0.84883 \overline{a_{3}} \mathrm{Am} \\
& \rightarrow H_{E A}=? \\
& \theta_{2}=53.13^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma^{2}+1.5^{2}=2.5^{2} \\
& \gamma^{2}=2.5^{2}-1.5^{2} \\
& \gamma=2 m \\
& \theta_{1}=180^{\circ}-\theta_{2}=126.869^{\circ} \\
& H_{E A}=\frac{I}{4 \pi \gamma}\left[\cos \theta_{2}-\cos \theta_{1}\right]\left(-\bar{a}_{2}\right) \\
& =\frac{10}{4 \pi(2)}\left[\cos \left(53.13^{\circ}\right)-\cos \left(126.869^{\circ}\right)\right]\left(-\bar{a}_{2}\right) \\
& \bar{H}_{E A}=-0.47746 \overline{a_{z}} \mathrm{Am}
\end{aligned}
$$

$$
\begin{aligned}
& H_{p}=\overline{H_{A D}}+\overline{H_{D E}}+\overline{H_{E A}} A_{m} \\
& \overline{H_{p}}=-\overline{a_{z}}-0.84883 \overline{a_{z}}-0.47746 \overline{a_{z}} \mathrm{Alm}_{m} \\
& \overline{H_{p}}=-2.32629 \overline{a_{2}} \mathrm{Alm} \\
& \left|\bar{H}_{p}\right|=2.32629 \mathrm{Alm}
\end{aligned}
$$

the Fluxdenity \vec{B}_{p} is given by

$$
\begin{gathered}
\bar{B}_{p}=\bar{H}_{p} \mu_{0}=-2.32629 \times 4 \pi \times 10^{-7} \mathrm{Nb} / \mathrm{m}^{2} \\
\bar{B}_{p}=-2.9233 \times 10^{-6} \overline{a_{3} \omega \mathrm{~b}} / \mathrm{m}^{2} \\
\overline{B_{p}}=-2.9233 \overline{\mathrm{a} \mu} \mathrm{Nb} / \mathrm{m}^{2}
\end{gathered}
$$

 43

c. Find the magnetic field intensity at the point P for the Fig Q (c) shown below.

Question
Find the magnetic fill intensity at the point p for the fig shown below $(6 \mathrm{~m})$.

Solus:-

i. ats in wand dire".
the magnetic field intensity at a point p in given by

$$
\bar{H}_{p}=\bar{H}_{A B}+\overline{H_{B C}}+\overline{H_{C A}} ; \mathrm{Alm}_{m} \text {. }
$$

\rightarrow HAB: - field intensity at a point p due to current flam enl- $A B$.

$$
\begin{aligned}
& A B=\sqrt{1^{2}+0.5^{2}}=1.118 \mathrm{~m} \\
& \tan \theta_{2}=\left(\frac{1}{0.5}\right) \\
& \theta_{2}=63.434^{\circ}
\end{aligned}
$$

$$
\theta_{3}=180-90^{\circ}-\theta_{2}=26.566^{\circ}
$$

13 distance

$$
\theta_{3}=26.566^{\circ}
$$

$$
\gamma=0.5 \cos \theta_{3}=0.5 \cos \left(26.566^{\circ}\right)=0.4472 \mathrm{~m} .
$$

$$
\begin{aligned}
& \quad \gamma=0.4472 \mathrm{~m}] \quad \theta_{4}=\tan ^{-1}\left(\frac{0.5}{1}\right)=26.565^{\circ} . \\
& \left.\theta_{1}=180^{\circ}-\theta_{4}=153.434^{\circ}\right] \\
& H_{A B}=\frac{I}{4 \pi r}\left[\operatorname{con} \theta_{2}-\cos \theta_{1}\right]\left(-\bar{a}_{3}\right) A l_{m} \\
& H_{A B}=\frac{5}{4 \pi(0.4472)}\left[\operatorname{con}\left(63.434^{\circ}\right)-\cos \left(153.434^{\circ}\right)\right]\left(-\bar{a}_{2}\right) \\
& H_{A B}=10193704\left(-\bar{a}_{3}\right) \quad A \mathrm{~lm} .
\end{aligned}
$$

$\rightarrow H_{C_{A}}$: fild intensity at a point 'p'due to the current filament $C A$.

$$
\begin{aligned}
& F_{C_{A}}=\frac{I}{4 \pi r}\left[\cos \theta_{2}-\cos \theta_{1}\right]\left(-\overline{a_{3}}\right) \mathrm{Alm} \\
\Rightarrow & \bar{H}_{C A}=\vec{H}_{A B}=1.193704\left(-\overline{a_{3}}\right) \mathrm{Alm}
\end{aligned}
$$

$\rightarrow \bar{H}_{B C}$ - fild intensity at a point p due to the Eurnt-filament $B C$ (i.e simi canc circle)
A/m29

$$
\begin{aligned}
& \begin{array}{l}
\bar{H}_{B C}=\frac{I}{4 r}\left(-\overline{a_{3}}\right) A H_{m}=\frac{5}{4(0.5)}\left(-\overline{a_{3}}\right) \\
\overline{H_{B C}}=2.5\left(-\overline{a_{3}}\right) \\
H_{P}=\overline{H_{A B}}+\overline{H_{B C}}+\overline{H_{C A}} \text { Alm } 62-C
\end{array} \\
& \bar{H}_{p}=1.193704\left(-\overline{a_{z}}\right)+1.193104\left(-\overline{a_{z}}\right)+2.5\left(-\overline{a_{z}}\right)=4.8874\left(-\overline{a_{z}}\right)
\end{aligned}
$$

2. Ampere's circuital law

Un Mat

State and prove Ampere's law.
a. State and explain Ampere's circuital law:
c. State and explain Amperes circuital law.

10 - June /July 2014
it Marks
06 - May/June 2010
the arks
10 - June / July 2015
(04 Maris)
June/July 2016 LE
(0) Marks)

Dec/Jan-2017.
(06 Marks)

Question
State and explain Amparin Ghrivifal Law. ($6, n$).

$$
\begin{aligned}
& \text { State and explain Ampere } \\
& \text { [10-JunelJuly 2014, } 0 \text { bimnay IJure-2010, } \\
& 10 \text {-June (July 201S', JunelJely 2016(EE), }
\end{aligned}
$$

$$
10-\text { Dec } 2017
$$

36. Amperin Eircuital Law:-

Stedtement:- The line integral of \bar{H} aroend a single Eloned path in equal to the Eurant encloned by that path.

mathematially

$$
\begin{equation*}
\oint_{\langle l\rangle} \pi \cdot \overline{d l}=I \tag{a}
\end{equation*}
$$

fiy: CCirnt fonging
proof:- Tonsider a infinite Length Curnt Canying filament in plaved alory ' 3 ' anip. The magnatic fild Intemity due to thin inguen by

$$
\bar{W}=\frac{I}{2 \pi \rho} \overline{a_{\phi}} \quad \mathrm{A} / \mathrm{m}
$$

tonader a L.H.S port of ac:(a)

Circular

$$
\oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=\int_{\phi=0}^{2 \pi} \frac{I}{2 \pi y} \overline{a_{\phi}} \cdot f d \phi \overline{a_{\phi}}
$$

$$
\overline{d l}=\rho d \phi \widehat{a_{\phi}}
$$

problum 15

(6) Mathos

Question
if the magnatic field intensity in a region is
$F=(3 y-2) \bar{a}_{y}+2 x \bar{a}_{y}$; find the Eumut density at the origin. $(6 \mathrm{~m})$.
Solu:'

$$
\mathrm{g}_{\mathrm{H}}^{\text {givn }}=(3 y-2) \overline{a_{z}}+2 x a_{y} l_{m}
$$

using point form Anperis Circuital Law

$$
\begin{aligned}
& \overline{J^{2}} \boldsymbol{\nabla} \times \bar{H} ; \operatorname{lm}^{2} \\
& \nabla \nabla \times \bar{H}=\left|\begin{array}{ccc}
\overline{a_{n}} & \overline{a_{y}} & \overline{a_{z}} \\
\frac{\partial}{\partial x} & \partial \gamma / \partial y & \partial / \partial z \\
0 & 2 x & (3 y-2)
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
\nabla \times \bar{H} & =3 \overline{a_{x}}+2 \overline{a_{3}} \cdot A m_{m^{2}} \\
\bar{J} & =\nabla \overline{x H}=3 \overline{a_{x}}+2 \overline{a_{z}} ; A m^{2}
\end{aligned}
$$

Since I is a independent of Spatial variable. $\because . J$ at ontrin
is Same

$$
\mathrm{J}_{0}=\nabla \times \bar{H}=3 \bar{a}_{n}+2 \bar{a}_{\eta}{ }^{2}
$$

problem 16.
Dept. of ECE, B.M.S.I.T \& M

Magnetic field intensity in free space is $\vec{H}=10 p^{2} \overrightarrow{a_{4}}(\mathrm{~A} / \mathrm{m})$ Determine
i) $\vec{\jmath}$
ii) Integrate \vec{J} over the circular surface $\rho=1(\mathrm{~m})$, all ϕ and $z=0$.

$$
[06-\operatorname{Tan} 2013(6 m)]
$$

Question.
Magnetic field intensity in free space is

$$
\frac{H}{H}=10 \rho^{2} \overline{a_{\phi}} \text { Alms. Determine }
$$

$$
i \cdot J
$$

ii. Integrate J orr the Cruiditgurface $\rho=1 \mathrm{~m}$, all ϕ and $z=0 m$,

using point form of Amparin Law

$$
\begin{aligned}
& \text { ide } \quad \bar{\nabla}=\bar{H} \quad \mathrm{Alm}^{2} \\
& P(\rho, \phi, z) \\
& \begin{array}{l}
\stackrel{L}{t} f d p d z \\
d \rho \\
d v=\rho d+d p d z
\end{array} \\
& \left|\begin{array}{ccc}
\overline{a_{\rho}} & \rho \overline{a_{\phi}} & \overline{a_{2}} \\
\partial / \partial \rho & 0 & 0 \\
0 & \rho\left[\left[0 \rho^{2}\right]\right. & 0
\end{array}\right| \\
& =\frac{1}{\rho}\left[\frac{\partial\left[\rho\left(10 \rho^{2}\right)\right]}{\partial \rho}-0\right] \overline{a_{2}}
\end{aligned}
$$

$$
\begin{aligned}
\nabla \times \bar{H} & =\frac{1}{\rho} \frac{\partial}{\gamma \rho}\left(10 \rho^{3}\right) \overline{a_{z}} \\
& =\frac{10}{\beta} \cdot 3 \rho^{2} \overline{a_{z}} \\
\nabla \times \bar{H} & =30 \rho \overline{a_{z}}
\end{aligned}
$$

Curnent dinsity $\bar{J}=\nabla \times \bar{H}=30$ ght $\mathrm{O}_{2} \mathrm{Alm}^{2}$.
ii) Integrate J ie $I=\int \oint^{\prime} \cdot d S$ given circular Surta $0<\phi<2 \pi$ and $z=0 \mathrm{~m}$ $P(\rho, \phi, z)$
$\frac{\int}{d s} \int_{s} d \phi \quad$ Sutace.

$$
\begin{aligned}
& \overline{d s} \\
&=\rho d \rho d \phi \overline{a_{2}}-z=0 m \text { surfece } \\
& I=\oint_{\langle s\rangle} \bar{J} \cdot \overline{d s}=\int_{<s \lambda} 30 \rho \overline{a_{z}} \cdot \rho d \rho d \phi \overline{a_{z}} \\
&=\int_{\rho=0}^{1} 30 \rho^{2} d \rho \int_{\phi=0}^{2 \pi} d \phi \overline{a_{2}} \cdot \bar{a}^{\prime} \bar{a}_{3}=10 \times 2 \pi \times 1 \\
&=20 \pi \text { Amperin }
\end{aligned}
$$

Dept. of E\&CE., SVCE

$$
I=\oint_{\langle S\rangle} \bar{J} \cdot d s=20 \pi=62.831 A_{735}^{\text {mase }}
$$

Question.
Given $\bar{H}=20 r^{2} \overline{a_{\phi}}$ Atm, determine the Current density J abs determine the total Eurent that Cremes the Surface $r=1 \mathrm{~m}, 0<\phi<2 \pi$ and $\mathrm{t}_{\mathrm{m}, \mathrm{m}} \mathrm{O}$ in Cylindrical Coordinate. $(8 \mathrm{~m})$
Solve- Giver $\bar{H}=20 \gamma^{2} \overline{a_{\phi}} A H_{m} \ldots$ incylintrical \cos using point form of Anmerin Law

$$
\begin{aligned}
& \text { ide } \bar{J}=\nabla \times \mathrm{H}_{\mathrm{M}} \mathrm{Alm}^{2} \\
& P(r, \phi, z) \\
& { }_{d r} t_{d \phi}^{t_{d z}} \\
& d v=r d r d \phi d_{2} \\
& \nabla \times \vec{H}=\frac{a^{2}}{\gamma}\left|\begin{array}{ccc}
\overline{a_{\phi}} & \overline{a_{\phi}} & \overline{a_{z}} \\
\partial / \partial r & 0 & 0 \\
0 & \gamma\left(2 a r^{2}\right) & 0
\end{array}\right| \\
& =\frac{1}{\gamma}\left[\frac{\partial}{\partial \gamma}\left[20 r^{3}\right]-0\right] \overline{a_{2}} \\
& \nabla \times \bar{H}=\frac{1}{\gamma} \cdot 20 \times 3 \gamma^{2}=60 \gamma \overline{a_{3}} \mathrm{Alm}^{2} \text {. }
\end{aligned}
$$

Current dirnity $\bar{J}=\nabla \times \bar{H}=60 \gamma \overline{a_{z}} \mathrm{Alm}^{2}$
(I)
ii) the total Eurent Eroming the Surface

$$
\begin{aligned}
& I=\oint_{\langle S\rangle} \bar{J} \cdot \overline{d s} \\
& \overline{d s}=r d r d \phi \overline{a_{2}} \cdots z=0 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Surtane } \\
& T=\oint_{\langle s\rangle} \bar{J} \cdot \overline{d s}=\int_{\langle s\rangle} 60 r \bar{a}_{2}, \quad \operatorname{cor} d r d \phi \overline{a_{2}} \\
& =\int_{\gamma=0}^{1} 60 r^{2} d r+r_{\phi=0}^{1} d \phi \quad \vec{a}^{\prime} \cdot \vec{a}_{2} \\
& =20 \times 2 \pi \times 1=40 \pi \text { Amperib } \\
& T=\oint_{<s \lambda} \bar{J} \cdot \overline{d s}=40 \pi=125.66 \text { Ampure'口 }
\end{aligned}
$$

problum 18.

Quation
Ealculate the value of vator Corrert density incylintrical
Co-ordinates at $p\left(1.5,90^{\circ}, 0.5\right)$ if

$$
\left.\bar{H}=\frac{2}{\rho} \cos (0.2 \phi) \overline{a_{\rho}} \quad A \right\rvert\, m \cdot(U m)
$$

Solvir

$$
\begin{aligned}
& \text { Curnent density } \\
& \bar{J}=\nabla \times \bar{H} \quad A \operatorname{An}^{2} . \\
& P(s, \phi, z)
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times \bar{H}=\frac{1}{\rho}\left[-\frac{\partial}{\partial \phi}\left(H_{\rho}\right)\right] \overline{a_{2}} \\
& =\frac{-1}{\rho} \frac{\partial}{\partial \phi}\left[\frac{2}{\rho} \cos (0.2 \phi)\right] \overline{a_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times \bar{H}=\frac{-2}{\rho^{2}} \times-\sin (0.2 \phi)(0.2) \overline{a_{2}} \\
& \bar{J}=\nabla \times \bar{H}=+\frac{0.4}{\rho^{2}} \sin (0.2 \phi) \overline{a_{2}} \quad \mathrm{~A} m^{2}
\end{aligned}
$$

the cumnt density at point $p(1.5,9,0.5)$

$$
\text { i.e. } \rho=1.5 \mathrm{~m}, \phi=90^{\circ}
$$

$$
\begin{aligned}
& J_{p}=\frac{0.4}{(1.5)^{2}} \sin (0.2 \times 9,0) \frac{a_{2}}{J_{p}}=0.0 .5493 \overline{a_{3}} A / m^{2} \\
& \bar{I}
\end{aligned}
$$

$1 i=\frac{2}{\rho} \cos 0.2 \phi \overline{a \phi}$
Question
Calculate the value of vector Current density in Cylindrical Coordinates at $p\left(1.5,90^{\circ}, 0.5\right.$) If

$$
\bar{H}=\frac{2}{\rho} \cos (0.2 \phi) \bar{a}_{\phi} A_{m}
$$

Sols:- Given $\bar{H}=\frac{2}{\rho} \cos \left(Q_{1}, 2_{0} \phi\right)^{\prime} A_{p}$.

$$
\begin{aligned}
& H_{\phi}=\frac{2}{\rho} \operatorname{con}(0.2 \phi) A l_{m} \text {, givenin cylindrical C. } \delta \\
& \bar{J}=\nabla \times \bar{H}=\frac{1}{\beta} \bar{a}_{a_{i}} \quad \rho \overline{a_{\phi}} \quad \overline{a_{2}}\left|\begin{array}{lll}
\partial / \partial \rho & \partial \phi & 0 \\
0 & H_{\phi} & 0
\end{array}\right| \\
& \bar{J}=\nabla \times \bar{H}=\frac{1}{\rho} \frac{\partial H_{\phi}}{\partial \rho} \overline{a_{3}} \\
& \bar{J}=\nabla \times \bar{H}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\frac{2}{\rho} \cos (0.2 \phi)\right] \bar{a}_{2} A / m^{2} \\
& =\frac{1}{\rho} \cdot \frac{-2}{f^{2}} \cdot \cos (0.2 \phi) \overline{a_{3}} A_{n^{2}} .
\end{aligned}
$$

$$
\bar{J}=\nabla \times \bar{H}=\frac{-2}{\rho^{3}} \cos (0.2 \phi) \overline{a_{2}} \quad A_{m}{ }^{2}
$$

the curnent densing at point $p\left(1.5,90^{\circ}, 0.5\right)$.

$$
\text { ie } \rho=1.5 \mathrm{~m} \text { and } \phi=90^{\circ}
$$

$$
\overline{J_{p}}=-\frac{2}{(1.5)^{3}} \cos \left(0.2 \times 90^{\circ}\right)
$$

$$
\bar{J}_{p}=-0.56358 \overline{G^{2}} \quad \mathrm{~A} / \mathrm{m}^{2}
$$

$$
\left|\bar{J}_{p}\right|=+0.56358 \quad A l^{2}
$$

problum 19
Gaculate the value ol the vector cument density at pom $P(2,3$ in

Question
Ealculate the value of the vutor [urunt density at point $p(2,3,4)$ if $\bar{H}=x^{2} z \bar{a}_{y}-y^{2} x a, 4 l_{m}$. 6 m$)$

Solu:-

$$
\bar{H}=x^{2} \bar{a}_{y}-y^{2} x \bar{a}_{2} \quad \mathrm{Alm}, \text { in cartexian C.S. }
$$

Eumentdensity $\bar{J}=\cdots \sqrt{n} \times \bar{A} \quad \mathrm{Al}^{2}$.

$$
\begin{aligned}
\nabla \times \bar{H}= & \left|\begin{array}{ccc}
\overline{a_{i}} & \overline{a_{y}} & \overline{a_{z}} \\
\bar{x} / \partial x & \partial / \partial y & \partial / \partial z \\
0 & H y & H_{z}
\end{array}\right| \\
\nabla \times \bar{H}= & {\left[\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right] \overline{a_{x}}-\left[\frac{\partial H_{z}}{\partial x}-0\right] \overline{a_{y}} } \\
& +\left[\frac{\partial H_{y}}{\partial x}-0\right] \overline{a_{z}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{J}=\nabla \times \bar{H}=\left(\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right) \overline{a_{x}}-\frac{\partial{H_{z}}_{z}}{\partial x} \overline{a_{y}}+\frac{\partial H_{y}}{\partial x} \overline{a_{z}} \\
& H_{x}=0 ; \quad H_{y}=x^{2} 3 \mathrm{Am} ; \quad H_{z}=-y^{2} x \\
& \frac{\partial H_{y}}{\partial z}=x^{2} ; \quad \frac{\partial H_{z}}{\partial y}=-2 y x ; A \ln ^{2} \\
& \frac{\partial H_{y}}{\partial x}=2 x z ; \quad \frac{\partial H_{z}}{\partial x}=-y^{2} \quad A I_{m}^{2} \\
& \left.\bar{J}=\sigma \times \bar{H}=\left(-2 y x+x^{2}\right) \overline{a_{x}}+y^{2} \overline{a_{y}}+2 x z \overline{a_{z}}\right] A / m^{2}
\end{aligned}
$$

Currint densify at point $p(2,3,4)$

$$
x=2, y=3 \text {, and } z=4 \text {. }
$$

$$
\begin{aligned}
& \overline{J_{p}}=\nabla \times \bar{H}=\left[-2(3)(2)-(2)^{2}\right] \bar{a}_{x}+(3)^{2} \bar{a}_{y}+2(2)(4) \overline{a_{z}} \\
& \overline{J_{p}}=-16 \overline{a_{x}}+9 \overline{a_{y}}+16 \overline{a_{z}} \quad \mathrm{Alm}^{2} \\
& \left|\overline{J_{p}}\right|=2403515 \mathrm{Alm}^{2}
\end{aligned}
$$

(08 vartis)
Question.
The magnatic field intensity in given by
$\bar{H}=0.1 y^{3} \overline{a_{x}}+0.4 x \overline{a_{z}} A m_{m}$. Determine ement
How through the path $P_{1}(5,4,1)-P_{2}(5,6,1)-P_{3}(0,6,1)$, - $P_{u}(0,6,1)$ and Eurrent densihy 1.0

using Amparer. Circurtal Law

$$
\begin{aligned}
& I=\oint_{\langle l\rangle}^{H} \overline{d l} \\
& I=I_{P_{12}}^{10}+I_{P_{23}}+I_{P_{34}}+I_{P_{41}}
\end{aligned}
$$

$$
T_{\text {nut }}=-76 \text { Amperes }
$$

the magnitude of [urrnt-density $J=\frac{I}{\text { Area }}=\frac{-76}{10}$

$$
1 J=-706 \mathrm{~A}^{2} \quad 78
$$

$$
\begin{aligned}
& I_{P_{23}}=\int_{x=5}^{0} \bar{H}_{x} \cdot \overline{d l}=\left.\int_{x=5}^{0} 0.1 y^{3} \overline{a_{x}} \cdot d x \overline{a_{x}}\right|_{y=6 \mathrm{~m}} \\
& =0.1(6)^{3}[0-5] \text { by } \cdot \overline{a_{x}} \\
& T_{P_{23}}=-108 \mathrm{~A} \\
& I_{P_{41}}=\int_{x=0}^{5} 0.1 y^{3} \overline{a_{x}} \cdot d x \bar{a}_{x} \\
& =0.1(4)^{3}+5 \times a_{x} \cdot \frac{1}{a_{a}} \\
& T_{\text {What }}=T_{P_{23}}+I_{P_{41}}=-108+32
\end{aligned}
$$

Topic 37 Applicationin of Amparein CircuitoleptaffECE, B.M.S.I.T \& M
3.7a. I due to Entinitely Lorg Straigh1- Eurrnt canying filament, Quastions.

06-DEC2011/Jan 2012
 mimely lorg staigh contere:

02 - June /July 2011

Staresmpere's cixcutal law. Apply his law to find magnetic field. H due to an infmiely long stratit conductor carrying a steady current of I, amps.
(1) Marks)

Solu:- Step1. State and prove Amperie Cruicital Law.

Application of Amperis Circuital Law.
3.7a.
3.7a) H due to infinituly Long straight[ument Carying filament:-

fig infinitolength Cumnt

$$
\begin{array}{r}
\bar{H} \cdot \overline{d l}=H_{\phi} \overline{a_{\phi}} \cdot \rho d \phi \overline{a_{\phi}} \\
\bar{H} \cdot \overline{d l}=H_{\phi} \rho d \phi \quad \bar{a}_{\phi} \cdot \frac{\bar{a}_{\phi}}{}=\rho H_{\phi} d \phi
\end{array}
$$

using Amprién Circuital Law

$$
\begin{align*}
& \oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=I=\int_{\phi=0}^{2 \pi} \rho H_{\phi} d \phi=\left.\rho H_{\phi}\right|_{\phi=0} ^{2 \pi} d \nabla_{\phi}^{2 \pi} \\
& I=\rho H_{\phi}(2 \pi) \Rightarrow H_{\phi}=\frac{I}{2 \pi \rho} A_{m} . \tag{5}
\end{align*}
$$

q^{4} (b) in $q^{4}(a)$
ie

$$
\begin{aligned}
& \therefore \bar{H}=H \overline{a_{\phi}} \quad A l_{m} \\
& \Rightarrow x^{+x} \\
& \Rightarrow \bar{H}=\frac{I}{2 \pi \rho} \overline{a_{\phi}} \quad \mathrm{Alm}
\end{aligned}
$$

3.7b Magnatic fild Intensity (F) in a CoaridelelablECE, B.M.S.I. $\& M$

10-June/July 2013
fa an inhintels fons coaxial cable carrying a unitormely coment in the inner conductor and I in the onter wonductor. find the magmetic feld imensity is a furntion of radius and sketh the fiod intensity rationon.
(17) Marks) 06 - June /July 2012

Quation.
In a co-axial line, radius of inner condutor is ' a ' m, inner radius of outer conificito is ' b ' m and outer radiun of outer condifitior is ' c ' m. Inner and outer condurton cony Lurnt I and I rnputively. Using Amper Cirmithaw, Find magnctic fied internity for $i>\gamma<a$; ii> $a<r<b$ iiis. $b<\gamma<c$ iv> $r>c$ cases. sketch "the variation of field Intersity versus distance (8 m).

$$
[06 \mathrm{Dec} 2010,10 \mathrm{~J} / \mathrm{J} 2013,06-\mathrm{J} / \mathrm{J} 2012]
$$

$$
\begin{aligned}
& \text { Nor.ocrovo }
\end{aligned}
$$

Eonsider a co-cxial cablewith inner conductor is Solid taxing a radius' a' m, carrying a direct current of Lesumpario.
the ate conductor is in the form of concentric cylinder whose infin' radius in b and outer radius " c meter napitivily.
The current I in uniformly distributed in the inner conductor while -I in uniformly distributed in the outer conductor.

Earei. $\gamma<a$.

the area of Crom-sution enclosed is $\pi r^{2} m^{2}$. the fotal turnent in ' E 'throught he area Πa^{2}. thence the [urint
cnclosed by the closed, path is
the clesed.path is
the \bar{H} at along only \bar{a}_{ϕ} diration.

$$
\begin{aligned}
& \therefore \quad \bar{H}= H \phi a_{\phi} \\
& d l=r d \phi \bar{a}_{\phi} \ldots \text { in Crulatputh } \\
& \text { diration. }
\end{aligned}
$$

using Amparin Ciruital Law

$$
\begin{aligned}
& \oint_{H} \overline{d l}=\mathbb{I}^{1} \\
& \oint_{\langle\lambda\rangle} H_{\phi} \overline{a_{\phi}} \cdot r d \phi \bar{a}_{\phi}=\frac{r^{2}}{a^{2}} I .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\phi=0}^{2 \pi} H_{\phi} \gamma d \phi=\frac{\gamma^{2}}{a^{2}} I \\
& H_{\phi} \cdot r \cdot 2 \pi=\frac{r^{2}}{a^{2}} I \\
& \therefore \quad H_{\phi}=\frac{\gamma}{2 \pi a^{2}} \text { Alm } \\
& \Rightarrow \sqrt{H=H_{\phi} \bar{a}_{\phi}=\frac{I r}{2 \pi a^{2}} \bar{a}_{\phi}} \frac{M_{m}}{\frac{\text { Carei. }}{\gamma<a} a_{\text {(within condutor). }}}
\end{aligned}
$$

Caneii: $(a<r<b)$.
When ' γ ' is in blw ' a and ' b ' ie $a<r<b$. it in similarto the care of condutor camying a diret curient of I along the 3 axin thaving infinite length.
\therefore H in thin region in $\bar{H}=\frac{I}{2 \pi r} \bar{a}_{\phi} \mathrm{Alm}_{m}$

Caseiii within outer condotor ie' $b<r<C$.

Consider the cloned, path as shown in the fig. the curnot enclosed by the ceased path is only the point of the current $)^{5}$, in the outer

[ondutor. the total Lurint, I in flowing through the Erom Suction $\pi\left(c^{2}\left(b^{2}\right)\right.$ while the closed path enclose the cromsation $\pi\left(r^{2}-b^{2}\right)$.
Hence the Current enclosed by the cloned path of outer conductor, is

$$
I^{\prime}=\frac{\pi\left(r^{2}-b^{2}\right)}{\pi\left(c^{2}-b^{2}\right)}(-I)=-\frac{\left(r^{2}-b^{2}\right)}{\left(c^{2}-b^{2}\right)} I
$$

and oho
the closed path encloses the inner conductor thence the current I flowing through it
$\mathbb{C}^{\prime \prime}=I=$ current in inner conderfor enciasce Dept. of E\&CE., SVCE

total Eumant chclosed by the Elased path is

$$
\begin{aligned}
& I_{\text {enc }}=I^{\prime}+I^{\prime \prime}=\frac{\left(r^{2}-b^{2}\right)}{\left(c^{2}-b^{2}\right)} I+I \\
& I_{\text {enc }}=I\left[1-\frac{r^{2}-b^{2}}{c^{2}-b^{2}}\right] \\
& I_{\text {enc }}=I\left[\frac{c^{2}-b^{2}-r^{2}+b^{2}}{c^{2}-b^{2}}\right] \\
& I_{\text {anc }}=I\left[\frac{c^{2}-r^{2}}{c^{2}-b^{2}}\right] \text { Ampares. }
\end{aligned}
$$

Using Ampariof Ciruital Law

$$
\oint_{\langle l\rangle} \underset{H}{ } \cdot d l=\operatorname{Ienc}
$$

$$
\bar{H}=H_{\phi} \overline{a_{\phi}} \text { and } \overline{d l}=r d \phi \overline{a_{\phi}}
$$

$$
\left.\oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=H_{\phi} \frac{(2 \pi r)}{T}\right]
$$

$$
\begin{gathered}
H_{\phi}=\frac{I}{2 \pi r}\left[\frac{c^{2}-r^{2}}{c^{2}-b^{2}}\right] A_{m} \\
\therefore \bar{H}=H_{\phi} \overline{a_{q}}=\frac{I}{2 \pi r}\left[\frac{c^{2}-r^{2}}{c^{2}-b^{2}}\right] \overline{a_{\phi}} A l_{m} \\
\cdots(b<r \& c)
\end{gathered}
$$

careiv. Outside the cable $r>C$.
Since the total currint outsidte cable in

$$
\begin{aligned}
& \text { zeron } I_{t}=-\sqrt[S]{+I}=0 \mathrm{~A} \\
& \text { i.e } \\
& \oint_{H} \cdot d l=0 \\
& \langle l\rangle
\end{aligned}
$$

The magnitic fild dounot Esint outside the cable. The variation of \bar{H} against ' γ ' is shownin figh blow.

conei. concit cave".

$$
\bar{H}=\left\{\begin{array}{cl}
\frac{I r}{2 \pi a^{2}} \overline{a_{\phi}} ; & r<0 \\
\frac{I}{2 \pi r} \overline{a_{\phi}} ; & a<r<b \quad \\
\frac{I}{2 \pi r}\left[\frac{c^{2}-\gamma^{2}}{c^{2}-b^{2}}\right] \overline{a_{p}} ; b<r<c \\
0 & ; \text { ow }
\end{array}\right.
$$

Topic 3.7c
$3.7 c]$ in tow a Toroidal coil

Consider a toroidal coil of N turns, and the current I Flows through the coil.
using Arparin Cimital Lam
fig. Toroidal
coil with
Comment I Ampere
i Ampere
$\oint H d l \cos \theta=N I$
LD field H in content overthe coil

$$
H \oint_{\langle l\rangle} d l \cos \theta=N T
$$

the closed path is circle of radius I' $^{\prime} m$

$$
\oint_{\langle\Lambda\rangle} d \lambda \cos \theta=2 \pi R \ldots \text { perimeter. }
$$

$$
\begin{array}{r}
\oint_{<\lambda} d l \cos \theta=2 \pi R \\
\Rightarrow H(2 \pi R)=N I \\
H=\frac{N I}{2 \pi h} \quad l_{m}
\end{array}
$$

and $B=\mu H \quad i b / m^{2}$

$$
B=\frac{N I \mu}{2 \pi B} \quad N b / m^{2}
$$

a. An air cored torroid having a cross sectional area of $6 \mathrm{~cm}^{2}$ and mean radium 15 cm is wound uniformly with 500 turns carrying a current of 4 A . Determine the magnetic flux density and field intensity of torroid. (06 Marks)

Sou:'
given $\quad A=6 \mathrm{~cm}^{2}=6 \times\left(10^{-2}\right)^{2} \mathrm{~m}^{2}$

$$
\begin{aligned}
& A=6 \times 10^{-4} \mathrm{~m}^{2} \\
& B=15 \mathrm{~cm}=0.15 \mathrm{~m} \\
& N=500 . \\
& I=4 \mathrm{~A} .
\end{aligned}
$$

$$
\begin{aligned}
& B=2.666 \times 10^{-3} \mathrm{wb} / \mathrm{m}^{2} \\
& B=2.667 \mathrm{mwb} / \mathrm{m}^{2} \\
& H=\frac{B}{\mu_{0} \mu_{r}}=\frac{2.667 \times 10^{-3}}{4 \pi \times 10^{-7} \times 1} \\
& H=2.122 \mathrm{kAm} \\
& H=2122.065 \mathrm{Am}
\end{aligned}
$$

Topic 3.8
4. Concept of Curl + Curl in all three co-ordinate systems+Point form of Ampere L Law

Explain the Conupt of Curl with Suitable derivation of curl \bar{F}. $(6 \mathrm{~m})$. J/J 2013 .
(or)
obtain the diffential form of Amperch work haw, in a Steady magnetic field (8 m) 02 Dec 2010.
(or)
prove that amparin Circuital how $\nabla \times F=J \mathrm{Alm}^{2}$

$$
10-\operatorname{Jan} 2014
$$

(or)
ST $\nabla \times \bar{H} \rightarrow A / m^{2}$

$$
\nabla \times \bar{H} \times \bar{B}=\left.\mu_{0} \bar{J} \omega\right|_{m^{3}}
$$

xix.
3.8 Application of Amperin Law to Differential Element of ie point form of Amperin Law (o) [onuptot [url.

$$
\nabla \times \bar{H}=\bar{J} \mathrm{~A} / \mathrm{m}^{2}
$$

Latin Consider differential Surface in Cartesian Coordinate system in y_{z} plane as shown in fig.

Let' Cons der a region in whet hin suave is. boxing the magnetic $\frac{\partial y}{\partial y} \Delta y$ field Intensity as

$$
\begin{equation*}
\bar{H}=H_{x} \overline{a_{x}}+H_{y} \overline{a_{y}}+H_{z} \overline{a_{z}} \tag{1}
\end{equation*}
$$

A / m
also anume that the Current density in a region is given by

$$
\begin{equation*}
J=J_{x} \overline{a_{x}}+J_{y} \overline{a_{y}}+J_{z} \overline{a_{z}} \quad A / m^{2} \tag{2}
\end{equation*}
$$

\therefore Let $\overrightarrow{H_{A}}$ along side $A B$ equal H_{y} and along side $A D$ equip H_{3}. if the field in not uniform, the values of \bar{H} along side $B C$ and $C D$ are given by

$$
H_{z}+\frac{\partial H_{z}}{\partial y} \Delta y \quad \text { and } \quad H_{y}+\frac{\partial H_{y}}{\partial z} \Delta z \text {. }
$$

then using Amperin Law

$$
\begin{aligned}
\oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=\int_{A}^{B} \bar{H} \cdot \overline{d l}+\int_{B}^{C}+\int_{C}^{D}+\int_{P}^{A} & =J_{\gamma} \Delta y \Delta z \\
& =\Delta I
\end{aligned}
$$

$$
\begin{equation*}
\text { i.e } \int_{A}^{B}=H_{y} \Delta y \tag{3}
\end{equation*}
$$

$$
\int_{B}^{A} C=\left(H_{z}+\frac{\partial H_{z}}{\partial y} \cdot \Delta y\right) \Delta z=H_{z} \Delta z+\frac{\partial H_{z}}{\partial y} \Delta y \Delta z
$$

$$
\int_{C}^{D}=-\left(H_{y}+\frac{\partial H_{y}}{\partial z} \cdot \Delta z\right) \Delta y=-H_{y} \Delta y-\frac{\partial H_{y}}{\Delta z} \cdot \Delta z \Delta y>
$$

$$
\int_{D}^{A}=-H_{3} \Delta_{3}
$$

using set 4 in $\varphi^{4}(3)$

$$
\begin{aligned}
& \begin{array}{c}
\oint_{H} \bar{H} \cdot \overline{d l}=H / y \Delta y+H_{z} / \Delta z+\frac{\partial H_{z}}{\partial y} \Delta y \Delta z-H y \Delta y \\
\langle i\rangle \\
-\frac{\partial H_{y}}{\partial z} \Delta z \Delta y-H / \Delta z
\end{array} \\
& -\frac{\partial H_{y}}{\partial z} \Delta z \Delta y-H / \Delta z \\
& =J_{x} \Delta y \Delta z=\Delta I \\
& \text { i.e }\left(\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right) \Delta y \Delta z=J_{x} \Delta y \Delta_{z} \\
& \text { (o) } \frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}=J_{x}<\text { (5) }
\end{aligned}
$$

My Now by taking differential areas in $x y$ plane and $x ;$ plance, we can prove that..

$$
\begin{array}{r}
\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=J_{z} \longleftarrow \\
\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=J_{y} \tag{7}
\end{array}
$$

using q^{u} (2) i.e

$$
\bar{J}=J_{x} \overline{a_{x}}+J_{y} \overline{a_{y}}+J_{z x} \overline{a_{z}}
$$

(5), (6) and (7) inef(2)

$$
\begin{array}{r}
\bar{J}=\left(\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right)+\left(\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}\right) \overline{a_{y}} \\
+\left(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right) \overline{a_{z}}
\end{array}
$$

using the relation $\bar{B}=\mu_{0} \bar{H} \mathrm{wb} / \mathrm{m}^{2}$
(a) $\bar{H}=\frac{\bar{B}}{\mu_{0}} \mathrm{Alm}$

$$
\begin{aligned}
& (d) \quad H=\frac{B}{\mu_{0}} A l m \\
\Rightarrow & J=\nabla \times \frac{\bar{B}}{\mu_{0}} \Rightarrow \nabla \times \bar{B}=\mu_{0} J \\
& \Rightarrow b / \mathrm{m}^{3} .
\end{aligned}
$$

3.7b. Eurl: when ∇ opcrates on leutor \bar{H} as a Cromproduct resuftio Curl $\nabla \times \bar{H}$.

- Eurl: $\forall \times \bar{H} \quad \mathrm{~A} / \mathrm{m}^{2}$.

Lurl in all three Coordinate. System:-

$$
\begin{aligned}
& a \text { Lartesian [o-ordinate System:- } \\
& \begin{array}{l}
P(x, y, z) \\
d x \quad d y
\end{array} d_{z} \\
& \nabla=\frac{\partial}{\partial x} \overline{a_{x}}+\frac{\partial}{\partial y} \overline{a_{y}}+\frac{\partial}{\partial z} \bar{a}_{z} m^{-1} \\
& \bar{H}=H_{x} \overline{a_{x}}+H_{y} \overline{a_{y}}+H_{z} \bar{a}_{3} \mathrm{~A} / \mathrm{m} \text {. } \\
& \nabla \times \bar{H}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & \partial \partial_{y} & \partial / \partial z \\
H_{x} & H_{y} & H_{z}
\end{array}\right| \quad A m^{2}
\end{aligned}
$$

$$
\left[\begin{array}{r}
\left.\nabla \times H=\left[\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right] \overline{a_{x}}-\left[\frac{\partial H_{z}}{\partial x}-\frac{\partial H_{x}}{\partial z}\right] \overline{a_{y}}\right] \\
+\left[\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right] \frac{a_{z}}{\partial 8} \quad A h_{m}^{2} \\
\text { Dept. of E\&CE., SVCE }
\end{array}\right]
$$

$\xrightarrow{2} \rightarrow$ Lurl $\nabla x \bar{H}$ in Cylindrical [oordinate System:-

$$
\begin{aligned}
& \underset{d \rho}{p(\rho, \phi, z)}{ }_{\rho}^{\ell} d \phi \quad d_{z} \quad d v=\rho d \rho d \phi d_{z} \\
& \nabla=\frac{\partial}{\partial \rho} \bar{a}_{\rho}+\frac{1}{\rho} \frac{\partial}{\partial \phi} \overline{a_{\phi}}+\frac{\partial}{\partial z} \bar{a}_{z} m^{-1} \\
& \bar{H}=H_{\rho} \overline{a_{\rho}}+H_{\phi} \overline{a_{\phi}}+H_{z} \overline{a_{z}} A I_{\infty} \\
& \nabla \times \bar{H}=\frac{1}{\rho}\left|\begin{array}{ccc}
\overline{a_{\rho}} & \rho \overline{a_{\phi}} & +a_{z} \\
\partial / \partial \rho & \partial \phi \phi & \partial / \partial z \\
H_{\rho} & \rho H_{\phi} & H_{z}
\end{array}\right| \\
& \begin{aligned}
\nabla \times \bar{H}= & \frac{1}{\rho}\left[\frac{\partial H_{z}}{\partial \phi}-\frac{\partial\left(\rho H_{\phi}\right)}{\partial z}\right] \overline{a_{\rho}}-\left[\frac{\partial H_{z}}{\partial \rho}-\frac{\partial H_{\rho}}{\partial z}\right] \rho \overline{a_{\phi}} \\
& \left.+\left[\frac{\partial}{\partial \rho}\left[\rho H_{\phi}\right]-\frac{\partial H_{f}}{\partial \phi}\right] \overline{a_{z}}\right\}
\end{aligned} \\
& \bar{\nabla} \times H=\left[\frac{1}{\rho} \frac{\partial H_{z}}{\partial \phi}-\frac{\partial H_{\phi}}{\partial z}\right] \overline{a_{\rho}}-\left[\frac{\partial H_{z}}{\partial \rho}-\frac{\partial H_{\rho}}{\partial z}\right] \overline{a_{\phi}} \\
& +\left[\frac{1}{\rho} \frac{\partial\left(f H_{\phi}\right)}{\partial \rho}-\frac{1}{\rho} \frac{\partial H_{\rho}}{\partial \phi}\right] \overline{a_{2}} \quad A / \mathrm{m}^{2}
\end{aligned}
$$

ijq \rightarrow. Gurl in Spherical [o-ordinate system.

$$
\begin{aligned}
& \xrightarrow[d r]{p(r, \theta, \phi)} \underset{r d \theta}{\rightarrow} \underset{r \sin \theta d \phi}{d v=r^{2} \sin \theta d r d \theta d \phi} \\
& \nabla=\frac{\partial}{\partial r} \overline{a_{r}}+\frac{1}{r} \frac{\partial}{\partial \theta} \overline{a_{\theta}}+\frac{1}{r \sin \theta \partial \phi} \bar{a}_{\phi} m^{-1} \text {. } \\
& \bar{H}=H_{r} \bar{a}_{r}+H_{\theta} \bar{a}_{\theta}+H_{\phi} \overline{a_{\phi}} A l_{m} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times \bar{H}=\frac{1}{r^{2} \sin \theta}\left\{\left[\frac{\partial}{\partial \theta}(x \sin \theta H \phi)-\frac{\partial}{\partial \phi}\left(r H_{\theta}\right)\right] \overline{a_{r}}\right. \\
& \left.-\left[\frac{\partial}{\partial r}[r \sin \theta H \phi]-\frac{\partial H_{r}}{\partial \phi}\right] r \overline{a_{\theta}}+\left[\frac{\partial\left(r H_{\theta}\right)}{\partial r}-\frac{\partial H_{r}}{\partial \theta}\right] r \sin \overline{\theta a_{\phi}}\right] \\
& =\left\{\begin{array}{l}
{\left[\frac{1}{r \sin \theta} \cdot \frac{\partial}{\partial \theta}\left[\sin \theta H_{\phi}\right]-\frac{1}{r \sin \theta} \frac{\partial\left(H_{\theta}\right)}{\partial \phi}\right] \overline{a_{r}}} \\
\end{array}\right. \\
& -\left[\frac{1}{\gamma} \frac{\partial\left(\gamma H_{\phi}\right)}{\partial \gamma}-\frac{1}{\gamma \operatorname{Sin} \theta} \frac{\partial H_{r}}{\partial \phi}\right] \overline{a_{\theta}} \\
& \left.\overline{\text { Dept.of ErCE. SVCE }}+\left[\frac{1}{\gamma} \frac{\partial\left(\gamma H_{\theta}\right)}{\partial \gamma}-\frac{1}{\gamma} \frac{\partial H_{\gamma}}{\partial \theta}\right] \overline{a_{\phi}}\right\}{ }^{100} 100
\end{aligned}
$$

x

problen 22.

1) Find the curcent density or a function of p within oylinder

Find the torat curent hat pases through the sarface $7-0$ and $0 \leq 51$ mo in tie a direction
(08 Marks)
Quastion.
In cylindrical co-ordinaten, amagntic field ingiven as $\bar{H}=\left[4 \rho-2 \rho^{2}\right] \bar{a}_{\phi} \quad A l_{n}, \quad 0 \leq \rho \leq 1 m_{n}$. i. Find the curint density (or) a function ${ }^{\text {cyind }} 9$ with in cylinder.
ii. Find the fotal currnt that pariesthrough the

Svertace $z=0$ and $0,{ }^{2} \leq 1 \mathrm{~m}$. in the \bar{a}_{2} divation.
Soly: given $\bar{H}=\left(4,-2 \rho^{2}\right) \overline{a_{\phi}} \quad$ Alm

$$
\frac{H=(25) a_{\phi}}{H_{1}} H_{\phi} \overline{a_{\phi}} \text {... in cylintrical C.S }
$$

$i=J=2$ using point form of Amperic Law

$$
\bar{J}=\nabla \times \bar{H} \quad \mathrm{Alm}^{2}
$$

$$
\nabla \times \bar{H}=\frac{1}{\rho}\left|\begin{array}{ccc}
\overline{a_{\rho}} & \rho \overline{a_{\phi}} & \overline{a_{2}} \\
\partial / \partial & 0 & 0 \\
0 & \rho H_{\phi} & 0
\end{array}\right| \quad A l_{m}{ }^{2}
$$

$$
\begin{aligned}
& \nabla \times \bar{H}=\frac{1}{\rho}\left[\frac{\partial}{\partial \rho}\left(\rho H_{\phi}\right)-0\right] \overline{a_{3}} \\
& =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho\left(4 \rho-2 \rho^{2}\right)\right] \overline{a_{2}} \\
& =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[4 \rho^{2}-2 \rho^{3}\right] \overline{a_{2}} \\
& =\frac{1}{\rho}\left[4(2 \rho)-6 \rho^{2}\right] \overline{a_{2}} \\
& 7 \times \bar{H}=\frac{1}{\rho}\left[8 \rho-6 \rho^{2} \cdot \vec{a}\right. \\
& A \times H=(8-69) a_{3} \\
& \bar{J}=J_{z} \overline{a_{z}} \quad \operatorname{sim}^{2} .
\end{aligned}
$$

\therefore the Lumanfindensity intermin of ρ^{\prime} is

$$
\bar{J}=\nabla \times \bar{H}=(8-6 \rho) \overline{a_{3}} \quad \text { Alm} 2
$$

ii) the total curr int panis through the

Surface $z=0 m$ and $0 \leq \rho \leq 1 m$ in $\overline{a_{3}}$

$$
\begin{aligned}
& \text { dire in } \\
& \overline{d s}=f d \rho d \phi \overline{a_{2}} \\
& 0<P<1 \\
& 0<\phi<2 \pi \\
& I=\oint_{\langle s\rangle} \bar{J} \cdot \overline{d s} \\
& I=\oint_{\langle S\rangle}(8-6 \rho) \overline{a_{z}} \cdot \int d \rho d \phi \overline{a_{2}} \\
& I=\int_{\rho=0}^{1}(8-6 \rho) \rho d \rho \int_{\phi=0}^{2 \pi} d \phi \quad \overline{a_{\beta}} \cdot \overline{a_{2}} \\
& I=2 \times 2 \pi \times 1 \\
& I=4 \pi \text { Amperis } \\
& I=4 \pi=12.5663 \text { Amparin } \\
& \begin{array}{l}
p(\rho, \phi-z) \\
\frac{d}{d} f_{d \phi} y_{d \alpha}
\end{array} \\
& \rightarrow z=0 \mathrm{~m} \text {; constant } \\
& \text { Surtace. }
\end{aligned}
$$

problum 23.

sphetical shell of 0 0. 0 m. wherer radis of shell.
Quastion
Given $\bar{J}=10^{3} \operatorname{Sin} \theta \overline{a_{r}} A_{m}{ }^{2}$ in Spherical coordinate syitem. Find the current croming the sphertual shell of $r=0.02 \mathrm{~m}$, whore rieradius of shell. (4 m).

Solu:"

$$
\bar{J}=10^{3} \sin \theta \overline{a_{0}} t^{4} t_{m^{2}}^{2}
$$

+in in sphrical CS

$$
\begin{aligned}
& \text {, } P(r, \theta, \phi)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{d s}=\gamma^{2} \sin \theta d \theta d \phi \overline{a_{r}} \quad r=0.02 n \\
& 0<\theta<2 \pi \text {. } \\
& T=\oint_{\langle s\rangle} \bar{J} \cdot \overline{d s} \\
& 0<\phi<2 \pi \\
& I=\oint_{\langle s\rangle} 10^{3} \sin \theta \overline{a_{r}} \cdot r^{2} \sin \theta d \theta d \phi \overline{a_{r}} \left\lvert\, \begin{array}{l}
i \text { Amperes } \\
r=0.02 \mathrm{~m}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& I=10^{3}(0.02)^{2} \int_{\theta=0}^{\pi} \sin ^{2} \theta d \theta \int_{\varnothing=0}^{2 \pi} d \phi \overline{a_{\gamma}} \cdot \bar{a}_{r}^{1} \\
& I=10^{3}(0.02)^{2}(1.57079)(2 \pi)(1, \\
& I=3.9478 \quad \text { Ampors } \\
& I
\end{aligned}
$$

the Eurent Eroning thinspherical shall of radius $r=0.02 \mathrm{~m}$ is $I=3.9478 \mathrm{~A}$

Question.
In the region $0<\gamma<0.5 \mathrm{~m}$, in cylindrical corordinates, the Eurrint density is $\bar{J}=4.5 e^{-2 \gamma} \overline{a_{y}} A A_{m^{2}}$ and $J=0$ chewhere. Use Amperes Eircuital Law to find F. $(5 \mathrm{M})$
solvir
mothods: using amparis Circitalltaw

$$
\begin{aligned}
& \oint_{l>} \bar{H} \cdot \overline{d l}=\frac{T}{A m p e r i n .} \\
& \text { } 4\rangle \\
& \text { H? o }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{d s}=r d r d \varnothing \bar{a}_{z} \cdots z=k \text { surtan } \\
& I=\oint_{\langle\delta\rangle} 4.5 e^{-2 \gamma} \overline{a_{z}} \cdot r d r d \phi \overline{a_{z}}: \text { Amperin } \\
& 0 \lll 0.5 m: \quad 0<\phi<2 \pi .
\end{aligned}
$$

$$
\begin{aligned}
& I=\int_{\gamma=0}^{0.5} 4.5 \gamma e^{-2 \gamma} d r \int_{0=0}^{\pi \pi} d \phi \frac{\lambda^{1}}{a^{2}} \cdot \frac{a^{1}}{z} \\
& I=0.29727 \times 2 \pi \times 1 \\
& I=1.867802 \text { Amperio }
\end{aligned}
$$

$$
\begin{aligned}
& \oint_{\langle\lambda\rangle} H_{\phi} \overline{a_{\phi}} \cdot r d \phi \overline{a_{\phi}}=I \\
& \text { <1> } H_{\phi}^{\gamma} \int_{0}^{2 \pi} d \phi \vec{a}_{\phi} \bar{a}_{\phi}^{1}=I \\
& H_{\phi}=\frac{I}{2 \pi \gamma} A l_{m}
\end{aligned}
$$

$$
\begin{aligned}
& H_{\phi}=\frac{10867802}{(2 \pi) \gamma} \\
& H_{\phi}=\frac{0.297269}{\gamma} \quad \mathrm{Alm} .
\end{aligned}
$$

the magnetic field intensity \bar{H} in given by $\bar{H}=H_{\phi} \overline{a_{\phi}} \quad A l_{m}$.

$$
\bar{H}=\frac{0.297269}{\gamma} \overline{a_{\phi}}: A A_{m} \quad \text { for } r \ll 0.5 n
$$

at $\quad \gamma=0.5 \mathrm{~m}$.

$$
\vec{H}=0.594539 a_{\phi \phi} \mathrm{A} / \mathrm{m} .
$$

Method II, using point form of Apart Circuital Law.

$$
\text { ie } J=\nabla \times \bar{H} \quad A m^{2}
$$

$$
\text { and } \quad \bar{H}=H_{\phi} \overline{a_{\phi}} \quad A_{m}
$$

and $H_{\phi}=f^{n}(r)$ alone.

$$
\begin{aligned}
& \nabla \times \bar{H}=\frac{1}{\gamma}\left|\begin{array}{ccc}
\overline{a_{\gamma}} & \gamma \overline{a_{\phi}} & \overline{a_{z}} \\
\partial / \partial \gamma & 0 & 0 \\
0 & \gamma H_{\phi} & 0
\end{array}\right| \\
& \bar{J}=\nabla \times \bar{H}=\frac{1}{\gamma} \frac{\gamma\left(H \dot{\phi}^{\gamma}\right)}{\partial \gamma} \overline{a_{z}} \\
& \text { given } \bar{J}=\frac{4 \cdot 5 e^{-2 \gamma} \overline{a_{z}}}{4.5 e^{-2 \gamma} \overline{a_{z}}}=\frac{1}{\gamma} \frac{\partial\left(H_{\phi} \gamma\right)}{\partial \gamma} \overline{a_{z}}
\end{aligned}
$$

Equating ' z 'componen tin on bothside

$$
\begin{aligned}
& 4.5 e^{-2 \gamma}=\frac{1}{\gamma} \frac{\partial\left(H_{\phi^{0} \gamma}\right)}{\partial \gamma} \\
& \frac{\partial\left(H \phi_{\phi} \gamma\right)}{\partial \gamma}=4.5 \gamma e^{-2 \gamma} \quad 0<\gamma<0.5 \\
& \gamma \cdot H_{\phi}=\int_{\gamma=0}^{0.5} 4.5 \gamma e^{-2 \gamma} d \gamma
\end{aligned}
$$

$$
\begin{aligned}
& H_{\phi}=\frac{1}{\gamma} \int_{\gamma=0}^{0.5} 4.5 \gamma e^{-2 \gamma} \frac{d \gamma}{\gamma} \ldots . . \text { urecale: } \\
& H_{\phi}=\frac{4.5}{\gamma}\left[\left.\gamma \cdot \frac{e^{-2 \gamma}}{-2}\right|_{\gamma=0} ^{0.5}+\int_{\gamma=0}^{0.5} \frac{e^{-2 r}}{-2} \cdot 1\right] \\
& H_{\phi}=\frac{1}{\gamma}[0.29727] \\
& H_{\phi}=\frac{0.29727}{\gamma} \text { Alm. }
\end{aligned}
$$

the magntic fiuld intensity blw the region

$$
\bar{H}=H_{\phi} \widehat{a}_{\phi} \quad \mathrm{Am}
$$

$$
\begin{aligned}
& 0<\gamma<0.5 \text { is } \\
& \frac{\hat{a}_{\phi}}{} \text { Alm } \\
& \frac{\gamma 29727}{a_{\phi}} \text { Alm } \\
& \longrightarrow \text { for } 0<r<0.5 \text {. }
\end{aligned}
$$

$$
\text { i.e } \bar{H}=\frac{0.29727}{\gamma} \vec{a}_{\phi} \text { Alm }
$$

at $r=0.5 \mathrm{~m}$

$$
\begin{aligned}
& r=0.5 \mathrm{~m} \\
& H=0.59453 \overline{a_{\phi}} \quad \text { Alm. }
\end{aligned}
$$

t. Stokes' theorem '; r

State and prove the Si ${ }^{\text {kees sheorm. }}$
Sate and prove stokes theorem

State and explain the following
ii) Stokes theorem.

06-DEC2009/Ian 2010
obs Marts:
06 - June / July 2011
(4) Marks)

06 -June/fuly 2014
fit Marks
Dec/Jan 2016 (4M)
06-DEC2010
(0, Mars)

San wheme the Stoke s theorm.

Question'n.
State and prove'stoke's therrem (6m) Showthat $\oint \bar{H} \cdot \overline{d e}=\oint(\Psi \times \bar{H}) \cdot \overrightarrow{d S}=I$, with
definition of the same. [06-Dec 2009titan 2010, 06-Jund Joly 2011, 06 Jund Joy -2014"' 0 -Del Jan 2016, 06-Dec 2010.

Stoke: theorem:-
If Statement:- "Integration of any Vector around a cloned path is always equal to integration of the curl of that vutor through out the Surface enclosed by that path". ie $\left[\begin{array}{cc}\oint_{\Delta 1\rangle} \bar{H} \cdot \overline{d l}=\oint(\nabla \times \bar{H}) \cdot d S \\ \langle s\rangle\end{array}\right.$ Ampui
proof: from Amparin Circuital Law

$$
\oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=I \text { amparir }
$$

from the conupt of Current density

$$
I=\oint_{<S\rangle} \frac{1}{} \cdot d s \text { Ampurin }
$$

equating $\varphi^{4} \odot$ and (2) :

$$
\begin{equation*}
\oint_{\langle l\rangle}^{\langle l\rangle} \cdot \overline{d l}=I=\oint_{\langle S\rangle} J \cdot \overline{d S} \tag{3}
\end{equation*}
$$

using point torn of Amperin Law
ie $\nabla \times \bar{H}=\bar{J} A / m^{2} \prec G$
q^{-1} (4) in (3)

$$
\begin{aligned}
& \oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=I=\oint_{\langle S\rangle} \bar{J} \cdot \overline{d s}=\oint_{\langle s\rangle}(\bar{\nabla} \times \bar{H}) \cdot \overline{d s} \\
& \langle\quad
\end{aligned}
$$

Note!' In gencral for any vator \bar{A}
$i)$ Divergence theorem

$$
\oint_{S} \frac{Q^{0} d S}{}=\int_{\left.\left\langle v_{0}\right\rangle\right\rangle}(\bar{\nabla} \bar{A})^{\prime} d v
$$

Stoken theorm:- suface to volume integral
ii) $\begin{aligned} & \text { Stokestherem:- } \\ & \oint_{\langle l\rangle} \bar{A} \cdot \overline{d l}=\oint_{i}(\nabla \times \bar{A}) \cdot \overline{d S} \\ &\langle S\rangle\end{aligned}$
obs:- line to surface integral.
problem 25.
Evaluate both sides of the Stokes dement on the held if $6 x y$ a $-3 y$ a, Am and the
rectangular path around the region $2 \leq x \leq 5,1 \leq y \leq 1,2 \cdots 0$.
(10) Marks)
(or)
Question
Verity the stoke's theorem for the field \dot{x} $\bar{H}=6 x y \bar{a}_{x}-3 y^{2} \bar{a}_{y} A_{m}$ and the retargiar path around the region, $2 \leq x \leq 5 w-1 \leq y \leq 1$, $Z=0$. Lat the positive diration of $\overline{d s}$ be \bar{a}_{2}.

$$
\begin{aligned}
& \text { 2=0. Lat the positive dire } \underset{(8 \mathrm{~m})}{ }[15 \text {-Jun July } 2017(8 \mathrm{~m})] \\
& {\left[\begin{array}{l}
\operatorname{Tan} \\
2009
\end{array}\right] \text {. }}
\end{aligned}
$$

Sola'. Stokes the orem

$$
\oint_{\lll} \bar{H} \cdot \overline{d x}=\oint(\nabla \times \bar{H}) \cdot \overline{d s}
$$

$$
\oint_{\langle s\rangle}(\nabla \times \bar{H}) \cdot d s=2
$$

$$
\text { and } \overline{d s}=d x d y\left(+\bar{a}_{z}\right)
$$

$$
\rightarrow z=\text { oplane }
$$

$$
\text { given + ve } z^{\prime} \text { direll }
$$

$$
\begin{aligned}
& \bar{H}=6 x y \overline{a_{a}}-3 y^{2} \overline{a_{y}} \quad A m_{m} \\
& 2 \leq x \leq 5, \quad-1 \leq y \leq+1, \quad z=0 . \\
& \nabla \times \bar{H}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \bar{a}_{z} \\
\gamma / \partial x & \partial / \partial y & \partial / \partial z \\
H_{x} & H_{y} & 0
\end{array}\right| \\
& =-\frac{\partial H_{y}}{\partial z} \overline{a_{x}}-\left[-\frac{\partial H_{x}}{\partial z}\right]+\left[\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right] \overline{a_{z}} \\
& \nabla \times H=-\frac{\partial H y}{\partial z} \overline{a_{x}}+\frac{\partial H_{x}}{\partial z} \bar{a}_{y}+\left(\frac{\partial H_{y}{ }^{\circ}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right) \overline{a_{z}} \\
& H_{x}=6 x y, H_{y}=-3 y^{2} \\
& \frac{\partial H_{y}}{\partial z}=0 \cdot \frac{\partial H_{y}}{\partial x}=0 \text {. } \\
& \frac{\partial H_{x}}{\partial z}=0 \\
& \frac{\partial l_{x}}{\partial y}=6 x: A l^{2} \\
& \bar{\nabla} \times \bar{H}=-6 x \overline{a_{2}} . A / m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \oint_{\langle S\rangle}(\underset{\sim}{x}) \cdot \overline{d s}=\oint_{\langle S\rangle}\left(-6 x \overline{a_{2}}\right) \cdot d x d y \overline{a_{2}} \\
& =-6 \int_{x=2}^{5} x d x \int_{y=-1}^{k} d y \\
& =-\left.6 \frac{x^{2}}{2}\right|_{2} ^{5} \times(+2) . \\
& =-6 \cdot \frac{\left[5^{2}-2^{2}\right]}{2}(\not x)=-6[25-4] \\
& \oint(\nabla \times \bar{H}) \cdot \overline{d S}=-126 \text { Amparin } \\
& \text { L.H.S } \\
& \oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=? \\
& 2 \leq x \leq 5 \\
& -1 \leq y \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ty) } \\
& J_{x}=d y(-\bar{a} y)_{a} \\
& y=x \text { line, } \overline{d t}=d x\left(-\overline{a_{x}}\right) \\
& c \\
& x=5 \text { line } \\
& x_{x=5}^{-1} \rightarrow x \quad d_{x}=d y\left(+\bar{a}_{y}\right) \\
& \text { b } \\
& \text { a } \\
& \begin{array}{l}
-1 \times b=-1 \text { line } \\
\overline{d l} \equiv d x \overline{a_{x}}
\end{array} \\
& \text { F } \\
& \oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=\int_{a}^{b} \bar{H} \cdot \overline{d l}+\int_{b}^{c} \cdot \bar{d}+\int_{c}^{d} \frac{d}{H} \cdot \bar{l}+\int_{d}^{a} \bar{H} \cdot \overline{d l} ; A \\
& =\int_{y=-1}^{5} \overline{H_{x}} \cdot \overline{d l}+\int_{x=5}^{1} \frac{H_{y}}{H_{y}} \cdot \overline{d l}+\int_{y=+1}^{2} \overline{H_{x}} \cdot \overline{d l}+\int_{H_{y}}^{-1} \cdot \overline{d l} ; A \\
& x=2 \\
& y=-1
\end{aligned}
$$

$$
\begin{align*}
& y=1 \\
& =-6(10.5)-2-63+2=-126 \text { Ampercin } \\
& \text { i.e } \oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=-126 \text { Amperis }
\end{align*}
$$ $\langle l\rangle$ Since $p^{4}(a)=p^{4}$ (b)

\therefore S Stokes theorem is Venfied.

Qustion.
Verify stokes theorem for Hield (08 Warks)

$$
\bar{H}=2 r \cos \theta \overline{a_{r}}+r \overline{a_{\theta}} A_{m}^{\text {Dept. }}
$$

$$
\ldots \phi=k \text { sutace. }
$$

R.H.S
$0<\gamma \leqslant 1 m$ and $0<0^{\circ}<90^{\circ}$

$$
\begin{aligned}
& \oint_{\langle s\rangle}(\nabla \times \bar{H}) \cdot \overline{d s} \\
& \int \quad \overline{d s}=r d r d \theta \overline{a_{\phi}} \text {. } \\
& \nabla \times \bar{H}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\overline{a r} & \gamma \overline{a_{\theta}} & r_{\sin } \bar{a}_{\phi} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & 0 \\
H_{r} & r H_{\theta} & 0
\end{array}\right| \\
& =\frac{1}{r \not \approx \sin \theta}\left[\frac{\partial}{\partial r}\left(r H_{\theta}\right)-\frac{\partial H_{r}}{\partial \theta}\right] \cdot \not x \sin \theta \overline{a_{\phi}}
\end{aligned}
$$

$H_{r}=2 r \cos \theta \quad A l_{m}$ and $H_{\theta}=r$.

$$
\begin{aligned}
& =\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r^{2}\right)-\frac{\partial}{\partial \theta}(2 r \cos \theta)\right] \overline{a_{\phi}} \\
& =\frac{1}{\gamma}[2 \gamma-2 \gamma(-\sin \theta)] \overline{a_{\phi}} \\
& =\frac{1}{\gamma}[2 r+2 r \sin \theta] \frac{a_{\phi}}{a_{\phi}} \\
& \nabla \times \bar{\nabla}=2[1+\sin \theta] \overline{a_{\phi}} \quad \text { Alm }{ }^{2} \\
& \oint_{<S\rangle}(\nabla \times \bar{H}) \cdot \overline{d s}=\oint_{<S\rangle} 2(1+\sin \theta) \overline{a_{\phi}} \cdot r d r d \theta \overline{a_{\phi}} \\
& =\int_{r=0}^{1} \gamma d r \int_{\theta=0}^{90^{\circ}} 2(1+\sin \theta) d \theta \\
& =0.5 \times 5.1416=2.5708 \\
& \begin{array}{l}
\oint_{S\rangle}(\nabla \times \bar{H}) \cdot \sqrt{s}=2.5708 \text { Amperin }
\end{array}
\end{aligned}
$$

$$
\bar{H}=2 r \cos \theta \cdot \overline{a r}+r \overline{a_{\theta}} A_{m} \text {. }
$$

$$
\oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=\int_{0}^{a} \bar{H} \cdot \overline{d l}+\int_{a}^{b} \bar{H} \cdot \overline{d l}+\int_{a}^{\theta=0^{\circ}} \frac{0}{H} \cdot \overline{d l}: A_{r}
$$

$$
\int_{0}^{a} \bar{F} \cdot \overline{d r}=\left.\int_{r=0}^{1} 2 r \cos \theta \overline{a r} \cdot d \sqrt{a_{r}}\right|_{\theta=0} ^{b}
$$

$$
=\int_{r=0}^{1} 2 r d r=1 \text {. Ampery }
$$

$=0.5 \pi$. Amperin.

$$
\begin{align*}
& \int_{b}^{0} \bar{H} \cdot \overline{d l}=\int_{r=1}^{0} 2 r \cos \theta \text { arar } \cdot \text { drar }\left.\right|_{\theta=90^{\circ}} ^{b} \quad 0 \quad \text { Ampuin } \\
& \text { [con(90): } \\
& \left.\oint_{\Delta D} \bar{H} \cdot \overline{d l}=1+\pi / 2+0=2.570796\right] \text { Ampurin } \tag{b}
\end{align*}
$$

Sincequation (a) $=e^{4}$ (b) Stokes theorem in Varfied.

$$
\begin{aligned}
& \text { L.H.S } \\
& \oint \bar{H} \cdot \overline{d l}=?
\end{aligned}
$$

problem 27. Theorem for the portion of a cylindrical sustauditined by $r=2 \mathrm{~m}, \frac{\pi}{4}<\phi<\pi / 2,1<z<1.5$ and foritaporimater. (gm)
(d) $10 . J \mid J 2012$

10 - June /July 2015
Verify stokes theorem for a field having $H=2 \rho^{2}(\tau+1) \sin \phi a_{\phi}$ for the portion of a cylindrical surface defined by $p=2, \frac{\pi}{4} \leq \phi \leq \frac{\pi}{2}, 1 \leq-\leq 1.5$ and for its perimeter.
Bucotion
(o)
(10 Marks)
Verify stokes theorem for a filed having
$\bar{H}=2 \rho^{2}(z+1) \sin \phi \overline{a_{\phi}}$ for the portion in a cylindrical Surtace defined by $\rho=2 m$, $\frac{\pi}{4} \leq \phi \leq \pi / 2$, and $1 \leq \sum_{2}$ and for its perimeter. $(10, m)$
Solus- Stokes theorem... sit

$$
\oint_{\langle l\rangle} \bar{H} \cdot \overline{d e}=\oint_{S}(\nabla \times \bar{H}) \cdot \overline{d s}
$$

$$
\underbrace{}_{\text {R.H.S }} \underbrace{}_{S}(\mathbb{V} \times \bar{H}) \cdot \overline{d S}=\text { ? }
$$

Hivenfild $\bar{H}=2 \rho^{2}(z+1)$ jipri申 $\overline{a_{p}}$ is in Cylindrical coordinate System.

$$
\begin{aligned}
& \bar{H}=2 \rho^{2}(z+1) \sin \phi \overline{a_{\phi}} \quad \text { Alm. } \\
& \bar{H}=H_{\phi} \overline{a_{\phi}} \quad \mathrm{A} \mathrm{~m}_{\mathrm{m}} \text {. } \\
& \text { Dept. of ECÉ, B.M.S.I.T \& M } \\
& p_{\swarrow}(\rho, \phi, z) \\
& \nabla \times \bar{H}=\frac{1}{\rho}\left|\begin{array}{ccc}
\overline{a_{\rho}} & \rho \overline{a_{\phi}} & \frac{d \rho}{a_{2}} \\
\partial / \partial \rho & \partial / \partial \phi & \partial / \partial z_{2} \\
0 & \rho H H_{\alpha} & d_{2} \\
0 & 0
\end{array}\right| \\
& =\frac{1}{\rho}\left[-\frac{\partial(\rho H \phi)}{\partial z} \overline{a_{\rho}}+\left[\frac{\left.\left.0+\frac{\partial\left(\rho+\mu_{\phi}\right)}{\partial \rho}\right] \vec{a}_{3}\right]}{}\right]\right. \\
& =\frac{1}{\rho} \cdot-\frac{\partial H_{\phi}}{\partial z_{\varphi}}+\frac{1}{8} \cdot \rho \frac{\partial H_{\phi}}{\partial \rho} \overline{a_{2}} \\
& H_{B} \times \bar{H}=-\frac{\partial H_{\phi}}{\partial z} \overline{a_{\rho}}+\frac{\partial H_{\phi}}{\partial \rho} \overline{a_{z}} \\
& \nabla \times H=-\frac{\partial}{\partial z}\left[2 \rho^{2}(z+1) \sin \phi\right] \bar{a}_{p}+\frac{\partial}{\partial \rho}\left[2 s^{2}(z+1) \sin \phi\right] \bar{a}_{z} \\
& \bar{\nabla} \times \bar{H}=-2 \rho^{2} \sin \phi \bar{a}_{\rho}+4 \rho(z+1) \sin \phi \bar{a}_{2} \quad A \rho_{m} .
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[d \rho]{\stackrel{p(\rho, \phi, z)}{\downarrow} \underset{\rho d \phi}{\longrightarrow}} \longrightarrow d_{2} \\
& \overline{d s}=\rho d \phi d_{2} \overline{a_{\rho}} \ldots \rho=Q \text { sustace. } \\
& \oint_{\langle s\rangle}(\nabla \times \bar{H}) \cdot \overline{d s}=\oint_{\langle s\rangle}\left[-2 s^{2} \sin \phi \overline{a_{\rho}}+4 \rho(z+1) \sin \phi \bar{\phi}_{a}\right] \cdot \rho d d d \bar{a} \bar{a}^{\prime} \\
& =\left.\oint_{\langle s\rangle}\left[-2 \rho^{2} \sin \phi \bar{a}_{\rho} \cdot \rho d \phi d_{z} \bar{a}_{\rho}\right]\right|_{\rho=2 \mathrm{~m}} . \quad \begin{array}{l}
\bar{a}_{3} \cdot a_{\rho}=0 \\
\bar{a}_{\rho} \cdot \bar{a}_{\rho}=0 .
\end{array} \\
& =\oint_{\langle s\rangle}-\left.2 \rho^{3} \sin \phi d \phi d_{z} \bar{a}_{\rho} \cdot \bar{a}_{\rho}^{\prime}\right|_{\rho=2 m} . \\
& =-2(2)^{3} \times \int_{\phi=\pi / 4}^{\pi / 2} \sin \phi d \phi \times\left.\right|_{z=1} ^{1.5} d z \\
& \text { Sutan. } \\
& \phi(\bar{\nabla} \times \bar{H}) \cdot \overline{d s}=-16 \times 0.7071 \times 0.5=-5.6568 A \\
& \text { <s> } \\
& \text { RHS. } \int_{<S \lambda}(\nabla \times \bar{H}) \cdot \overline{d S}=-5.6568 \text { Amparis }
\end{aligned}
$$

$$
\begin{aligned}
& L \cdot f 10 s \quad \text { i.e } \oint_{\langle i\rangle} \bar{H} \cdot \overline{d l}=\text { ? } \\
& \bar{H}=2 \rho^{2}(z+1) \sin \phi \overline{a_{p}} A / m . \\
& \rho=2 m \quad \quad \pi / u \leq \phi \leq \pi / 2 ; \quad 1 \leq z \leq 1.5 .
\end{aligned}
$$

$$
\Longrightarrow{ }^{\prime} \rho^{\prime}=k \text { sutace. }
$$

$$
\overline{d_{e}}=d_{3} \bar{a}_{z}
$$

$$
\left.-\frac{\text { Leight }}{d e}=\frac{d z a_{3}}{\left(\bar{H}_{3}\right)} \right\rvert\, \begin{aligned}
& f=2 m \\
& f \phi=-1)_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathrm{F}_{3}\right)^{p=2 m}
\end{aligned}
$$

$$
\begin{aligned}
& \rho=2 m f \\
& \phi=74 .
\end{aligned}
$$

Lircular path $\left.\quad\left(\mathrm{H}_{q}\right)(9)^{-50}-\frac{6}{\mathrm{~N} \phi}\right)$

$$
\begin{aligned}
& =2(2)^{3}(1+1) \int_{\phi=\pi / 4}^{\pi 2} \sin \phi d \phi \bar{a}_{\phi} \cdot \bar{a}_{\phi} \\
& =16 \times 2 \times 0.7071=22.6275 \text { Amparin }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{c}^{d} \overline{H_{\phi}} \cdot \overline{d l}=\left.\left.\right|_{\phi=\pi / 2} ^{\pi / 4} 2 \rho^{2}(z+1) \sin \phi \overline{a_{\phi}} \cdot \rho d \phi \bar{a}_{\phi}\right|_{\substack{\rho=2 m \\
z=1.5 m}} \\
&= 2(2)^{3}(1.5+1) \int_{\phi=\pi / 2}^{\pi / 4} \sin \phi d \phi \overline{a_{\varphi}} \cdot \overline{a_{\phi}} \\
&=-28 \cdot 2844 \text { Ampari? } \\
& \int_{c}^{d} \overline{H_{\phi}} \cdot \overline{d l}=2^{4} \times 2.5 \times-0.7071 \\
& \therefore \oint_{i} \bar{H} \cdot \overline{d l}=22.6275+0-2802844+0
\end{aligned}
$$

LHS

$$
\begin{align*}
& =-5.6568 \text { Ampain } \tag{b}\\
& \oint_{H} \cdot \overline{d l}=-5.6568 \text {. }
\end{align*}
$$

Sine $q^{4} @=q^{4}(b \quad \therefore$ Stokes thuremis
Verified.

Tapic 3-10
Magnetic flux and magnetic flux density

Question
Detine Magnatic Plux (ϕ), Magntic Reld. Intensity (F), Exprinion. $10-\mathrm{Dec}-\operatorname{Jan} 2 \mathrm{~m}$

Magntic Flux $(\phi) * \phi-$ Scaler in nature.
the mognctic Flux (ϕ) croming any sustace is found by

$$
x_{1}^{\infty} \phi=\oint_{\langle s\rangle} \bar{B} \cdot \overline{d s} \quad \mathrm{~kb}
$$

(a) $\phi=\int_{\langle s\rangle} \bar{B} \cdot \overline{d s}$
where ϕ-magnatic Flux (ωb)
Topensurtane.
\bar{B} - magnatic flux density wb/m2
Magnatic Flux density (\bar{B}) :-

* The total Magnutic Lines of force Magnctic flux
 of Flus is called Magnotic Elux density (\bar{B}).
* ie. $\bar{B}=\frac{d \phi^{2}}{d S}, \omega b / m^{2}$ (大) $\bar{B}=\frac{d \phi}{d s} \bar{a}_{n} \omega b / m^{2}$
(大) Tola (T).
* \bar{B} io Vetor in nature and Measured in web/m² (a) Tesla.

Magnatic Fidd Intenoity (\bar{H}) :-

* The gedentitative Measure of strongoun (6) Wieaknon of the Mugntic Fild in given by Magntic field Intensity (\bar{H}).
* \bar{H} in vator in nature and Measured in

$$
N \mid w b
$$

Relation blw \bar{B} and \bar{H} i- where u-parncability of
the medium.
and $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ \qquad rilative purmcability $(H / m)^{\circ}$

$$
\bar{B}=\mu \bar{H}=\mu_{0} \mu_{r} \bar{H} \quad \omega_{b} \|_{m^{2}}
$$

for all nonmagnatic meturial $u_{r}=1$, while for magnatic material $\mu_{r}>1$.
Note:- Dirution of \vec{B} and \bar{H} ane same.
\qquad

Dept. of ECE, B.M.S.I.T \& M

Scalar and Vector Magnetic Potentials

Explain i) Scalar mambehe potential
ii) Vector magnetic potent al

02-DEC2010
(04) Marlin) 02-DEC2008/Jan 2009
Arrive at an expression for vector magnetic potential.
(66 Maris)
Discuss the scalar and vector magnetic potentials.
10-June/July 2013
(05 Marks)
02 - June /July 2011
Bifenetiatebetween scalar magnetic potential and vector magnetic potentials. (06 Marks)
02 - June /July 2012
Distinguish between scalar and vector magnetic potent ad. Derive an expression for the vector magnetic potential.
(08 Marks)
06- June /July 2009

02 - June / July 2010
 wite the demmituma
(CM)

10-Dec/Jan 2015
Explain scabs and vector magnetic potential.
(Ais Marks)

10 - June /July 2014
Expat scuta mot sectomagrede potent
(08 Marts)
06 - Jan 2013
Explain scalar and vector mamet ic potentials
(06 Marks)

June/ July 2016
c. Clearly distinguish between scalar magnetic potential and vector magnetic potential.
(06 Marks)
Dec/Jan 2017
a. Explain the concept of scalar and vector magnetic potential.
(08 Marks)
b. Explain the concepts of scalar and vector magnetic potential.
$\frac{\sim \text { DelIan } 2017 C B C S}{(08 \mathrm{Marks})}$

(O)

Foplain the comuptsof scalar and viator magnetic
[02-DeC2010, 02 - Jan 2009, 10-JurelJuly 2013, 02-JlJ 2011, $02-J \mid J$ 2012, $06 J|J 2009,02-J| J 2010,10-J a n 2015$, $10-J / J$ 2014, 06 - Jan 2013, JlJ 2016, Decl Jan 2017, 15-Deltan 2017 (CBS)].

Sou':-
the Electric scalar potential of Elutrostatico
Lankan VGowtla MTech.(PR-D) Assistant Professor, Dept. of E\&CE Email:dankan.ece@svcerzgg.com in given by V.
+91984454940 the
from the concept of, E potential gradient the retted to the scalar potential Electric field intensity E in related to the scalar potent al U is given by

$$
\bar{E}=-\left.v \quad v\right|_{m}<0
$$

My in magneticfield there one two typuof potentials
i. Scalar magnetic potential $\left(V_{m}\right)$.
$i i$. veto magnetic potential (\bar{A}).
i. Scalar magnetic potential $\left(V_{m}\right)$:-
Eonsider the Veatoridentitics?

$$
\begin{aligned}
& \nabla \times \nabla V=0 \text {, where } V-\text { scalar \& (2) } \\
& \nabla \cdot(\nabla \times \bar{A})=0 \text {, where } \bar{A}-\text { vector. } \& \text { (3) }
\end{aligned}
$$

if v_{m} is said to be the scalar pragntic potential

$\nabla \times \nabla^{v_{m}}=0$

The magnotic scatar potential v_{m}, riclated to H is
given by $\bar{H} \equiv-\sigma v_{m .} A l_{m}$.

$$
\Rightarrow \nabla v_{m}=-F_{1}
$$

using eqe (4)

$$
\Rightarrow \quad \frac{\sqrt{\square} \times(-\bar{H})=0}{1} \quad \frac{1}{6}<
$$

but from point form of Amprein circuital Law

$$
\nabla \times \bar{H}=\bar{J}
$$

by com paring ger (6) and (7)

$$
\Rightarrow \text { by comparing gr } \quad \Rightarrow \quad \square \times F=0 \text { valid onleg if } \vec{J}=0 \text {. }
$$

and $\bar{J}=0$ omy when $\bar{\sigma}=0$ i.e freespace (o) Sourieftre region.
\therefore Scalar magnatic patential Un can be detined for Source tree rgion where $\bar{J}=0$, i•e Current pt. E\&CE., SVCE Bangalore density in zero.

$$
\begin{equation*}
\Rightarrow \quad \bar{H}=-\nabla v_{m} \text { onky when } J=0 A_{m}{ }^{2}{ }_{800} \tag{133}
\end{equation*}
$$

ii. Vector magnatic potential (\bar{A})

Vator magnatic potertial \bar{A}, measured in $k e b / m$. using oq (3)

$$
\begin{equation*}
\square \cdot(\square \times \bar{A})=0 \tag{8}
\end{equation*}
$$

i.e divergence of aturl of a vector inszero.
the relationithip bw magnatic. Thx fonsity \bar{B} and vutor the Magnetic potential ingeren by

$$
\bar{B}=\bar{\nabla} \times \bar{A}
$$

using point form of Arpprin arkital Law

$$
\begin{align*}
& \nabla \times \overline{H E}=J \quad A m_{m}^{2}<(10) \\
& \bar{B}=\mu_{0} \bar{H} \cdots \omega b / m^{2} \text { (frespace) } \\
& \Sigma \underset{N}{ } \times\left(\frac{\sqrt{B}}{\mu_{0}}\right)=\bar{J} . \tag{II}\\
& \sqrt{I} \times \bar{B}=\mu_{0} \bar{J}
\end{align*}
$$

fromey. (9)

$$
\begin{equation*}
\nabla \times \bar{B}=\nabla \times \nabla \times \bar{A} \tag{13}
\end{equation*}
$$

Cq4 in in (13)
\therefore E\&CE., SVCE Bangalore

$$
\begin{equation*}
\nabla \times \nabla \times \bar{A}=\mu_{0} \bar{J} \tag{14}
\end{equation*}
$$

whing vector identity $\nabla(\overline{\nabla \cdot \bar{A}})-\bar{V}^{2} \vec{A}=$

$$
=\nabla \times \nabla \times \bar{A}
$$

$$
\begin{aligned}
& \nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}=\mu_{0} \bar{J} \\
& \Rightarrow \quad \underbrace{\vec{J}=\frac{1}{\mu_{0}}\left[\square(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}^{3}\right.}_{\text {in merinet form }}
\end{aligned}
$$

in meashect adortance dif'
alderential to dift
the vator magniticpotential $\bar{A} \lambda$ aue
Current element \hat{A}, given by

$$
\bar{A}=\int_{\langle Q\rangle} \frac{\mu_{0} d d l}{Q_{Q} R} \quad \ldots \text { for line current- }
$$

$\bar{A}=\int_{\langle S\rangle} \frac{\mu_{0} \bar{K} d S}{4 \pi R} \ldots$...... Sor Surface Current.

$$
\bar{A}=\int_{\langle v\rangle} \frac{\mu_{0} \bar{J} d r}{4 \pi R} \ldots \text { for volume current. }
$$

problem 28.
prove that $\bar{\sigma} \cdot \bar{B}=0$ from the concept of vator Magnetic potential A.
sole:.-

$$
\bar{B}=\nabla \times \bar{A}
$$

taking Divergence operation on both sides, we get

$$
\bar{\nabla} \cdot \bar{B}=\bar{\nabla} \cdot(\bar{\square} \times \bar{A})
$$

RMS.

$$
\text { s. } \begin{aligned}
& \nabla \times \bar{A}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
&= {\left[\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right] \overline{a_{x}}-\left[\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{x}}{\partial z}\right] \overline{a_{y}} } \\
&+\left[\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right] \overline{a_{z}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \nabla \cdot(\nabla \times \bar{A})= & \frac{\partial}{\partial x}\left[\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right]-\frac{\partial}{\partial y}\left[\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{n}}{\partial z}\right] \\
& \quad+\frac{\partial}{\partial z}\left[\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right] \\
= & \frac{\partial^{2} A_{z}}{\partial x \partial y}-\frac{\partial^{2} A_{y}}{\partial x \partial z}-\frac{\partial^{2} A_{z}}{\partial x \partial y}+\frac{\partial^{2} A_{x}}{\partial y_{z} \partial_{z}}+\frac{\partial^{2} A_{y}}{\partial \partial_{2} A_{z}} \\
& \frac{-\partial^{2} A_{x}}{\partial y \partial z}=0
\end{aligned}
$$

$\therefore \nabla \cdot \bar{B}=0$
problem 29.
At a point $p(x, y, z)$, the components of A_{x}, A_{y}, and A_{z} of vector magnetic potential A are given by

$$
\begin{aligned}
& A_{x}=4 x+3 y+2 z, A_{y}=5 x+6 y+3 z \text { and } A_{z}=2 x+3 y+5 z . \\
& \text { magnitude and diration of } B \text { at } p \text {. }
\end{aligned}
$$

Determine the magnitude and diration of B at p. what is the nature of thin fixed? $(6 \mathrm{~m})$

$$
\begin{aligned}
& \text { [15-Jund July } 2017 \text { CBGM)] [J|J2001] } \\
& \bar{B}=\nabla \times \bar{A}=\left[\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right] \overline{a_{x}}+\left[\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right] a_{y} \\
& +\left[\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right] \vec{a}_{z} . \\
& A_{x}=4 x+3 y+2 z \\
& A y=5 x+6 y+3 z \\
& \frac{\partial A_{x}}{\partial y}=3 \text { and } \frac{\partial A x}{\partial z}=\mathcal{L} . \quad \frac{\partial A_{y}}{\partial x}=5 \text { and } \frac{\partial A_{y}}{\partial z}=3 . \\
& A_{3}=2 x+3 y+5 z \\
& \frac{\partial A_{2}}{\partial x}=2 \text { and } \frac{\partial A_{z}}{\partial y}=3 \text {. } \\
& \therefore \bar{B}=(3-3) \bar{a}_{x}+(2-2) a_{y}+(5-3) \overline{a_{z}} \\
& \bar{B}=2 \overline{a_{2}} \omega b / \mathrm{m}^{2}
\end{aligned}
$$

Solidi:
$\therefore|\bar{B}|=2 \omega b / m^{2}$ and in diruted along z-diration. The nature of thin field is uniform.

If the vector magnetic potential at a poim in a space is given as $\bar{A}=100 \rho^{1.5} a_{2}$ wbimt, find the following: i) E ii) I and show that $\phi \mathrm{H} . \mathrm{dI}=1$ for the circular path with $\mathrm{p}=1$. (06 Marks)

Quention.
Vettor magnatic potential in free space in given by $\bar{A}=100 g^{105} \overline{a_{z}}$ wb/m. Find the magneftif ficld intensity and Curent dersity and heme prove Amperir Cirlutal Law for fint (qm).
solu:-
Given vetor maginic potential in free space $\left.\quad \operatorname{Hem}_{0} H\right|_{m}$

$$
\bar{A}=\sin ^{1} \overline{a_{2}} \text { Ah/m...incylindrical }
$$

$$
\omega \cdot t \quad \omega b / m^{2}
$$

$$
\nabla \times \vec{A}=\frac{-1}{f}\left[\frac{\partial}{\partial \rho}\left(100 \rho^{1.5}\right)-0\right] \overrightarrow{f a_{\phi}}: 4 \Delta b / m^{2}
$$

$$
\begin{aligned}
& \bar{A}=100 \rho^{\text {IDept of ESES }} \text {, B.M.S.I.T \& M } \\
& \text { 06-DEC2009/lan } 2010 \\
& \oint_{\mu \omega} \bar{H} \cdot \overline{d t}=I \quad 06-\mathrm{J} / \mathrm{J} 2010(\mathrm{gm})
\end{aligned}
$$

$$
\begin{aligned}
\nabla \times \bar{A}= & -100 \times 1.5 \rho^{0.5} \overline{a_{\phi}} \quad \omega / \mathrm{m}^{2} \\
& =-150 \rho^{0.5} \overline{a_{p}} \mathrm{Nb} / \mathrm{m}^{2}
\end{aligned}
$$

i. Magnatic fieldintensity H

$$
\begin{aligned}
& \bar{H}=\frac{\bar{B}}{\mu_{0}}=\frac{-150}{\mu_{0}\left(\rho^{0.5}\right)} \overline{a_{0}} \\
& A \ln \frac{1}{\mu_{0}} \bar{\sigma}_{0} \\
& \text { (0) }
\end{aligned}
$$

$$
\underbrace{(\infty)}
$$

(大) $\sqrt{H_{6}=\frac{19.366 \times 10^{6}}{\rho_{0}} \overline{a_{0}}} \mathrm{He} / \mathrm{m}$.
ia) Tinumint dinsify $\bar{J}=\nabla \times \bar{H} \quad \mathrm{Clm}^{2}$.

$$
\nabla \times \bar{H}=\frac{1}{\rho}\left|\begin{array}{ccc}
\frac{0}{a_{\rho}} & \rho \overline{a_{\phi}} & \overline{a_{2}} \\
\frac{\partial}{\partial \rho} & 0 & 0 \\
0 & \rho H_{\phi} & 0
\end{array}\right| \quad A m^{2}
$$

$$
\begin{align*}
& \bar{J}=\nabla \times \bar{H}=\frac{1}{\rho}\left[\frac{\partial\left(\rho H_{\phi}\right)}{\partial \rho}-0\right] \overline{a_{z}} \\
& =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \cdot\left(\frac{-150 \rho^{0.5}}{\mu_{0}}\right)\right] \overline{a_{z}} \\
& \bar{J}=\frac{-1}{\rho} \frac{\partial}{\partial \rho}\left[\rho^{1.5}\right] \cdot \frac{150}{\mu_{0}} \overline{a_{2}} \\
& \bar{J}=\frac{-1}{\rho}\left(1.5 \rho^{0.5}\right) \frac{(50)}{\mu_{0}} \frac{a_{2}}{a_{2}} \\
& \bar{J}=\frac{-225}{\mu_{0}} \rho^{-0.5} \overline{a_{2}}, A m^{2}
\end{align*}
$$

iii) To show $\oint_{H} \cdot \overline{d l}=T$ Ampario <l> at $\rho=1 \mathrm{~m}$ Surface.

fromcq"@

$$
\begin{align*}
& \text { R.Hes } \\
& I=\oint_{\langle s\rangle} \bar{J} \cdot \overline{d s} \cdots \text {-for } \\
& \overline{d s}=\rho d \rho d \phi \overline{a_{z}} . \\
& z=0 \text { in surtac. } \\
& 0 \leq \rho<1 \\
& 0<\phi<2 \pi \\
& I=\oint_{\langle S\rangle}-\frac{225}{\mu_{0}} \rho^{-0.5} \overline{a_{3}} \cdot \rho d \rho d \phi \overline{a_{z}} \\
& I=\frac{-225}{\mu_{0}} \int_{\rho=0}^{1} \rho^{0.5} d \rho \int_{\phi=0}^{2 \pi} d \phi \cdot \frac{g_{3}}{2} \cdot \overline{a_{2}} \\
& I=\frac{-225}{\mu_{0}} \times 0.6667 \times 2 \pi \times 1 \\
& I=\frac{-942.52}{\mu_{0}}=-7.50037 \times 10^{-6} \mathrm{~A} \\
& T=-\frac{942.52}{\mu_{0}}=-7.5 M A \text { mprin } \tag{b}
\end{align*}
$$

L.H.S

$$
\oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=\int_{\langle l\rangle} \overline{H_{\phi}} \cdot \overline{d l}
$$

$$
=\left.\right|_{\langle i\rangle} ^{\left.\frac{-150 \rho^{0.5}}{\mu_{0}} \overline{a_{\phi}} \cdot \rho d \phi \overline{a_{\phi}} \cdot\right|_{f=1 m},}
$$

$$
=\left.\frac{-150}{\mu_{0}}(\rho)^{1.5}\right|_{\phi=0} ^{2 \pi} d \phi \times\left.\overline{a_{\phi}} \hat{a}_{\phi}\right|_{\beta=1 m} ^{\infty}
$$

$$
=-\frac{150}{\mu_{0}}(x)^{15} \times 2 \pi x 1
$$

$$
z \frac{-150}{\mu_{0}} \times 2 \pi
$$

$$
T=-\frac{300 \pi}{\mu_{0}} \simeq \frac{942.52}{\mu_{0}}=-7.5 \mu \mathrm{~A}
$$

$$
\text { Since } q^{u}\left(b=\varphi^{u} \circlearrowleft \text { ie } \oint_{<l\rangle} \bar{H} \cdot \overline{d l}=T ; A\right.
$$

$$
\rangle>\text { Crcularpath }
$$

\therefore Amparin Law in Venfied along Civelanpath
with $\rho=1 \mathrm{~m}$.
problum3).
-. Given the vector magnetic potential

$$
\bar{A}=x^{2} a x+2 y z a y+\left(-x^{2}\right) a z
$$

Find magnetic flux density.

DeciJan 2017
(04 Maks)

Solu:-
Question.
Given the vutor magnatic potential

$$
\bar{A}=x^{2} \overline{a_{x}}+2 y z \overline{a_{y}}-x^{2} \overline{a_{z}} \quad \text { wh/m. Findinag }
$$

-ntic thex dinsity. $(6 m) \cdot(024 y-2004$
Solu'r

$$
\begin{aligned}
& \bar{A}=x^{2} \overline{a_{x}}+2 y z \bar{a}_{y}-x^{2}, \\
& \bar{A}=A_{x} \overline{a_{x}}+A_{y} \overline{a_{y}}+A_{1} A_{z} z_{z}: \\
& \bar{B}=\nabla \times \bar{A} \quad \text { wb/m minn } \\
& \nabla \times \bar{A}= \begin{cases}\overline{a_{x}} & \overrightarrow{a_{y}} \\
\text { at }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& A_{x}=x^{2} ; \quad A y=2 y z, \quad A_{z}=-x^{2} . \\
& \nabla \times \bar{A}=-2 y \overline{a_{x}}+2 x \bar{a}_{y} \quad w \mid m^{2} .
\end{aligned}
$$

the magatic Flure dusity

$$
\bar{B}=\nabla \times \bar{A}=-2 y \bar{a}_{x}+2 x \bar{a}_{y}
$$

problem 32.

Question
Given $\bar{A}=(y \cos a x) \overline{a_{x}}+\left(y+e^{x}\right) \bar{a}_{2} \sim b / m$ find $\nabla \times \bar{A}$ at the origin.
Solvi:

$$
\begin{aligned}
& \bar{A}=y \cos (a x) \overline{a_{x}}+\left(y+e^{x}\right) \bar{a}_{a_{m}} \hat{u} \|_{m} \text {. } \\
& \nabla \times \bar{A}=\left|\begin{array}{lll}
\overline{a_{n}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & \partial / \partial y & a_{1} \\
A_{x} & \theta_{1} & A_{z}
\end{array}\right| \\
& \nabla \times \bar{A}=\left[\frac{\partial A_{z}}{\left.\frac{z_{1}}{a_{x}}-\frac{\partial A_{z}}{\partial x} \overline{a_{y}}-\frac{\partial A x}{\partial y} \overline{a_{z}}\right]}\right] \\
& \frac{A_{2}}{\partial y}=1 ; \frac{\partial A_{2}}{\partial x}=e^{x} ; \frac{\partial A_{x}}{\partial y}=\cos (a x) \\
& \nabla \times \bar{A}=\overline{a_{x}}-e^{x} \overline{a_{y}}-\operatorname{con}(a x) \overline{a_{z}} \quad \omega b / m^{2} \\
& \nabla \times \bar{A} \text { at Nrigin } O(0,0,0) \text { is }
\end{aligned}
$$

$$
\begin{gathered}
x=0, y=0, \text { and } z=0 \\
\left.\overline{B_{0}}=\nabla \times \bar{A}=\overline{a_{x}}-\overline{a_{y}}-\overline{a_{z}}\right] ; \omega b / m^{2}
\end{gathered}
$$

magnitude of $\nabla \times \bar{A}_{0}$ at origin

$$
\left|\bar{B}_{0}\right|=|\nabla \times \bar{A}|=\sqrt{1+1+1}=\sqrt{B_{1}} \mid
$$

Module-3 (part B)
Summary:-
F. List of symbols.
unit.
\rightarrow magnatic flux $(\phi)-$ wh.
\rightarrow magnatic fild intensity $(\bar{H})-A l_{m}$
\rightarrow Curront Element $I \overline{d l}$ - A-m.
\rightarrow Eurrent (I) - Ampere.
\rightarrow magnatic flux dinsity $(\bar{B}),-\infty b / m^{2}$ (大) Teda.
\rightarrow Eurrant-density $(J)^{2}-A l^{2}$.
\rightarrow parreability $(\mu)-H / m$.

$$
\begin{aligned}
& \theta=\mu_{0} \mu_{r} \mathrm{H} / \mathrm{r} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} .
\end{aligned}
$$

\rightarrow Vettor magnatic potential $(\bar{A}) \cdots \omega b / m$.
\rightarrow Surtace curent density $(\bar{k})-A l m^{2}$.
(11). List of formulae.

Note: $\bar{B}=M \bar{H} \mathrm{wb}_{2}{ }^{2}$.

1. Biot-Savart-Law:-
frespare $\mu=\mu_{0}+4_{m}=4 \pi \times 10^{-7}+1 / \mathrm{m}$.
2. Magnetic fill irstersing (\vec{H}) due to infinite Long Straight [ument consing filament

$$
\overline{H_{p}}=\frac{I}{2 \pi \rho} \bar{a}_{\phi} \quad+I_{m} \text { (a) /Nb }
$$

where $\rho-L \mathcal{L}$ distance from point ' p ' to infinite. Length curet comping filament.
3. F due to finite Length Current comping filament.

$$
\left.\bar{H}=\frac{I}{4 \pi \rho}\left[\sin \alpha_{2}-\sin \alpha_{1}\right] \overline{a_{\phi}}\right] \text { Al. }
$$

4. Hi due tan the axis of a Circular Current Loop.

$$
\bar{H}=\frac{I \rho^{2}}{2\left(\rho^{2}+z^{2}\right)^{3 / 2}} \overline{a_{z}} \quad \mathrm{Am}
$$

Special
\bar{H} at center of the top ie $z=0$ is given by

$$
\bar{H}=\frac{I}{2 \rho} a_{3} \quad A H_{m}
$$

5. $\bar{H}: \therefore$ at a point on the axis of a finite Length Solenoid.

$$
H=\frac{N I}{2}\left[\cos \phi_{1}-\cos \phi_{2}\right] \quad \mathrm{Alm}_{m}
$$

6. Fl at the center of a square Current hoop.

$$
\bar{H}=\frac{2 \sqrt{2} I}{\pi a} \quad \overline{a_{z}} \quad \mathrm{Alm} .
$$

7. Ampere'n Circuital Law.

The line integral of \bar{H} around as ingle closed path in equal to the current relined by that path.
8. Magnaticfield intensity (H) of Coaxial Cable.

$$
F=\left\{\begin{array}{c}
\frac{I r}{2 \pi a^{2}} \overline{a_{\phi}} ; \quad r<0 \\
\frac{I}{2 \pi r} \overline{a_{\phi}} \cdots, \quad a<r<b \quad \text { Am } \\
\frac{I}{2 \pi r}\left[\frac{c^{2}-r^{2}}{c^{2}-b^{2}}\right] \overline{a_{\phi}} ; \quad b<r<c \\
0 ; o w .
\end{array}\right.
$$

9. Fin in blu a Toroidal coil.

$$
H=\frac{N I}{2 \pi R} \quad \mathrm{Alm}
$$

10. For a Condutor in the form of regular polegon of n-side insuribed in a Gircle of radius ' γ ' m the Fluxdensity B at the centre is

$$
B=\frac{\mu_{0} n I}{2 \pi r} \tan \left(\frac{\pi}{n}\right) \quad w b / m^{2}
$$

11. point form of Amperin Law

$$
\nabla \times \bar{H}=\bar{J} \mathrm{Alm}^{2}
$$

12. Stokin theorem.

$$
\begin{aligned}
& \text { okin theorem. } \\
& \oint_{\langle\Delta\rangle} \bar{H} \cdot \overline{d l}=\oint_{\langle S\rangle}(\nabla \times \bar{H}) \cdot d S
\end{aligned}
$$

13. corent $I=\oint_{<l\rangle} \bar{H} \cdot d \lambda=\oint_{\langle S\rangle} \bar{J} \cdot \overline{d s}$ Amparin.
14. Magnotic flux (ϕ).

$$
\phi=\oint_{\langle S\rangle} \bar{B} \cdot \overline{d s} \int_{l} w b
$$

15. Magntic thex dersity (\bar{B})

$$
\begin{aligned}
& \text { cthex density }(\bar{B}) \\
& \bar{B}=\frac{d \phi}{d s} \quad \bar{B}=\frac{d \phi}{d s} \bar{a}_{n} w b / m^{2} \text {. }
\end{aligned}
$$

16. $\bar{B}=\mu_{0} \bar{H} \mathrm{Nb} \mathrm{m}^{2}$
17. Vatormagnatic potential $(\bar{A}) ; \quad \bar{B}=\nabla \times \bar{A} ; \mathrm{wh}^{2}$

Module-4

Dankan V Gowda , мTech.(Ph.D)
Assistant Professor, Dept of E\&CE
Email:dankan.ece@svcengg.com

Part-A: Magnetic Forces

Force on a moving charge, differential current elements, Force between differential current elements.
Part-B: Magnetic Materials
Magnetization and permeability, Magnetic boundary conditions, Magnetic circuit, Potential Energy and forces on magnetic materials.

Part-A: Magnetic Forces

Force on a moving charge, differential current elements, Force between differential current elements.

Topics:
4.1 Force on Moving charge or Lorentz force equation

Solved Problems
4.2 Force on a differential current element
4.3 Force between differential current elements
a. Magnetic Force between two current elements
b. Force between two parallel conductors

Summary

- List of Symbols

- List of Formulae

Part-B : Magnetic Materials

Magnetization and permeability, Magnetic boundary conditions, Magnetic circuit, Potential Energy and forces on magnetic materials.

Topics:
4.4 Concept of Magnetization and Permeability
4.5 Magnetic Boundary conditions
4.6 Magnetic Circuits
a. Reluctance of a Magnetic circuits
b. Comparison between electric and magnetic circuits
4.7 Reluctance in a series magnetic circuits
4.8 Potential Energy and Forces on Magnetic Materials.

Summary

- List of Symbols
- List of Formulae
- Force on Moving charge or Lorentz force equation
 if towing front chare ce ar s

Derive lorentz force equation.
10- dan 2013
(05 Marks)
02 - June /July 2010
Derive the Lorentz force equation for the fore exerted on a mo w he charged parties charge Q, with velocity \bar{v}, in a magnetic fold \bar{B} and electric fold \bar{F}

What is Lorentz force cquallon?
Derive Lomax - fore squab

State and prove the Lorentz force equation.

Sole:- Force on moving point charge (or) Lorentz force
Equation:-
A positive charge 'Q' moving with velocity \bar{u} in a ceniform magnetic fired of Flux density \bar{B}, experiences a force F given by

$$
\bar{F}=\theta(\bar{v} \times \bar{B}) \text { Newton }
$$

The magnitude of the force is given by

$$
\begin{equation*}
\left|\bar{F}_{1}\right|=\nabla \vee B \sin \theta \tag{2}
\end{equation*}
$$

Auto
where ' θ ' Is the angle between the velocity vutor \bar{v} and $\bar{\beta}$. thediration of force in perpendicular to the plane containing \vec{v} and \bar{B}. and point in the diration along which a right handed Screw would move if rotated from $\bar{\imath} t 0 \bar{B}$.

$$
\begin{aligned}
& d \text { move if } \\
& F_{1}=\theta(\bar{u} \times \bar{B}) ; N \\
& \text { of et he }
\end{aligned}
$$

blare efathe fore

$$
\begin{aligned}
& \because \frac{t}{n} \text { Forcer moving in a magnetic } \\
& \text { fig. chary in }
\end{aligned}
$$

if the charge ' Q ' is subjected to only the influence of an elutricificld of strength E then the force experienced by it will be

$$
\begin{equation*}
\bar{F}_{2}=Q \bar{E} \tag{3}
\end{equation*}
$$

if it is subjuted to the combined influence of a magnetic field of tluxdinsity \bar{B} and an clutricfield of strength E, then the roultant \bar{F} will be Sum of two fores F_{1} and \bar{F}_{2}.

$$
\begin{equation*}
\therefore \quad \bar{F}=Q(\bar{E}+\vec{v} \times \bar{B}) \tag{4}
\end{equation*}
$$

QuaG) is called the Lorentz 3 force equation.
Applications of Lorentz force equation.
Lorentz 2 force equation and its solution is required in determining elution orbits in the magnetron, proton paths in the cyclotron, plasmachoractenitics in a magneto-hydro dynamics (MHD) genwator, (or) ingeneral charged particle motion in combined cupric and magnetic fills.

A pom chats 0 - 8 we has a velocity of $5 \times 10^{4} \mathrm{~m} / \mathrm{s}$ in the direction
 by the held:
7) $\mathrm{B}=-3 \mathrm{a},+4, \cdots 6 \mathrm{KV} / \mathrm{m}$
ii) $\vec{B}-3 \hat{4}, 4,+6 \hat{a}, m$
iii) \dot{B} and \dot{E} acting together.
(08 R Marks)

Question 4 .
A point charge
Calculate the mignsitude of the force exited on the charge by the filed:
i. $\bar{E}=-3 \bar{a}_{z}+4 \bar{a}_{y}+6 \bar{a}_{z} \mathrm{kV} / \mathrm{m}$. ii. $\bar{B}=-3 \bar{a}_{x}+4 \bar{a}_{y}+6 \bar{a}_{z}$ mTesla.
iii. \bar{B} and \bar{E} acting together. (8 m) 06-Jund Jolly 2011,10 -Juana July 2012 and

Solu:-

$$
\begin{aligned}
& \text { Given } \\
& Q=18 \mathrm{nc}, v=5 \times 10^{6} \mathrm{~m} / \mathrm{sec} . \\
& \overline{a_{v}}=0.6 \overline{a_{x}}+0.75 \overline{a_{y}}+0.3 \overline{a_{z}} \\
& \bar{B}=-3 \overline{a_{x}}+4 \overline{a_{y}}+6 \overline{a_{z}} \text { mTesla. }
\end{aligned}
$$

ii. $\bar{F}_{m}=Q \vec{v} \times \bar{B}$; Nuwton

$$
\begin{aligned}
& \therefore \bar{F}_{m}=\phi . v \overline{a_{2}} \times \bar{B} \\
& \overline{F_{m}}=18 \times 10^{-9} \times 5 \times 10^{6}\left|\begin{array}{ccc}
\overline{a_{a}} & \overline{a_{y}} & \overline{a_{z}} \\
0.6 & 0.75 & 0.3 \\
-3 & 4 & 6
\end{array}\right| \times 10^{-3} ; \mathrm{N} \\
& \overline{F_{m}}=90 \times 10^{-6}\left[3.3 \overline{a_{x}}-4.5 \overline{a_{y}}+4.65 \overline{a_{z}}\right] \\
& \\
& \bar{F}_{m}=297 \overline{a_{2}}-405 \overline{a_{y}}+418.5 \overline{a_{z}}
\end{aligned}
$$

Magnitude of force \vec{F}_{m} is

$$
\begin{array}{r}
\left|\bar{F}_{m}\right|=\sqrt{297^{2}+405^{2}+418.5^{2}}=653.7402 \mathrm{MN} \\
\left|\bar{F}_{m}\right|=653.7402 \mu \mathrm{~N}
\end{array}
$$

$$
\begin{aligned}
& \overline{F_{E}}=Q \bar{E}: N \\
& \overline{F_{E}}=18 \times 10^{-9}\left[-3 \overline{a_{x}}+4 \overline{a_{y}}+6 \overline{a_{z}}\right] \times 10^{3} \\
& \overline{F_{E}}=-54 \overline{a_{x}}+72 \overline{a_{y}}+108 \overline{a_{z}}: \mu \mathrm{N} \\
& \left|\overline{F_{E}}\right|=140.5844 \mathrm{~N}
\end{aligned}
$$

iii: \bar{B} and \bar{E} ating toguthere

$$
\begin{aligned}
& \bar{F}_{\text {total }}=\bar{F}_{E}+\bar{F}_{m} \cdot N \\
& =297 \bar{a}_{x}-405 \bar{a}_{y}+418.5 \bar{a}_{z}-54 \overline{a_{x}}+72 \overline{a_{y}} \\
& \overline{F_{t+t a l}}=243 \overline{a_{n}}-333 \overline{a_{y}}+526.5 \overline{a_{z}} ; \mu \mathrm{N} \\
& \overline{\mathrm{~F}}_{2} \\
& \bar{F}_{\text {total }} \mid=\sqrt{243^{2}+333^{2}+526.5^{2}} ; \mu \mathrm{N} \\
& \left|\bar{F}_{\text {total }}\right|=668.6854 ; \mu \mathrm{N}
\end{aligned}
$$

problem 2
A positive point charge $Q=20 n \mathrm{C}$ in moving with a Velocity of $12 \times 10^{6} \mathrm{~m} / \mathrm{sec}$ in a diration specified by the unit vutor $\bar{a}_{v}=-0.48 \overline{a_{x}}-0.6 \overline{a_{y}}+0.64 \overline{a_{z}}$. Find
is the magnitude of the vetorforce exerted on the moving particle by the magnetic field

$$
\begin{aligned}
& \bar{B}=2 \bar{a}_{x}-3 \bar{a}_{y}+5 \bar{a}_{z} ; \text { m } \\
& \bar{E}=2 \bar{a}_{x}-3
\end{aligned}
$$

ii. by the clutric field. $\bar{E}=2 \bar{a}_{x}-3 \overline{a_{y}}+5 \bar{a}_{z} \mathrm{kv} / \mathrm{m}$.
iii. Both \bar{B} and \bar{E} acting together.

Solvir

$$
\begin{aligned}
& \text { i. } \quad \bar{F}_{m}=\theta \bar{v} \times \bar{B} \\
& \bar{F}_{m}=Q v \bar{a}_{v} \times \bar{B} \\
& F_{m}=\left(20 \times 10^{-9}\right)\left(12 \times 10^{6}\right) \\
& \left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
-0.48 & -0.6 & 0.64 \\
2 & -3 & 5
\end{array}\right| \times 10^{-3} . \\
& F_{m}=240 \times 10^{-6}\left[-1.08 \bar{a}_{x}+3.68 \bar{a}_{y}+2.64 \bar{a}_{z}\right] \\
& \overline{F_{m}}=-259.2 \overline{a_{x}}+883.2 \bar{a}_{y}+633.6 \overline{a_{z}}, \mu \mathrm{~N}
\end{aligned}
$$

Magnitude of force $\overline{F r}_{m}$ is

$$
\left|\bar{F}_{m}\right|=1117.44 \mu \mathrm{~N}
$$

ii.

$$
\begin{aligned}
& \overline{F_{E}}=Q \bar{E} \\
& \overline{F_{E}}=20 \times 10^{-9} \times 10^{3}\left[2 \overline{a_{x}}-3 \overline{a_{y}}+5 \bar{a}_{z}\right] \mathrm{N} \\
& \overline{F_{E}}=40 \overline{a_{x}}-60 \overline{a_{y}}+100 \overline{a_{z}}, \mu \mathrm{~N} \\
& \left|\overline{E_{E}}\right|=\mid 23.2882 \mu \mathrm{~N}
\end{aligned}
$$

iii. $\quad \bar{F}_{\text {total }}=\overline{F_{E}}+\overline{F_{m}} ; N$.

$$
\begin{aligned}
& =40 \overline{a_{1}}-60 \bar{a}_{y}+100 \overline{a_{z}}-259.2 \overline{a_{x}}+883.2 \overline{a_{y}} \\
& \\
& +633.6 \bar{a}_{z} ; \mu N
\end{aligned} \quad \begin{aligned}
\int_{\text {total }}= & \left.-219.2 \overline{a_{x}}+823.2 \overline{a_{y}}+733.6, \overline{a_{z}}\right] \mu N
\end{aligned}
$$

Note: $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ ppapation of $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$ modulus.
problem 3.
A point charge of $\theta=-1.2 c$ has velocity $\bar{v}=5 \overline{a_{x}}+2 \overline{a_{y}}-3 \overline{a_{z}} \mathrm{~m} / \mathrm{sec}$. Find the magnitude of the force Exerted on the charge if,

$$
\therefore \bar{E}=-18 \overline{a_{x}}+5 \overline{a_{y}}-10 \overline{a_{z}} \text { vim. }
$$

ii. $\bar{B}=-4 \overline{a_{x}}+4 \bar{a} y+3 \overline{a_{z}}$ Tesla.
iv. both are print Simultanoudy.
[15. Fund July 201
[15. Tuna July $(20172(8 \mathrm{~m}) \mathrm{CBCS}]$
Sols:-

$$
\begin{aligned}
& \text { i) } \overline{F_{E}}=Q \bar{E} \\
& \bar{F}_{E}=-1.2\left[-18 \overline{a_{x}}+5 \overline{a_{y}}-10 a_{z}\right] \mathrm{N} \\
& \overline{F_{E}}=+21.6 \bar{a}_{x}-6 \overline{a_{y}}+12 \bar{a}_{z} \\
&\left|\bar{F}_{E}\right|=\sqrt{21.6^{2}+6^{2}+12^{2}}=25.4275 \text { Newton } \\
& \sqrt{\left|\overline{F_{E}}\right|}=25.6275 \text { Ncuton }
\end{aligned}
$$

ii.) $\bar{F}_{m}=Q \bar{v} \times \bar{B}$ newton

$$
\bar{F}_{m}=-1 \cdot 2\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{3}} \\
5 & 2 & -3 \\
-4 & 4 & 3
\end{array}\right| \text { Norton }
$$

$$
\begin{aligned}
& \bar{F}_{m}=-21.6 \overline{a_{x}}+3.6 \overline{a_{y}}-33.6 \overline{a_{z}} \text { Newton. } \\
& \left|\bar{F}_{m}\right|=\sqrt{21.6^{2}+3.6^{2}+33.6^{2}}: N . \\
& \left|\bar{F}_{m}\right|=40.1058 \text { Newton }
\end{aligned}
$$

iii. Both \bar{E} and \bar{B} acting simefteneoudy

$$
\begin{aligned}
& \bar{F}_{\text {total }}=\overline{F_{E}}+\overline{F_{m}} \\
& =21.6 \overline{a_{x}}-6 \overline{a_{y}}+12 \overline{a_{z}}-21.6 \overline{a_{x}}+3.6 \overline{a_{y}}-33.6 \overline{a_{z}} \\
& \overline{F_{\text {total }}}=-2.4 \overline{a_{y}}-21.6 \overline{a_{z}} \\
& =\left|\overline{F_{\text {total }}}\right|=\sqrt{2.4^{2}+21.6^{2}} \\
& \quad\left|\bar{F}_{\text {total }}\right|=21.739 \text { Ncuston }
\end{aligned}
$$

6. Force on a differential current element

Derive an equation for the force acting as a current clement.
Delve an expression for magnetic fore an :
010-Dec/Jan 2015
ii) Differential currentetement.

06-DEC2011//an 2012
(5marks)
06-fune/July 2014

\qquad 06-DEC 2013/Jan 2014
Dene an expression tor the force on a differential current corymb dement. (66 Marks) 10-June/July 2013
Discuss the force on a differential current element and also obtain the expression tor force. (08 Marks) 02 - June / July 2011
Obtain an expression for force on differential current cicnent placed in a magnetic hold.

a. Derive expression for force on a differential current element
a. Find the expression for force on differential current element moving in a steady magnetic field. Deduce the result to a straight conductor in a uniform magnetic field.

obtain the exprution for magnetic force on differential obtain the exprunion for mag
Current Element. (or)
Divine an expression for the force on a differential [urrint Carrying clement.
Find the cypromion for fore on differential Current Element moving in a steady magnitic field. Deduce the result to a straight Conductor in a uniform magnetic field.

TopicU-2 Force on a differential Eurrent Element

8 a. Find the expression for force on differential curent element noving in a steady magnetic Field. Deduce the result to a stranght conductor in a unifom magnetic field.

Solu.-

$$
\begin{aligned}
& \text { [15-Junf Jely } 2017 \text { (4m) CBCS }]_{\text {Dankan } V \text { Gowda wrech.fhol }}^{15 \text { - } 207(C l B C s) ~} \\
& \text { schere. }
\end{aligned}
$$

The Force on a charge particle
Assistant Professor, Dept. of E\&CE as the difterntial force eported on a differential slement of charge

$$
\begin{align*}
& \text { Element of charge Newton } \tag{1}\\
& d \bar{F}=d Q(\bar{v} \times \bar{B})
\end{align*}
$$

the current density irtermin of volume charge denity in given by

$$
\begin{equation*}
\bar{J}=\int_{v} \bar{v} A_{m}{ }^{2} \tag{2}
\end{equation*}
$$

and $d Q=S x d v$

$$
\begin{align*}
& \text { using } \tag{3}\\
d \bar{F} & =\rho_{u} d v \vec{v} \times \bar{B} \\
d \bar{F}= & \rho_{v}(3) \text { in } \varphi^{4}(1) \\
& d \bar{F}=(J \times \bar{B}) d v \tag{4}
\end{align*}
$$

保. E\&CE. SVCE Bangatore
the diftential Current slement intermin of

$$
\begin{equation*}
I \overline{d l}=\bar{K} d s=\bar{J} d v \tag{3}
\end{equation*}
$$

Lorent 2 force c^{u} can ... be applicd to Smitace
Eurrent density
i.e une cq4 5 inlequ (4)

$$
\begin{equation*}
d \bar{F}=\bar{K} \times \bar{B} d s \tag{6}
\end{equation*}
$$

We for a difterential cumnt filament-

$$
\begin{equation*}
d \bar{F}=I \overline{d l} \times \bar{B} \tag{7}
\end{equation*}
$$

the not force

$$
\begin{align*}
& \bar{F}=\int_{\left\langle v_{0} 1\right\rangle}^{\bar{J}} \times \bar{B} d v \tag{4}\\
& \bar{F}=\int_{\langle s\rangle} \bar{K} \times \bar{B} d s \tag{9}
\end{align*}
$$

and

$$
\bar{F}=\oint_{\langle l\rangle} I \overline{d l} \times \bar{B}=-I \oint_{\langle l\rangle} \bar{B} \times \overline{d l}
$$

If Consider the Conductor to be Straight-and in a

$$
\oint_{\langle l\rangle} \overline{d l}=L
$$

Dept. E\&CE., SVCE Bangalore

$$
\begin{aligned}
& \Rightarrow \bar{F}=I I \times \bar{B}=I \angle B \sin \theta a_{n} ; N_{13}^{\text {Page }} \\
& |\bar{F}|=F=\text { BIL } \operatorname{Sin} \theta \text { Nuwton }
\end{aligned}
$$

where ' θ ' in the angle blw the vecton representing the diration of the curnint flow and the diration of the magnetic fluxdensity.
given $I=10 \mathrm{~A}$.

$$
\bar{B}_{B_{1}}=0.0005 a_{2} T ; \overline{d l}=d l \bar{a}_{y}=4 \bar{a}
$$

Force (\bar{F}) expericnued by
a current Canying condator in presence of Magnaticfild
\bar{B} is given by

$$
\bar{F}=I \overline{d l} \times \bar{B} \quad \text { Nutorn }
$$

Since the condutor in placed along y dirct

$$
\begin{aligned}
\therefore \overline{d l} & =d l \overline{a_{y}} \\
\overline{d r} & =4 \overline{a_{y}}
\end{aligned}
$$

$$
\Rightarrow \bar{F}=10\left(4 \overline{a_{y}} \times 0.005 \overline{a_{x}}\right)
$$

$$
\bar{F}=[10 \times 4 \times 0.005]\left(\overline{a_{y}} \times \overline{a_{x}}\right) \cdot\left(-\overline{a_{z}}\right)
$$

$$
\} \Rightarrow \bar{F}=0.2\left(-\overline{a_{3}}\right)
$$

$$
\bar{F}=-0.2 \overline{a_{2}} \text { Nutton. }
$$

t. E\&CE., SVCE Bangalore

$$
|\vec{F}|=0.2 \text { Ncutorin }
$$

Dept. of ECE, B.M.S.I.T \&
problem 5
02 - June /July 2010
The the ld $B=-2 \hat{a}_{x}+3 a_{y}+4 \dot{a}_{7} \mathrm{~m}$ is present in free space. Find the vector free op d

Question.
The field $\bar{B}=-2 \bar{a}_{x}+3 \bar{a}_{y}+4 \bar{a}_{z} \dot{m} T$ sola in present in free space. Find the valor force exvotialg a Straight wire consing $12 A$ in the $A B$, A ration given $A(1,1,1) m$ and $B(2,1,1) m$ ($6 m$).
sole:

$$
A(1,1,1) m
$$

Forwexuting on straight wire

$$
\begin{aligned}
& I F=I \overline{d l} \times \bar{B}=\text { Newton } \\
& I=12 A . \quad I \overline{d l}=12 d x \overline{a_{n}}
\end{aligned}
$$

$$
\bar{I} \overline{d r}=12 \overline{a_{x}} \quad \text { Arm }
$$

$$
\begin{gathered}
I d e=12 a_{x} \\
\bar{F}=12 \overline{a_{x}} \times\left(-2 \overline{a_{x}}+3 \bar{a}_{y}+4 \bar{a}_{z}\right) \quad .\left(1 \times 10^{-3}\right): \mathrm{N}
\end{gathered}
$$

Dept. of ECE, B.M.S.I.T \& M

$$
\bar{F}=12 \bar{a}_{x} \times\left(-2 \overline{a_{x}}+3 \overline{a_{y}}+4 \overline{a_{z}}\right)\left(1 \times 10^{3}\right)
$$

$$
\begin{aligned}
& \overline{a_{x}} \times \overline{a_{x}}=0 . \\
& \overline{a_{x}} \times \overline{a_{y}}=-\overline{a_{z}} \\
& \overline{a_{x}} \times \overline{a_{z}}=-\overline{a_{y}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{F}=12 \times 1 \times 10^{-3}\left[0+3\left(-\bar{a}_{z}\right)+4\left(\overline{a_{y}}\right)\right] \\
& \bar{F}=12 \times 10^{-3}\left[-4 \overline{a_{y}}-3 \bar{a}_{z}\right] \\
& \bar{F}=-48 \bar{a}_{y}-36 \overline{a_{z}} ; m N
\end{aligned}
$$

problem 6.
A condertor 6 m long lies along z^{\prime} axin with a Currutt of $2 A$ in \bar{a}_{2} diration. Find the force exerted by condirtor if $\bar{B}=0.08 \overline{a_{n}}$ Tesla.

Solu:-

$$
\bar{F}=I \overline{d l} \times \bar{B} ; N
$$

Since the condutor in plosud along 'z birection

$$
\begin{aligned}
& \bar{F}=2 \times 6 \times 0.08\left[\overline{a_{z}} \times \overline{a_{x}}\right] \\
& \bar{F}=0.96 \overline{a_{y}} ; \text { Newton }
\end{aligned}
$$

problem 7.
A partutly conducting current Element on the Z-axis produces the magnetic field. $\bar{H}=\frac{-4}{y} \bar{a}_{x} A_{m}$ at $P(0, y, z)$ in free space. Find the force Exerted on a current Carrying Strip Lying bturen $y=1$ and $y=6 \mathrm{~m}$ in the y_{z} plane carrying a current density

$$
\bar{k}=-\pi \bar{a}_{z} \quad A l m
$$

Solus:

$$
\begin{aligned}
& d \bar{F}=\bar{K} \times \bar{B} d s \\
& d \vec{F}=-\pi \bar{a}_{z} \times\left(\frac{-4 \mu_{0}}{y} \bar{a}_{x}\right) d y d z \\
& d \bar{F}=4 \pi \mu_{0} \frac{d y}{y} \cdot d_{z} \quad \overline{a_{y}} \quad \quad \overline{a_{z}} \times \overline{a_{x}}=\overline{a_{y}} \\
& F=4 \pi \mu_{0} \int_{y=1}^{6} \frac{1}{y} d y \int_{z=0}^{1} d z \overline{a_{y}} \\
& \bar{F}=4 \pi \mu_{0} \ln (6) \bar{a}_{y} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

problem 8
Find the force per meter length between two long parallel wires separated by 10 cm in ait and carrying a current of 10 A in the same direction. Derive any formula used.
(os Marks)
10-至 2013
Find the fore e per meter length between two long parallel wires separated by 10 cm in air and carrying a current of 10 A in the same direction. (0S Marks) 06 - June July 2013
Find the force per meter length between two long parallel wires separated by 10 cmy in air and carrying a current of 10 A in the same direction.

Question.
Find the force permeter Length beturin two long parallel wires separated by 10 cm an air and Carrying a Current of 10 A in the Same direction (4 m).

Tolu:-

$$
\begin{aligned}
& \mu=\mu_{0}=u \pi \times 10^{7} \mathrm{H} / \mathrm{m} \\
& \frac{F}{l}=\frac{\mu_{0} \pi_{2} \pi_{2}}{2 \pi r} \quad \mu / \mathrm{m} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{F}{l}=\frac{4 \pi \times 10^{-7} \times 10 \times 10}{2 \pi(0.1)} \\
& F_{l}=0.2 \times 10^{-3} \mathrm{~N} / \mathrm{m} \\
& F_{l}=0.2 \mathrm{~m} / \mathrm{m}
\end{aligned}
$$

Since the Corrent is in the same diration, the natine of force is attrative.

problemg.
10- June /fuly 2015
A square toop carrying 2 ma current is phaced in the ffeld of an infonite clement carrying current of 15 A as strown is Figg Q5 (b). Find the forec exerted on the loop. (06 Marks)

Fig QS b 06 - May/June 2010

(0) Mtirky

Question
A square Loop Carrying $2 m$ A Curent is placed in the ficld of an infinite filament Carrying [urrent of $15 A$ as shown infig.

Solus-

The fill produced in the plane of the lop due to infinite Length Current Camping filament placed along. ' y ' orin in

$$
\begin{aligned}
& \bar{H}=\frac{I}{2 \pi x} \overline{a_{3}} \quad A \rho_{m} . \\
& \vec{B}=\mu_{0} \bar{H}={ }^{2} \pi \times 10^{7} \cdot \frac{15}{2 \pi x}=\frac{3 \times 10^{-6}}{x} \overline{a_{3}} \\
& \vec{B}=\frac{3}{x} \overline{a_{3}} \mu \omega \mathrm{~m} / \mathrm{m}^{2}
\end{aligned}
$$

the Force exerted on a square hoop is given by

$$
\begin{aligned}
& \bar{F}=-I \oint \bar{B} \times \overline{d l} \text {, Nucton } \\
& \bar{F}=-2 \times 10^{-3}\left(3 \times 10^{-6}\right)\left[\int_{x=1}^{3} \frac{\overline{a_{z}}}{x} \times d x \overline{a_{x}}\right. \\
& +\int_{y=0}^{2} \frac{\bar{a}_{z}}{3} x d y \bar{a}_{y}+\int_{x=3}^{1} \frac{\overline{a_{z}}}{x} x d x \bar{a}_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{F}=-6 \times 10^{-9}\left[\left.\ln x\right|_{1} ^{3} \bar{a}_{y}+\left.\frac{1}{3} y\right|_{0} ^{2}\left(-\bar{a}_{x}\right)+\left.\ln x\right|_{3} ^{1}\left(\bar{a}_{y}\right)\right. \\
& \left.+\left.y\right|_{2} ^{0}(-\overline{a x})\right] \text {. }
\end{aligned}
$$

Note: $\bar{a}_{z} \times \overline{a_{y}}=-\bar{a}_{x}$,

$$
\begin{aligned}
& \bar{F}=-6 \times 10^{-9}\left[\ln (3) \overline{a_{y}}-\frac{2}{3} \overline{a_{x}}+\ln \left(\frac{1}{3}\right) \overline{a_{y}}+2 \overline{a_{x}}\right. \\
& \bar{F}=-8 \overline{a_{x}} \times 10^{-9} \text { Newton } \\
& \bar{F}=-8 \overline{a_{x}} \text { YNuwton }
\end{aligned}
$$

$$
|\bar{F}|=8 \eta \mathrm{~N} .
$$

\therefore the net force on the trop isin the -ve x diration. i.e $-\overrightarrow{a_{x}}$.
: Force between differential current elements
Co Magnetic Force between two current elements
b. Force between two parallel conductors
4.3a. Magnetic force between two ${ }^{N}$ Cementent element: 06-DEc2010
 06-0EC2008/Jan 2009
Obtain the expression of magnetic force between two current elements and hence fr current loops.
(06Miska 00-DEC2009/Jan 2010
With sal notations, derive the equation for magnetic force between two differential curet elements.
(66 Marks) 10-DEC 2013/Jan 2014
Deduce tine expression for force between the differential current clements.
(10 Marks)
10. June /July 2012

(65 Man ks)

Derive the equation for magneto once between wo diterentiat current elements. (06 Marks)
Dec/Jan 2017 CBCS scheme
a. Derive an equation for the magnetic force between two differential current elements.
(06 Marks)
Questions.
Drive an equation for the force between the two differential Current Elements
(or)
Obtain the cxpronion for force beturen the differential Current Elements.
(or)
Derive the equation for magnetic force between two dithenterl Cuman semurio

15-Ded $\tan 2017$ (CBC) scheme.
Topicy.3a

Derive an equation for the magnetic force between two differential current elements
(06 Marks)
solve-

Dankan V Gouda mrech.,(Ph.D)
Assistant Professor, Dept of E\&CE Email:dankan.ece@svcengg.com +919844554940
fig. magnetic force blew two difterntial
Current elements.
Consider two current Loops with Currents I_{1} and Is. The Loops are divided into small vatorkine Segments $\overline{d l}$ and the current Element $I \sqrt{d t}$.
the Current clements are respectively y $d_{1} \bar{d}_{1}$ and

$$
I_{2} \overline{d l}_{2}
$$

According to Biot-Savert Law, both the Tument clements produces Magnetic fields.
The magnetic field produced by $I_{2} \overline{d l}_{2}$ at $I_{1} \overline{d l}_{1}$ is pt. E\&CE., SVCE Bangalore

$$
d \bar{B}_{2}=\frac{\mu_{0} I_{2} d \bar{l}_{2} \times{\overline{a_{R_{21}}}}_{4 \pi R_{21}^{2}}^{4}}{4}
$$

Hence., the force on Current Element $I_{1} \bar{d}_{1}$ doe to the field $\cdot d \overline{B_{2}}$

Dankan V Gowda mrech,(Ph.D)
Assistant Professor, Dept of E\&CE
Email:dankan.ece@svcengg.com
prodered by the current clement $I_{1} \widetilde{d l_{1}}$ is

$$
\begin{equation*}
d \bar{F}_{1}=I_{1} \overline{d l_{1}} \times d \bar{B}_{2} \tag{2}
\end{equation*}
$$

using $\dot{q}^{u}(1)$ in $q^{+}(2)$

$$
d \bar{F}_{1}=\frac{\mu_{0} I_{1} \overline{d l}_{1} \times\left[I_{2} \overline{d l}_{2} \times \bar{a}_{R_{21}}\right]}{\dot{\varphi} \pi R_{21}^{2}} \quad \text { Nustonin }
$$

The above equation in similar to Coulomb: Law and can be detemined cepprimentally. the total force F_{1} on current Loop 1 due to Cument Loop 2 is

$$
\begin{equation*}
\overline{F_{1}}=\frac{\mu_{0} \overline{r_{1} I_{2}}}{u \pi} \oint_{\left\langle\mu_{1}\right\rangle} \oint_{\left\langle l_{2}\right\rangle} \frac{\overline{d l_{1}} \times\left(\overline{l_{2}} \times \bar{a}_{R_{21}}\right)}{R_{2_{1}}^{2}} \tag{4}
\end{equation*}
$$

Nluwtons
\therefore lly the force $\overline{F_{2}}$ on loop 2 due to magnotic fild \bar{B}_{A} produced by Loop 1 is

$$
\overline{F_{2}}=\frac{\mu_{0} \Phi_{1} I_{2}}{4 \pi} \oint_{\left\langle l_{2}\right\rangle} \oint_{\left\langle\mu_{1}\right\rangle} \frac{\sqrt{l_{2}} \times\left(\overline{d l_{1}} \times \overline{a_{R_{12}}}\right)}{R_{R_{2}}^{2}+\cdots} \text { Nuwton'n }
$$

from cqu (4) and $q^{u}(3)$

$$
\overline{F_{2}}=-\bar{F}_{1}+\text { uwtorin }
$$

The above condition indicates that both forces F_{1} and F_{2} Oby Nwtorin third Law i.e for Eviry action there is equal and apposite reaction.

Topic 4-3b.
4.3b. Force beturen two parallel Conductors Consider a two Long parallel condurtoro of Length ' l ' m placed infreespace, having a distance of Separation ' γ ' m beturen them. anume that the Conductors carries Current in opposite diration as shown in fig.

The Fore F_{1} on a length - e' of condurfor-1 due to magnetic field produced by
condertor-2 is

$$
\overline{F_{1}}=I_{1} \bar{l} \times \overline{B_{2}} ; \text { Newton }
$$

$$
\overline{F_{1}}=I_{1} \ell B_{2} \sin \theta \overline{a_{n}} ; \text { Newton }
$$

$$
\left|\vec{F}_{1}\right|=\Phi_{1} l B_{2} \sin \theta ; N
$$

Since $\theta=90^{\circ}$ (fro mig)

$$
\left|\bar{F}_{1}\right|=I_{1} \ell B_{2}
$$

Note: from fig. $I_{1} \bar{l}$ and \bar{B}_{2} are at night angles to Each other $\therefore \theta=90^{\circ}$.

To find B_{2}, using Amparin Cirkital Law i.e $\oint \overline{H_{2}} \cdot \overline{d l}=I_{2} \quad$ Arperio

$$
\begin{aligned}
& H_{2} \cdot(2 \pi, \gamma)=I_{2} \rightarrow \left\lvert\, \begin{array}{l}
\oint H_{2} \overline{a_{\phi}} \cdot \gamma d \varphi \overline{a_{\phi}}
\end{array}\right. \\
& =H_{2} \int_{\phi=0}^{2 \pi} r d \phi \cdot a_{4} \bar{a}_{y} \\
& \Rightarrow H_{2}(2 \pi r) . \\
& H_{2}=\frac{I_{2}}{2 \pi r} \quad \mathrm{~A} / \mathrm{m} . \\
& \therefore \quad B_{2}=\mu_{0} H_{2}=\frac{\mu_{0} I_{2}}{2 \pi \gamma} \mathrm{wb} / \mathrm{m}^{2}
\end{aligned}
$$

\therefore the magnitude of force F_{1} is

$$
\left|\bar{F}_{1}\right|=\frac{\mu_{0} \Psi_{1} \Phi_{2} l}{2 \pi \gamma} \quad \text { Newtoris }
$$

Dy the magnitude of force auting on a lingth ' l ' of conductor -2 due to the magnaticficld produced by condutor -1 is

$$
\left|\bar{F}_{2}\right|=\frac{\mu_{0} I_{1} I_{2} l}{2 \pi r}=I_{2} l B_{1} \text { Mewton. }
$$

$$
\text { i.c } \quad B_{1}=\frac{\mu_{0} \Sigma_{1}}{2 \pi r} \quad \omega b / m^{2}
$$

obs. From the expronion $\therefore I_{1} \bar{l} \times \bar{B}_{2}$ and $I_{2} \bar{l} \times \bar{B}_{1}$, the force is repubive if the currents in the conductor: are in opposite directions and attractive if they are in same diration.
this is My opposite to the cone of elutrostaticfild ie likechargen repel and unlike charges attract Each other.
problem 10.
A current element $I_{1} \overline{d l_{1}}=-3 \bar{a}_{y}$ Am at $P_{1}(5,2,1)$ and $I_{2} \overline{d l_{2}}=-4 \bar{a}_{3}$ Am at $P_{2}(1,8,5)$. Find the differential force on $\overline{d l_{2}}$.

Solve:-

$$
\begin{aligned}
& d \overline{F_{2}}=I_{2} \overline{d l_{2}} \times d \overline{B_{1}} \\
& d \bar{F}_{2}=I_{2} \overline{l l}_{2} \times\left\{\frac{\mu_{0} d_{1} \overline{d l_{1}} \times \overline{a_{\beta_{12}}}}{4 \pi R_{R_{2}}^{2}}\right\}^{2} \\
& d \bar{F}_{2}=\frac{\mu_{0}}{4 \pi R_{12}^{2}} I_{2} \bar{d}_{2} \times\left(山_{1} d_{1} \times \bar{a}_{R_{12}}\right) \\
& P_{1}(5,2,1) \\
& R_{12}=-4 \overline{a_{x}}+6 \overline{a_{y}}+4 \overline{a_{z}} \text {. } \\
& d \overline{F_{2}}=\frac{\mu_{0}}{4 \pi R_{12}^{3}} \quad I_{2} \overline{d l_{2}} \times\left(\bar{q}_{1} \overline{d l_{1}} \times \overline{R_{12}}\right) \\
& d \bar{F}_{2}=\frac{4 \pi \times 10^{-7}}{4 \pi} \frac{\left(-4 \bar{a}_{z}\right) \times\left[\left(-3 \bar{a}_{y}\right) \times\left(-4 \bar{a}_{x}+6 \bar{a}_{y}+4 \bar{a}_{z}\right]\right.}{[16+36+16]^{3 / 2}} \\
& \sum_{a_{x}}^{a a_{z}} a_{y} \\
& P_{2}(1,8,5) \\
& \overline{a_{y}} \times \overline{a_{x}}=\overline{a_{z}} ; \quad \bar{a}_{y} \times \overline{a_{y}}=0 ; \quad \overline{a_{y}} \times \overline{a_{z}}=+\overline{a_{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =10^{-7} \frac{\left(-4 \overline{a_{z}}\right) \times\left[12\left(-\overline{a_{z}}\right)-12\left(+\overline{a_{x}}\right)\right]}{(68)^{1.5}} \\
& =\frac{10^{-7}\left[+48 \overline{a_{y}}\right]}{(68)^{1.5}} \quad \overline{a_{3}} \times \overline{a_{n}}=+\overline{a_{y}} \times \overline{a_{z}}=0
\end{aligned}
$$

$$
d \overline{F_{2}}=8.56008 \text { y } \overline{a_{y}} \text { Newton. }
$$

(6)

$$
d \bar{F}_{2}=8.56008 \overline{a_{y}}
$$

Problem 11

$10 d_{2}-10^{\circ}[a x-2 a y+3 a z](A m)$ is located at $P_{2}(-2.0 .0)$. Both are in free space :
i) Find force exerted on $I_{2} d l_{2}$ by $\left.I_{1} d\right|_{\text {s }}$.
ii) Find fore exerted on Id by 1 dis.

Question.
A Current Element $\bar{T}_{1} \overline{d_{1}}=10^{-4} \bar{a}_{3}$ Ad n in Located at $P_{1}(2,0,0)$ another current clindent
$I_{2} \overline{d r}_{2}=10^{-6}\left[\overline{a_{x}}-2 \bar{a}_{y}+3 \bar{a}_{z}\right]$ An in Located at $P_{2}(-2,0,0)$ and both are in free space.
$i)$ Find the Force Exorted on $\mathbb{I}_{2} \overline{d_{2}}$ by

$$
\Psi_{1} \overline{d y_{2}}
$$

ii) Find the Force exerted on $\mathbb{I}_{1} \overline{d_{1}}$ by $\$_{2} \overline{d_{2}}$.

Solvi-

$$
P_{1}(2,0,0) \quad P_{2}(-2,0,0)
$$

i i. Force Exosted on $I_{2} \overline{d l_{2}}$ by $\Psi_{1} \overline{d l_{1}}$

$$
\begin{aligned}
& d \bar{F}_{2}=I_{2}{\overline{d l_{2}}} \times d \bar{B}_{1} \\
& =I_{2} \overline{d_{2}} \times\left\{\frac{\left.\mu_{0} \Phi_{1} \overline{d l_{1}} \times{\overline{a_{R_{12}}}}_{4 \pi R_{12}^{2}}\right\}}{\}}\right. \\
& d \vec{F}_{2}=\frac{\mu_{0}}{6 \pi R_{12}^{3}}\left[I_{2} \overline{d l}_{2} \times\left(\mathbb{I}_{1} \sqrt{l_{1}} \times \vec{R}_{12}\right)\right] \\
& \vec{R}_{12}=(-2-2) \overline{a_{x}}=-4 \overline{a_{x}} . \\
& \left|\overline{R_{12}}\right|=f_{2}=4 \mathrm{~m} . \\
& d \overline{F_{2}}=\frac{4 \pi \times 10^{-7}}{4 \pi(4)^{3}}\left[10^{-6}\left(\overline{a_{x}}-2 \overline{a_{y}}+3 \overline{a_{2}}\right) \times\left(10^{-4} \overline{a_{2}} x-4 \overline{a_{x}}\right)\right] \\
& d \bar{F}_{2}=\frac{10^{-4}}{64}\left[10^{-6} \times 10^{-4} \times-4\left(\overline{a_{x}}-2 \overline{a_{y}}+3 \overline{a_{z}}\right) \times\left(\overline{a_{z}} \times \overline{a_{n}}\right)\right] \\
& =\frac{-4 \times 10^{-17}}{b 4}\left[\left(\overline{a_{x}}-2 \bar{a}_{y}+3 \overline{a_{z}}\right) \times \bar{a}_{y}\right] \\
& \xrightarrow{a_{a x}} \underset{a_{y}}{a_{y}} \\
& \overline{a_{z}} \times \overline{a_{x}}=+\overline{a_{y}} \\
& \overline{a_{x}} \times \overline{a_{y}}=\overline{a_{z}} \\
& a_{y} \times \overline{a_{y}}=0 \\
& a_{z} \times a_{y}=-\overline{a_{x}}
\end{aligned}
$$

$$
\begin{aligned}
& d \bar{F}_{2}=\frac{-4 \times 10^{-17}}{64}\left[\overline{a_{3}}-2(0)+3\left(-\overline{a_{x}}\right)\right] \\
& d \overline{F_{2}}=\frac{-10^{-17}}{16}\left[\overline{a_{3}}-3 \overline{a_{x}}\right] \\
& d \overline{F_{2}}=\left[1.875 \overline{a_{n}}-0.625 \overline{a_{3}}\right] \times 10^{-18}
\end{aligned}
$$

ii. Force Exutted on $a_{1} \overline{d e}_{1}$ by $\bar{T}_{2} \overline{d l_{2}}$.

$$
\begin{aligned}
& d \bar{F}_{1}=I_{1} \overline{d l_{1}} \times d{\overline{B_{2}}} \\
&=I_{1} \overline{d l_{1}} \times\left\{\frac{\mu_{0} \overline{I_{2}} \overline{d l_{2}} \times \overline{a_{R_{21}}}}{4 \pi R_{21}^{2}}\right\} \\
& d \bar{F}_{1}=\frac{\mu_{0}}{4 \pi R_{21}^{3}}\left\{\bar{I}_{1} \overline{d l_{1}} \times\left(I_{2} \overline{d_{2}} \times \overline{R_{21}}\right)\right\} \\
& d \overline{R_{21}}=4 \overline{a_{n}} ; \quad\left|\overline{R_{21}}\right|=R_{21}=4 \mathrm{~m} \\
& d \bar{F}_{1}=\frac{4 \pi \times 10^{-7}}{4 \pi \times 4^{3}}\left[10^{-4} \overline{a_{2}} \times\left[10^{-6}\left(\overline{a_{n}}-2 \overline{a_{y}}+3 \overline{a_{2}}\right) \times 4 \overline{a_{x}}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& d \bar{F}_{1}=\frac{4 t^{1} \times 10^{-7} \times 10^{-4} \times 10^{-6} \times 14}{4 \pi \times 64}\left[\overline{16} \times\left[\left(\overline{a_{n}}-2 \overline{a_{y}}+3 \overline{a_{z}}\right) \times \overline{a_{x}}\right]\right] \\
& \text { asy } \\
& \overline{a_{x}} \times \overline{a_{n}}=0 \\
& \overline{a_{y}} \times \overline{a_{x}}=-\overline{a_{z}} \\
& \overline{a_{3}} \times \overline{a_{x}}=t \overline{a_{y}} \\
& \frac{\alpha}{a_{y}} \times \overline{a_{z}}=0 \quad \frac{a n}{a_{z}} \times \overline{a_{y}} \\
& \overline{a_{3}} x \overline{a_{y}}=-\overline{a_{n}} \\
& d \overline{F_{1}}=\frac{10^{-17}}{16}\left[\overline{a_{z}} \times\left(+2 \overline{a_{z}}+3 \overline{a_{y}}\right]\right. \\
& d \bar{F}_{1}=\frac{10^{-17}}{16}\left[2(0)+3\left(-\bar{a}_{x}\right)\right] \\
& d \overline{F_{1}}=-0.1875 \times 10^{-17} \overline{a_{x}} \\
& d \overline{F_{1}}=-1.875 \times 10^{-18} \overline{a_{x}} \text { Newton. }
\end{aligned}
$$

problem 12

(id Marks

Dec/Jan 2016
A current element $I_{1} \Delta L_{i}=10^{5}$ az Am is located at $P_{1}(1.0 .0)$ while second element $I_{2} \Delta L_{2}=10^{-5}(0.6-\overrightarrow{a x} 2 \overrightarrow{a y}+3 \overrightarrow{a z}) A m$ is at $P_{2}(-1,0.0)$ both in free space find the vector force exerted on $I_{2} \Delta L_{2}$ by $I_{1} \Delta L_{\text {. }}$

Question:
A current element $\bar{\Psi}_{1} \bar{\Delta} L_{1}=10^{-5} \bar{a}_{2} A_{m}$ is Located at $P_{1}(1,0,0)$ while send element $I_{2} \overline{\triangle l_{2}}=$ $10^{-5}\left(0.6 \quad \bar{a}_{x}-2 \bar{a}_{y}+\frac{3}{a_{z}}\right) A \cdot m$ is at $P_{2}(-1,0,0)$ both in tree spacefind the viator fore Exerted on $I_{2} \Delta t_{2}$ by $I_{1} \overline{\Delta l_{1}}$.
Sola:- The force exerted on $I_{2} \overline{d l}_{2}$ due to

$$
\begin{gathered}
I_{1} \overline{d l_{1}} i s \\
d \overline{F_{2}}=I_{2} \overline{d l_{2}} \times d \overline{B_{1}} \\
d \overline{B_{1}}=\mu_{0} d \overline{F_{1}} \\
d \overline{H_{1}}=\frac{I_{1} \overline{d l_{1}} \times \overline{a_{R_{12}}}}{4 \pi R_{12}^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& d \bar{F}_{2}=I_{2} \overline{d l_{2}} \times\left\{\frac{\mu_{0} I_{1} \overline{d l_{1}} \times \overline{a_{f_{1}}}}{4 \pi R_{12}^{2}}\right\} \\
& \overline{R_{12}}=(-1-1) \overline{a_{x}}=-2 \overline{a_{x}} \\
& \left|\bar{f}_{12}\right|=2 \\
& d \bar{F}_{2}=\frac{\mu_{0}}{4 \pi R_{12}^{3}}\left\{I_{2} \overline{d l}_{2} \times\left(\bar{L}_{1} \overline{d l_{1}} \times \bar{R}_{12}\right)\right\} \\
& d \overline{F_{2}}=\frac{\mu_{0}}{4 \pi(2)^{3}}\left\{10^{-5}\left(0.6 \overline{a_{x}}-2 \overline{a_{y}}+3 \overline{a_{z}}\right) \times\left(10^{-5} \overline{a_{z}} x-2 \overline{a_{x}}\right)\right\} \\
& d \vec{F}_{2}=\frac{u \pi 1 \times 10^{-7} \times 10^{-5} \times 10^{-5} \times-2 \dot{1}}{4 \pi \times \$ 4}\left\{\left(0.6 \bar{a}_{x}-2 \bar{a}_{y}+3 \bar{a}_{2}\right) \times\left(\bar{a}_{2} \times \bar{a}_{a}\right)\right\} \\
& {\underset{a}{a_{x}}}_{\overline{a_{3}}}^{a_{y}} \\
& \overline{a_{3}} \times \overline{a_{x}}=\overline{a_{y}} \\
& \overline{a_{x}} \times \overline{a_{y}}=+\overline{a_{z}} \\
& \bar{a}_{y} \times \overline{a_{y}}=0 \\
& \overline{a_{z}} \times \overline{a_{y}}=-\overline{a_{x}} \\
& d \overline{F_{2}}=-\frac{10^{-17}}{4}\left\{0.6 \overline{a_{2}}-2(0)+3\left(-\overline{a_{x}}\right)\right\} \\
& d \bar{F}_{2}=-\frac{10^{-17}}{4}\left[-3 \overline{a_{x}}+0.6 \bar{a}_{z}\right] \text { Newton } \\
& d \bar{F}_{2}=\left[7.5 \overline{a_{x}}-1.5 \overline{a_{z}}\right] \times 10^{-18} \text { Newton. }
\end{aligned}
$$

Topic 4.4E: capt of Magnetization and
permeability
Definitions-
Magnetic pole strength:-
Magnetic pole strength of a pole is said to be unity if it experiences a fore of 1 Nutton when placed at a distance of 1 meter from a Similar one, in or (or) Vacuum.
Magnetic Moment (m):-
Magnetic moment (m) of a magnet is the product of magnetic pole strength and the distance beturen the two poles.
Mogntization (M). 06-Juef July 2009 (2M)
The magnetic moment / unit volume of a magnet is called magnetization.

$$
M=\frac{m}{v}
$$

where v-in the volume of the magnetic material.
Note:- Magnetization $(M)=$ no.ofatoms \times dipolemanent.

$$
M=n m
$$

Magnetic Susceptibility (x) i- $(2 m) \quad 06$-Junfiuly 2009.
The ratio of magnetization (M) to the strength of the field (H) is called the magnetic Susceptibility
(X) of the material.

$$
x=\frac{M}{H}
$$

Magnetic Field: Magnetic field is the region where a magnetic pole experiences a force.
Magnetic field Intensity (H)
Field intensity (H) at any point in a magnetic field in equal to, and diruted along the force expentencus by a unit north polit that point.
permeability μ) (2m) 06-Junel July 2009.
The permeability of vacuum (or) free space in station as the Standard reference with respect to which permeabilities of other materials are caproned.
The permeability of vacuum or freespace is denoted by μ_{0}. and $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.

$$
\mu=\mu_{0} \mu_{r} \quad+l_{m} .
$$

μ_{0}-absolute permeability; $\mu_{0}=u \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
μ_{r}-relative purmcability. $\mu_{r}=1$ for air medium.
Relation beturen \bar{B} and \bar{H} :-

$$
\begin{gathered}
\bar{B}=\mu_{H} \mathrm{\omega b} / \mathrm{m}^{2} \\
\bar{B}=\mu_{0} \mu_{r} \bar{H} \quad \omega \mathrm{~b} / \mathrm{m}^{2} .
\end{gathered}
$$

for air (ri) vacuum $\mu_{r}=1$.

$$
\therefore \bar{B}=\mu_{0} \bar{H}-1 / \mathrm{m}^{2} .
$$

Relation beturen B, M and $H G$
The magnetic the density due to the fire ' H ' is The magnetic by $\quad B=\mu_{0} \mathrm{wb} / \mathrm{m}^{2}$.
given by density due to the The magaticflux density due to the ceitra flux in the medium in given by the product $\mu_{0} M$, where M is the magnetization of the specitiven.

$$
\begin{equation*}
\text { ie } \quad B=\mu_{0} m \quad \omega b / m^{2} \tag{2}
\end{equation*}
$$

Thus the roultant thex density B in the material medium is given by

$$
B=\mu_{0} H+\mu_{0} M
$$

if μ_{r} is the relative permcabiling of the nedium, then $B=\mu_{0} \mu_{r} H$
from $C^{4}(3)$ and (4)

$$
\begin{align*}
& \mu_{0}{ }^{(3)} \text { and } \mu_{r} H=\mu_{0}(H+m) \\
& M=\left(\mu_{r}-1\right) H
\end{align*}
$$

the magnitization M intermin of Supteptibility (x)

Lising q^{4} (6) in $q^{4}(5)$

$$
\begin{aligned}
& x \not H=\left(\mu_{r}-1\right) \not H \\
& \Rightarrow x=\mu_{r}-1 \text { (a) } \mu_{r}=1+x=\frac{\mu_{1}}{\mu_{0}} \\
& \Rightarrow \mu_{r}=1+x=\frac{\mu}{\mu_{0}} \\
& \hline \text { Dept of E\&CE, SVCE }
\end{aligned}
$$

problem 13.
Find the magnetic field intensity inside a magnetic material, for the following conditions
a. $\mathrm{M}=100 \mathrm{~A} / \mathrm{m}$ and $\mu=1.5 \times 10^{-5} \mathrm{H} / \mathrm{m}$
b. $\mathrm{B}=200 \mu \mathrm{~T}, \chi \mathrm{~m}$, (magnetic susceptibility) $=15$.

Question.
Find the magnetic field intensity inside a magnoticmaterial for the following conditions.
a. $M=100 \mathrm{Alm}$ and $\mu=1.5 \times 10^{-5} \mathrm{H} / \mathrm{m}$.
b. $B=200 \mu \mathrm{~T}, x_{m}($ agnatic susceptibility $)=15$.
c. there are 8×10^{28} atoms $/ \mathrm{m}^{3}$, Each atom has a dipole moment of $2.5 \times 10^{-27} \mathrm{Ar} \mathrm{m}^{2}$ and $\mu_{r}=30$.
stu:-
a. Given $M=100 \mathrm{Al}$.

$$
\begin{aligned}
& \mu=1.5 \times 10^{-15} H / m \\
& \mu=\mu_{0} \mu_{r} \mathrm{H} / \mathrm{m} \\
& \mu_{r}=\frac{\mu_{1}}{\mu_{0}}=\frac{1.5 \times 10^{-5}}{\mu_{\pi \times 10^{-7}}}=11.94 \\
& \mu_{r}=11.94 \\
& \mu_{r}=1+x_{m} \Rightarrow \mu_{m}=\mu_{r}-1 \\
& x_{m}=11.94-1=10.94 \\
& \mu_{m}=10.94
\end{aligned}
$$

$$
\begin{gathered}
M=x_{m} H \\
H=\frac{M}{x_{m}}=\frac{100}{10.94} \\
H=9.14 \mathrm{Alm}
\end{gathered}
$$

b) Given $B=200 \mu \mathrm{~T}$ and $X_{m}=15$

$$
\mu_{r}=1+x_{m}=1+15=16 ; \quad ; B=\mu_{0} \mu_{r} H \mathrm{Nb} / \mathrm{m}^{2}
$$

$$
\begin{aligned}
& H=\frac{B}{\mu_{0} \mu_{r}}=\frac{200 \times 10^{-6} 9}{4 \pi \times 10^{-7} \times 16} \\
& H=9.95 \mathrm{Alm}
\end{aligned}
$$

c) Given no of ditom $N=8 \times 10^{28}$ atoms $/ \mathrm{m}^{3}$

$$
\begin{aligned}
& m=2.5 \times 10^{-27} \mathrm{~A} \mathrm{~m}^{2} \text { and } \mu_{r}=30 \\
& M=N \cdot m=8 \times 10^{28} \times 2.5 \times 10^{27} \\
& M=200 \mathrm{Alm} \\
& M=x_{m} H=\left(\mu_{r}-1\right) \mathrm{H} \\
& 200=(30-1) \mathrm{H} \\
& \Rightarrow H=\frac{200}{29}=6.89 \mathrm{Alm}
\end{aligned}
$$

problemily

Find the magnetization in a magnetic material where:
i) $\mu=1.8 \times 10^{-5}(\mathrm{H} / \mathrm{m})$ and $\mathrm{H}=120(\mathrm{~A} / \mathrm{m})$
ii) $\mu_{+}=22$, there are 8.3×10^{28} atoms /m and each sim has a dipole monnet 6
$4.5 \times 10^{27}\left(\mathrm{~A}^{2} \mathrm{~m}^{2}\right)$ and
iii) $B-300(\mu \mathrm{~T})$ and $X_{\mathrm{LII}}=15$.
foG Mark:
02 - June fluty 2010

DectJan 2017 CBCS scheme
b. Find the magnetization in a material where : i) $\mu=1.8 \times 10^{-5} \mathrm{Hm}$ and $\mathrm{H}=120 \mathrm{~A} / \mathrm{m}$

Question
Find the magnetization in a material where:
i) $\mu=1.8 \times 10^{-5} \mathrm{H} / \mathrm{m}$ and $H=120 \mathrm{Alm}$.
ii) $\mu_{r}=22$ the are 8.3×10^{28} atoms $/ \mathrm{m}^{3}$ and Each Atom ba adipole moment of

$$
4.5 \times 10^{-27} \mathrm{~A} / \mathrm{m}^{2} \text { and }
$$

iii. $B=300 \mu \mathrm{~T}$ and $X_{m}=15$.

Sola.
i) Given $\mu=1.8 \times 10^{-5} \mathrm{H} / \mathrm{m}$. and $\mathrm{H}=120 \mathrm{Alm}$.

$$
\begin{aligned}
& M=\left(\mu_{r}-1\right) H \\
& M=\left(\frac{\mu}{\mu_{0}}-1\right) H \\
& M=\left(\frac{1.8 \times 10^{-5}}{4 \pi \times 10^{-7}}-1\right)(120)=1598.87
\end{aligned}
$$

$$
M \approx 1599 \mathrm{Alm}
$$

ii. $\quad \mu_{r}=22, \quad n=8.3 \times 10^{28}$ atoms/ $/ m^{3}$.

$$
\begin{aligned}
& m=4.5 \times 10^{-27} \mathrm{Alm}^{2} \\
& M=\mathrm{nm} \\
& M=\left(8.3 \times 10^{28}\right)\left(4.5 \times 10^{-27}\right) \\
& M=373.5 \mathrm{Alm}
\end{aligned}
$$

iie. $\quad B=300 \times 10^{-6}$ Toslape and $x_{m}=15$.

$$
\begin{gathered}
B=\mu_{0} \mu_{r} H C B=\frac{M}{\mu_{m}} \\
\mu_{m}=\frac{M}{H}=\frac{\mu_{0} \mu_{r} M}{\mu_{m}} \\
M=\frac{B \mu_{m}}{\mu_{0} \mu_{r}} \\
M=\frac{B x_{m}}{\mu_{0}\left(x_{m}+1\right)}=\frac{\left(300 \times 10^{6}\right)(15)}{4 \pi \times 10^{7}(15+1)} \\
M=\frac{\mu_{m} 23 \cdot 811}{\mu_{m}}=A \mu_{m} \\
M \simeq 2241)
\end{gathered}
$$

problem 15.
+

Quention:
A forrite material is operating in hincan mode with $B=0.05 \mathrm{~T}$. anum $\mu_{r}=50$. Calculate magnitic
Suquatibility $\left(x_{m}\right)$, magnctization (M) and magntic fild intensity. $(\mathrm{H})^{2}=10 \mathrm{~J} / \mathrm{J}_{2} 201 \mathrm{y}^{2}$
$\mathrm{ym}^{2}-10 \mathrm{Jan}$
Soln:-
i. Susceptibility $\left(x_{m}\right)$

$$
\begin{aligned}
& x_{m}=\mu_{r}-1 \\
& x_{m}=50-1 \\
& \frac{x_{m}}{}=49
\end{aligned}
$$

éi. Mcgnatic ficld Trtensity (H)

$$
\begin{gathered}
B=\mu H=\mu_{0} \mu_{r} H \\
H=\frac{B}{\mu_{0} \mu_{r}}=\frac{0.05}{4 \pi \times 10^{-7} \times 50} \\
H=796 \quad A m_{m}
\end{gathered}
$$

iii. Magnetization
problemits
mit the magmatic fold intercity within a magnetic material for the following ease wily 2012 H. $4 \%+10^{7} \mathrm{H} / \mathrm{m}$.
i) Magnetization $M=180 \mathrm{~N} / \mathrm{m}$, permeability $\mu_{5}=7.8^{\circ} * 10^{-5} \mathrm{H} / \mathrm{m}$
ii) Magnetic flux density $\mid \mathrm{B}=450 * 10^{4}$. Testa and $\left(\mathrm{Chim} \mathrm{X}_{\mathrm{m}}=15\right.$.
(16 Marks)
Question
Find the magnetic field intensity within a magnetic material for the following casio with $\mu_{0}=4 \pi \times 10^{-7}+l_{m}$.
i. Magnetization $m=180 \mathrm{Alm}, \mu=10 \times 10^{-5} \mathrm{H} / \mathrm{m}$
ii. Magnetic fluxdensity: $B=450 \times 10^{-8}$ Tesla and

$$
x_{m}=15 .
$$

Soln: i Given $M=180 \mathrm{Alm}$

$$
\begin{gathered}
\mu_{r}=\frac{1.8 \times 10^{-5} \mathrm{H} / \mathrm{m}}{\mu_{0}}=\frac{1.8 \times 10^{-5}}{4 \pi \times 10^{-7}}=14.323 \\
\mu_{r}=14.3239 \\
\mu_{m}=\mu_{r}-1=14.3239-1 \\
\mu_{m}=13.3239
\end{gathered}
$$

$$
\begin{aligned}
& M=x_{m} H \\
& \Rightarrow H=\frac{m}{x_{m}}=\frac{180}{13.3239}=13.509 \mathrm{Am} \\
& H=13.509 \mathrm{Alm}
\end{aligned}
$$

ie. Given $B=450 \times 10^{-6}$ Tesla and

$$
\begin{aligned}
& \mu_{m}=15 \\
& \mu_{r}=1+n_{m}=15+1=16 \\
& H=\frac{B}{\mu_{0} \mu_{r}} \\
& H=\frac{450 \times 10^{-6}}{\left(4 \pi \times 10^{-7}\right)(16)} \\
& H=22.381
\end{aligned}
$$

find: i) ult : inf 4 ; in \vec{H}; (v) $\overrightarrow{\mathrm{M}}$; v) f and vi) J_{b}.
Question.
if $\bar{B}=0.05 x \bar{a}_{y}$ Tesla in a material for which

$$
x_{m}=2.5 \text { find }
$$

a) μ_{r}
b) μ
c) \bar{H}

$$
d>\bar{m}
$$

$$
\text { and } f\rangle \overline{J_{d}}
$$

Sols:- Given $x_{m}=2.5$ and $2 B=0.05 x \mathrm{Nb/m}^{2}$
a)

$$
\begin{aligned}
& \mu_{r}=1+\mu_{m} \\
& \mu_{r}=1+2.5=3.5
\end{aligned}
$$

b) $\mu=\mu_{0} \mu_{r}=4 \pi \times 10^{-7} \times 3.5$

$$
\mu=4.398 \times 10^{-6} \mathrm{H} / \mathrm{m}
$$

$$
\text { c) } \bar{B}=\mu \bar{H}=\mu_{0} \mu_{r} \bar{H}
$$

$$
\begin{aligned}
& \bar{H}=\frac{\frac{1}{B}}{\mu_{0} \mu_{r}}=\frac{0.05 x \overline{a_{y}}}{4.398 \times 10^{-6}} \\
& \bar{H}=11.368 \times 10^{3} x \overline{a_{y}} \mathrm{Alm}
\end{aligned}
$$

d) Magnetization

$$
\begin{gathered}
\bar{M}=x_{m} \bar{H} \\
\bar{M}=2.5\left[11.368 \times 10^{3} \mathrm{n}\right] \mathrm{a}_{y} \\
\left.\bar{M}=28.42 \times 10^{3} x \bar{a}_{y}\right] \mathrm{Al}
\end{gathered}
$$

e) the total Cument densify

$$
\begin{aligned}
& =\frac{\partial}{\partial x}\left[11.36 \times 10^{3} x\right] \bar{a}_{3} \\
& \bar{J}=11.36 \times 10^{3} \overline{a_{3}} \mathrm{Al} \mathrm{~m}^{2}
\end{aligned}
$$

f). He pound curent density

$$
\vec{J}_{b}=28.42 \times 10^{3} \bar{a}_{2} \quad \mathrm{Alm}^{2}
$$

problem 18.
Find the Magnetic field intensity within a magnetic material where
a. $M=150 \mathrm{Alm}$ and $\mu=1.5 \times 10^{-5} \mathrm{H} / \mathrm{m}$.
b. $B=300 \mu \mathrm{~T}$ and $x_{m}=15$.
c. there are 8.2×10^{28} atoms $/ \mathrm{m}^{3}$ Each atom has a dipole moment of $5 \times 10^{-27} \mathrm{~A}-\mathrm{m}^{2}$ and $\mu_{r}=30$.
Sols: $a_{0} \mu_{r}=\frac{\mu}{\mu_{0}}=\frac{1.5 \times 10^{-5}}{4 \pi \times 10^{-7}}=11.936$

$$
\begin{aligned}
& \mu r=11.936 \\
& M=x_{m} H=(\mu r-1) \mathrm{H} \\
& H=\frac{M}{(\mu-1)}=\frac{150}{(11.936-1)}=13.7154 \mathrm{Alm} \\
& H=13.7154 \mathrm{Alm}
\end{aligned}
$$

b. the magnetic Flux density is given by

$$
\begin{aligned}
& B=\mu_{H}=\mu_{0} \mu_{r} H \quad \omega b / m^{2} \\
& \mu_{r}=1+\mu_{m} \\
& B=\mu_{0}\left(1+\mu_{m}\right) H \quad \omega b / m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& H=\frac{B}{\mu_{0}\left(1+x_{m}\right)}=\frac{300 \times 10^{-6}}{4 \pi \times 10^{-7}(1+15)} \\
& H=14.92 \mathrm{Am}
\end{aligned}
$$

c)

$$
\begin{aligned}
& n=8.2 \times 10^{28} \text { atomp } / \mathrm{m}^{3} \\
& m=5 \times 10^{-27} \mathrm{~A}-\mathrm{m}^{2} \\
& M=n-m=\left(8.2 \times 10^{28}\right)\left(5 \times 10^{-27}\right) \\
& M=410 \mathrm{Alm} \\
& H=\frac{m}{\left(\mu_{r}-1\right)}=\frac{410}{(30-1)}=140137 \mathrm{Alm} \\
& M=14.137 \mathrm{Alm}
\end{aligned}
$$

Through a suitable experiment on amagnetic material, the magnetic Pluxdensity \bar{B} is found to be $1.2 T$ when $H=300 \mathrm{Alm}$ when H is increased to 1500 Alm , the B field increased to 1.5 T . what is the percentage change in the magnetization vector.
Soln:-

$$
B=\mu H \quad \omega b / m^{2}
$$

$$
B=\mu_{0} \mu_{r}+\omega b / m^{2}
$$

$$
\begin{aligned}
& B=\mu_{0} \mu_{r} \\
& \mu_{r_{1}} \\
& \mu_{0} H_{1} \\
& B_{1} \\
& 4 \pi \times 10^{-7}(300)
\end{aligned}=3183.1
$$

$$
\mu_{r_{2}}=\frac{B_{2}}{\mu_{0} H_{2}}=\frac{1.5}{4 \pi \times 10^{-7}(1500)}=795.8
$$

$$
M=x_{m} H=\left(\mu_{r}-1\right) H
$$

$$
\begin{aligned}
& M=18 \mathrm{~m}=3183.1 \times 300=954.6 \mathrm{kAm} \\
& A_{1}=390.8 \times 1500=1.19 \times 10^{6} \mathrm{Am}
\end{aligned}
$$

$$
\begin{aligned}
& M_{1}=3183.1 \times 300=195.8 \times 1500=1.19 \times 10^{6} \mathrm{Am} \\
& M_{2}=7919 \times 10^{6}-95
\end{aligned}
$$

$$
\begin{aligned}
M_{2} & =795.8 \times 1500=1710 \\
\text { \% change } & =\frac{m_{2}-m_{1}}{m_{1}} \times 100=\frac{1.19 \times 10^{6}-954.6 \times 10^{3}}{954.6 \times 10^{3}} \times 10
\end{aligned}
$$

$$
\% \text { change }=24.66 \%
$$

a] Tangential Lomponentsi-

Eonsider boundary bturen two magnotic media-1 and Midia-2 Rhoracterized ropetivly μ_{1} and μ_{2} as shown in fig.
applying Amperin circuital Law to closedpath $a b c d a$ anume Δt is vanistingly small i.e $\Delta h \rightarrow 0$.

$$
H_{1 t}-\Delta L-H_{2} t \cdot \Delta L=K \Delta L
$$

where k-Surtace current dersity (Alm).

$$
\begin{align*}
& \therefore H_{1 t} \Delta L-H_{2 t} \Delta L=K \Delta L \\
&\left(H_{1 t}-H_{2 t}\right) \not L L=k \not L L \\
& H_{1 t}-H_{2 t}=K \tag{3}\\
& \frac{B_{1 t}}{\mu_{1}}-\frac{B_{2 t}}{\mu_{2}}=K
\end{align*}
$$

from eq (3) in gencral form,

$$
\left(\overline{H_{1}}-\overline{H_{2}}\right) \times \overline{a_{n_{12}}}=\bar{K} \mathrm{~A} / \mathrm{m} .
$$

where $a_{n_{12}}$ is a unit vutor normal to the inferface and is directed from medium-1 to medium-2.
if the boundary is fre of current (or) the media one not condutors (for k is fre furent density) $k=0$.
qu (3) becoms

$$
H_{1 t}=H_{2 t}
$$

(大) $\frac{B_{1 t}}{\mu_{1}}=\frac{B_{2 t}}{\mu_{2}}$ thus the tangential components of \bar{H} is continuous while that of \bar{B} is discontinuous at the boundan b) $\frac{\text { Normal Components- }}{\text { Bin }}$

twomagnatic media \bar{B} and \bar{H}.
applying Gown Lan to pill box.

$$
\begin{align*}
& \text { ie } \oint_{<s\rangle} \frac{\bar{B}}{} \cdot d s=0 \\
& B_{1 n} \Delta s-B_{2} \Delta s=0 \\
\Rightarrow & B_{1 n}=B_{2 n} \text { (or) } \mu_{1} H_{m}=\mu_{2} H_{2 n} \tag{4}
\end{align*}
$$

Since $B=\mu H$ wb/m<super>n Show, that normal component of \bar{B} is continuous at the boundary. it also
shown that normal component of \bar{H} is discontinuous, i.e at the boundary \vec{H} undergoes sone changes at the interface.

The $z=0$ plane makes the boundang between two
problem 20. magnetic matuials. region -1 choratenized by $z>0$ and region -2 by $z<0$. the magnetic flue density in region -1 is $\bar{B}_{1}=1.5 \bar{a}_{x}+0.8 \bar{a}_{y}+0.6 \bar{a}_{z} m$. Find the magnetic Flux density in region 2 o anume region-1 as free spacer and relative permeability of region -2 as 10 .

Sols:-

$$
z<0
$$

region 2.
Given $\bar{B}_{1}=1.5 \bar{a}_{x}+0.8 \bar{a}_{y}+0.6 \bar{a}_{z} \mathrm{mT}$.

$$
\text { w.kt } B_{n_{2}}=B_{n_{1}} @ b \text { boundary. }
$$

$$
\Rightarrow \quad B_{z_{2}}=B_{z_{1}}=0.6 \mathrm{mT}
$$

aho at boundary $\overrightarrow{a_{n}} \times\left(\overline{H_{1}}-\overline{H_{2}}\right)=\bar{K}$
since $\bar{k}=0$ and $\overline{a_{n}}=\overline{a_{z}}$

$$
\begin{aligned}
& \overline{a_{2}} \times\left(\bar{H}_{1}-\bar{H}_{2}\right)=0 \\
& \overrightarrow{a_{2}} \times\left(\frac{\overline{B_{1}}}{\mu_{0}}-\frac{\overline{B_{2}}}{\mu_{0}(100)}\right)=0 \\
& \overline{a_{3}} \times\left(100 \bar{B}_{1}-\bar{B}_{2}\right)=0 \\
& \overrightarrow{a_{z}} \times\left\{\left[100(1.5)-B n_{2}\right] \overline{a_{2}}+\left[100(0.8)-B_{y_{2}}\right] \bar{a}_{y}\right. \\
& \left.+\left[100(0.6)-B_{z_{2}}\right] \overline{a_{z}}\right\}=0 \\
& \left(150-B x_{2}\right) \overline{a_{y}}-\left(80-B y_{2}\right) \bar{a}_{x}=0 \text {. } \\
& \Rightarrow 150-B x_{2}=0 \Rightarrow B x_{2}=150 \mathrm{ml} \\
& \text { and } 80-\mathrm{By}_{2}=0 \Rightarrow \mathrm{By}_{2}=80 \mathrm{mT} \text {. }
\end{aligned}
$$

and $B_{z_{2}}=B_{z_{1}}=0.6 \mathrm{mT}$.

$$
\begin{aligned}
& B_{2}=B_{x_{2}} \bar{a}_{x}+B_{y_{2}} \vec{a}_{y}+B_{z_{2}} \overline{a_{z}} \quad \mathrm{wb} / \mathrm{m}^{2} \\
& \overline{B_{2}}=150 \overline{a_{x}}+80 \overline{a_{y}}+0.6 \overline{a_{z}} \mathrm{mT}
\end{aligned}
$$

problem. 21
The $z=0$ plane makes the boundang beturen two magnatic materials. Region-1 in detined by $z>0$ and the magnetic fieldintensity in thin region is $40 \overline{a_{x}}+50 \bar{a}_{y}+12 \overline{a_{z}}$ KAlm.region 2 is ditined by $z<0$ and thas a relative permeability of 1000 . if the relative purmeability of medium -1 in 200 . Find the magntic field intensity in medium-2. A currint shut of $12 \sqrt[a y]{a}$ Alm in proint at the boundany.
Soln.

$$
\begin{aligned}
& \text { Region-1 } \quad \& \overline{a_{n}}=\overline{a_{2}} \\
& \mu_{1}=200 \mu_{0} \quad c^{k=12 a_{y}} \mathrm{kAlm} \\
& z=0 \\
& \overline{H_{1}}=40 \overline{a_{x}}+50 \bar{a}_{y}+12 \bar{a}_{z} \text { kAlm. }
\end{aligned}
$$

at the Boundany

$$
\begin{aligned}
& \text { Boundany } \begin{array}{l}
B_{n_{2}}=B_{n_{1}} \\
B_{z_{2}}=B_{z_{1}}
\end{array} \\
& \mu_{2} H_{z_{2}}=\mu_{1} H_{z_{1}}
\end{aligned}
$$

$$
\begin{aligned}
H_{z_{2}} & =\frac{\mu_{1}}{\mu_{2}} f_{z_{1}} . \\
& =\frac{200}{1000}\left(12 \times 10^{3}\right) \\
H_{z_{2}} & =204 \mathrm{kA} / \mathrm{m} .
\end{aligned}
$$

also at boundary

$$
\begin{aligned}
& \overline{a_{n}} \times\left(\overline{H_{1}}-\overline{H_{2}}\right)=\bar{K} \\
& \overline{a_{2}} \times\left(\overline{H_{1}}-\overline{H_{2}}\right)=12 a_{y} \\
& \overline{a_{z}} \times\left[\left(H_{x_{1}}-H_{x_{1}}\right) a_{a}+\left(H_{y_{1}}-H_{y_{2}}\right) \overline{a_{y}}\right. \\
& \left.+\left(H_{3}-H_{32}\right) \bar{a}_{2}\right]=12 \bar{a}_{y} \\
& \left(H_{x_{1}}-H_{x_{2}}\right) \bar{a}_{y}-\left(H_{y_{1}}-H_{y_{2}}\right) \bar{a}_{x}=12 \bar{a}_{y} \\
& H_{x_{1}}-H_{x_{2}}=12 \Rightarrow H_{x_{2}}=40-12=28 \mathrm{kA} \mathrm{~m}_{m} \\
& H_{y_{1}-H y_{2}}=0 \Rightarrow H_{y_{1}}=50 \mathrm{kA} \mu_{m} \\
& \therefore \overline{H_{2}}=H_{x_{2}} \overline{a_{x}}+H_{y_{2}} \bar{a}_{y}+H_{z_{2}} \bar{a}_{z} \quad A h_{m} . \\
& \overline{H_{2}}=28 \bar{a}_{x}+50 \overline{a_{y}}+2.4 \bar{a}_{z} \mathrm{kA} / \mathrm{m} \text {. }
\end{aligned}
$$

b. For region 1. $\mu_{1}=4 \mu \mathrm{H}$ mam for region $2, \mu_{2} \equiv 6 \mu \mathrm{H} / \mathrm{m}$. The regions are separated by $z=0$ plane. The sufface current density at the boundary is $\overline{\mathrm{K}}=100 \mathrm{ax} A / \mathrm{m}$. Find $\overline{\mathrm{B}}_{2}$ if $-\bar{B}_{1}=2 \hat{a} x-3 \hat{a} y+a \operatorname{malitesla}$ for $z=0$.

$$
\text { Dankan V Gowda } \stackrel{\circ}{\text { mrech,(Ph } D)}\left(C_{B} C \&\right)
$$ solu:-

$$
\begin{aligned}
& \text { 15- Dey Jan } 2017 \\
& \text { (CBCs) (08 Marks) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AssistantProfessor, Dept of E\&CE } \\
& \text { Emaildankanecee@svcenaa.com }
\end{aligned}
$$

$$
\text { Medium-1, } \quad \mu_{1}=6 \mu+\mathrm{m} / \mathrm{m}
$$

$$
z>0 \quad \bar{B}_{1}=2 \bar{a}_{x}-3 \bar{a}_{y}+\bar{a}_{z} \quad m T
$$

Medium-2

$\operatorname{Sin} u \quad B_{n_{1}}=B_{n_{2}}$ and $\overline{a_{n}}=a_{3}$

$$
\Rightarrow B_{3_{1}}=B_{2}=\text { in Teda }
$$

To find $B_{x_{2}}$ and $B_{y_{2}}$
using

$$
\left(\bar{F}_{1}-\bar{H}_{2}\right) \times \bar{a}_{n_{12}}=\bar{k}
$$

where $\vec{a}_{n_{12}}$ - unit vector normal to the intertace and in divated from medium 1 to medium 2 .

$$
\begin{aligned}
& \text { and } \text { in dirated } \\
& \bar{H}_{1}=\frac{\overline{B_{1}}}{\mu_{1}}=\frac{B_{x_{1}} \overline{a_{x}}+B_{y_{1}} \overline{a_{y}}+B_{z_{1}} \bar{a}_{3}}{\mu_{1}} \mathrm{~A} \\
& \overline{H_{2}}=\frac{\overline{B_{2}}}{\mu_{2}}=\frac{B_{x_{2}} \overline{a_{x}}+B_{y_{2}} \overline{a_{y}}+B_{z_{2}} \overline{a_{3}}}{\mu_{2}} \mathrm{Am} . \\
& \quad \text { and } \quad \overline{\mu_{n}}=-\overline{a_{2}}
\end{aligned}
$$

usig cqu 1

$$
\begin{array}{r}
{\left[\left(\frac{B_{x_{1}}}{\mu_{1}}-\frac{B_{x_{2}}}{\mu_{2}}\right) \overline{a_{x}}+\left(\frac{B_{y_{1}}}{\mu_{1}}-\frac{B_{y_{2}}}{\mu_{2}}\right) \overline{a_{y}}+\left(\frac{B_{z_{1}}}{\mu_{1}}-\frac{B_{z_{2}}}{\mu_{2}}\right) \overline{a_{2}}\right]\left(-\bar{a}_{2}\right)} \\
=100 \overline{a_{x}}-(2)
\end{array}
$$

$$
\begin{aligned}
& \overline{a_{x}} \times \overline{a_{z}}=-\overline{a_{y}} \\
& \overline{a_{y}} \times \overline{a_{z}}=+\overline{a_{x}} \\
& \overline{a_{z}} \times \overline{a_{z}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{B x_{1}}{\mu_{1}}-\frac{B x_{2}}{\mu_{2}}\right) \overline{a_{y}}+\left(\frac{B y_{1}}{\mu_{1}}-\frac{B y_{2}}{\mu_{2}}\right)\left(-\bar{a}_{2}\right)+0=100 \overline{a_{x}} \\
& {\left[\frac{B x_{1}}{\mu_{1}}-\frac{B x_{2}}{\mu_{2}}\right] \overline{a_{y}}+\left(\frac{B y_{2}}{\mu_{2}}-\frac{B y_{1}}{\mu_{1}}\right) \overline{a_{x}}=100 \overline{a_{x}}+0 \overline{a_{y}}}
\end{aligned}
$$

$y=$ component Equating Componentio along x and y dixe"

$$
\begin{aligned}
\Rightarrow & \frac{B x_{1}}{\mu_{1}}-\frac{B x_{2}}{\mu_{2}}=0 \\
\Rightarrow & B x_{2}=\frac{\mu_{2}}{\mu_{1}} B x_{1}=\frac{3}{4 x} x_{2} \\
& B x_{2}=3 m \text { Tisla }
\end{aligned}
$$

comporent
t. E\&CE., SVCE Bangalore

$$
\frac{B y_{2}}{\mu_{2}}-\frac{B y_{1}}{r_{1}}=100
$$

$$
\frac{B y_{2}}{\mu_{2}}=100+\frac{B y_{1}}{\mu_{1}}-.
$$

Dankan V Gowda mTech,(PhD) Assistant Professor, Dept of E\&CE Email:dankan.ece@svcengg.com +919844554940

$$
B y_{2}=100 \mu_{2}+\frac{\mu_{2}}{\mu_{1}} B_{y_{1}}
$$

$$
B_{y_{2}}=100(6 \mu)+\frac{6 \mu}{4 \mu} \times(-3 m)
$$

$$
\text { for } z<0
$$

Topic 4.6
Magnetic Chcuits
O. Reludtance of a Magnetic circuits
b. Comparison between electric and magnetic circuits
Quastion i: write a note on magnitic Circuity [15-Jund July $2017(4 \mathrm{~m})$ CBCS] $]$ "A magnctic Circuit is a closed path of magnotic Linis of force through one (or) more materials".

Reluctances. The propity by which the flux panage in offeted is rifared to as reluctance.
The resistance of slutric corfen can be sxproned in terms of condutivity o as

$$
R=\frac{l}{\sigma S}
$$

where l-length in (m)

S - Area of Eronsation $\left(\mathrm{m}^{2}\right)$
σ-condutivity of thematerial.
In case of magnatic Crenits, we cas define rebutance in veng muthly way as

$$
\beta=\frac{l}{\mu s} \quad H^{-1}
$$

where μ-purncability of the isotropic Linear fromogenour material.
The Reciprocal of reluctance is called permeance denoted by P and meaxued intlenry:

$$
p=\frac{\mu s}{t}
$$

4.64] Reluctance of a magnatic Cirkit.

Lonsider a magnatic circuit formed with a hoop of a magnutic material in which flux is sctup by using a coil of N furns in which Curnent I is Howing.

Magntic

let ' S ' be the Are of Eronscation and ' 2 '-be the mean length of material.
then

$$
B=\frac{\phi}{s} \mathrm{wb} / \mathrm{m}^{2} \text { (o) } \phi=B \cdot \mathrm{~s} \text { wb. }
$$

$B=\mu H$ and $H=\frac{V_{m}}{l}=\frac{m \cdot m f}{l} \quad A l_{m}$.

$$
\begin{align*}
& B=\mu\left(\frac{V_{m}}{l}\right) ; \omega \tag{1}\\
& \phi=\mu \frac{v_{m}}{l} \delta
\end{align*}
$$

$$
\begin{equation*}
\text { and } \phi=\frac{v_{m}}{R} \tag{2}
\end{equation*}
$$

Where R-reluctance
equating $c^{u}(1)$ and eq. (2)

$$
\frac{v_{m}}{k}=\mu \frac{v / m}{l} S
$$

$$
\Rightarrow k=\frac{l}{\mu s} H^{-1} \odot 1 / H_{\text {canary }} .
$$

Fringing sffut:- it there is an air gap between the path of the magnetic Flux it Spreads, and bulges out this sffut called fringing stat.
$4 \cdot \frac{6}{6}$ Eomparision blw Elutric and Magnatic Cirkuito
$\left.\frac{\text { poramater }}{\substack{\text { Equation in } \\ \text { Elutrical cone }}} \quad \begin{array}{c}\text { Analogous eqein } \\ \text { roogatic care. }\end{array}\right]$
ii. potential diference blu point $A \& B$
iv. Eurnent/Blux

$$
I=\int_{\infty s} \sigma \cdot d s
$$

$$
\phi=\int_{\langle s\rangle} \bar{B} \cdot \overline{d s}
$$

v. sinf/morf

$$
\begin{aligned}
V & =\oint \bar{E} \cdot \overline{d l} \\
& =E \cdot L
\end{aligned}
$$

$$
\begin{aligned}
v_{m} & =\oint F \cdot \overline{d l} \\
& =H L
\end{aligned}
$$

$$
=H L
$$

vi. Resintancel

$$
R=\frac{l}{\sigma S} \Omega
$$

Rilutance
Vii. Claned path integral in the field

$$
\oint \bar{E} \cdot \overline{d l}=0
$$

Viii. Elatric/mognatic Crcuit

$$
\begin{aligned}
& V_{A B}=\int_{A}^{B} E \cdot d \text { voll, } \quad V_{m_{P}}=\int_{A}^{\frac{B}{H} \cdot d l} . \\
& J=\sigma E \mathrm{Aln}^{2} \quad \bar{B}=\mu \bar{H} \mathrm{\omega} / \mathrm{m}^{2} \\
& \text { (6) } v=R I
\end{aligned}
$$

Topickit Reluetance in a Sories Magnetic Cbts.
Relugtance in a series maguetic circuits
obtanthe expression for reluctate in a seras magnetic ciront.
Question, obtain the caprunion for reluctance in a Soins magnatic circuit (5m).

A. Serin magnatic Circuif is the one in which the magnatic flux Mumains the same in all parts of the Girluit.
A typical Soriu magnutic cricnit can be considered to be consifting of an iron part of Length l, with area of crom-sution ' S ' and pln air gep onen a Length l_{2}.
let B_{1} and k_{2} be the reluctance of the iron path and the airgap ropectively.
if V_{m} is the mimi required to set up a flux ϕ, then
(a) mmfacron iron path
(b) mimfacron air gap

$$
v_{m}=v_{m_{1}}+v_{m_{2}} \ldots \text { in a sugncbt. }
$$

$$
V_{m}=\phi_{1} R_{1}+\phi_{2} R_{2}
$$

in a survcirket $\phi_{1}=\phi_{2}=\phi$.

$$
\begin{equation*}
\therefore V_{m}=\Phi\left(R_{1}+R_{2}\right) \tag{0}
\end{equation*}
$$

If k in the equivalent reluctance for entire circuit, then

$$
\begin{equation*}
V_{m}=\phi k \tag{d}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Comparing (c) and (d) } \\
& \therefore R=R_{1}+h_{2} \\
\Rightarrow & R=\frac{l_{1}}{\mu_{1} s}+\frac{l_{2}}{\mu_{2} s} \quad H^{-1}
\end{aligned}
$$

whe μ_{1} and μ_{2} are the permeability of the iron and air media.
problem 23.
Calculate the reluctance of a magnetic circuit of Mean length 0.5 m of area of [ronsution $0.3 \mathrm{~cm}^{2}$. the relative permeability of the medium is 100. abs calculate the tux if the coil shed to setup the magnetic flux bias 1000 turns with a currentof 0.2 A .
Solni-given $l=0.5 \mathrm{~m}$.

$$
\begin{array}{ll}
\text { given } & s=0.3 \times 10^{-4} \mathrm{~m}^{2} \\
\mu_{r}=100 ; \quad M=1000 \\
h=? & \phi=?
\end{array}
$$

Reluctance $R=\frac{l}{\mu s}=\frac{l}{\mu_{0} \mu_{r} S}$

$$
\begin{aligned}
& \beta=\frac{0.5}{4 \pi \times 10^{-7} \times 100 \times 0.3 \times 10^{-4}} \\
& R=1.326 \times 10^{8} A / \omega b \text { (ज) } H^{-1} \\
& \phi=\frac{Q_{m}}{R}=\frac{N \Sigma}{R}=\frac{100 \times 0.2}{1.326 \times 10^{8}} \\
& \quad \phi=1.5 \times 10^{-6} \mathrm{Nb}
\end{aligned}
$$

Question. Derive magnatic Energy density in a magnatic fild:
a. Magnatic Lhargy S.

The Energy stored in Endutor in gien by

$$
\omega_{m}=\frac{1}{2} L \Sigma^{2} \text { joube }=\text { (1) }
$$

the gencral exprosion fort Encrgy in slutro -static in give by

$$
w_{E}=\frac{1}{2} \int_{\langle v 0\rangle}(\bar{D} \cdot \bar{E}) d v \text {. Jouls }
$$

My in magnitostatics

$$
w_{m}=\frac{1}{2} \int_{\langle w o\rangle}(\bar{B} \cdot \bar{F}) d v \text { jouls. }
$$

but $\bar{B}=\mu \bar{H}$ (GI) $\bar{H}=\bar{B} / \mu$.

$$
\omega_{H}=\frac{1}{2} \int_{\left\langle w_{0} D\right.} \mu H^{2} d v \text { and }
$$

$$
\omega_{\text {Page }} 76898
$$

the magnatic evergy density in tnothing but the magnitic Energy stored per unit volume. measured in J / m^{3}.

$$
\text { i.e } \quad e=\frac{\omega_{H}}{v}=\frac{1}{2} \mu H^{2} \text { jouhn } \|_{m^{3}}
$$

(0

$$
C_{m}=\frac{1}{2} \mu H^{2}=\frac{1}{2} \frac{B^{2}}{\mu} \text { गouled } m^{3}
$$

b) Force on Magnatic Materals? - [15- Jund July $2017(4 \mathrm{~m})$ CBCS
Oumantion: Write a noken formon magnatic materials.
α-hergy $=$ Force x dintance $=$ wortcione.

$$
F=\frac{B^{2} S}{2 \mu} \text { Noutoris }
$$

the trative promined is the ratio of force on a mognutic Surface per area measued in N / m^{2}

$$
H_{s}=\frac{1}{2 \mu_{0}} B^{2}=\frac{1}{2} B H=\frac{1}{2} \mu H^{2} \quad \mu / m^{2}
$$

$$
\begin{aligned}
& d \omega_{H}=\frac{F l^{2}}{L}=\frac{1}{2} \frac{b^{2}}{\mu} \cdot S \cdot d l \\
& d v=S \cdot d x \\
& =S d e
\end{aligned}
$$

Module-4 (summany)

1. Lorent z_{z} force equation $\bar{F}=Q(\bar{v} \times \bar{B}) ; N$.

$$
F=Q v B \sin \theta \quad N \text {. }
$$

2. Force experiinced by thepoint charge in prosince of both eleutric and magnatic ficed. \bar{v}-viouity cutor (matlsec)

$$
\bar{F}=Q(\bar{E}+\bar{v} \times \bar{B}) \text {; Nuston. }
$$

3. Force on a differential Curint slement

$$
d \bar{F}=I \overline{d l} \times \bar{B} \mathrm{~N}
$$

(60) $\bar{F}=I I \times \bar{B}=I L B \sin \theta \overline{a_{n}} ; N$.

Le magnatic Force blw two ditfential [umentslement.

$$
\begin{aligned}
& \text { magnatic Force blu } \frac{d \bar{F}_{1}=\bar{I}_{1} l_{1} \times d \bar{B}_{2}}{} ; N \\
& \frac{\mu_{0} I_{1} \overline{\overline{F l}_{1}} \times\left(I_{2} \overline{d l_{2}} \times \overline{a_{f_{21}}}\right)}{4 \pi R_{21}^{2}} ; \text { Nuton. }
\end{aligned}
$$

5. Fore petween two parallel condutors

$$
\left.F=\frac{\mu_{0} \Psi_{1} I_{2} l}{2 \pi r} \right\rvert\, N .
$$

6. magnctization and permeability

$$
M=\frac{m}{v_{\text {olume }}}
$$

(6) $m=n \cdot m$

$$
\begin{gathered}
\text { Magnetic Susceptibility }(x)=\frac{M}{H} \text {. } \\
x=\frac{M}{H}
\end{gathered}
$$

permeability $\mu=\mu_{0} \mu_{r} \mathrm{H}$

$$
B=\mu_{0} \mu_{r} H \quad * \omega / m^{2}
$$

7. Relation between B, M and H

$$
\begin{aligned}
& B=\mu_{0} H \quad \omega b / m^{2} \text { and } B=\mu_{0} m \quad \omega / m^{2} \\
& B_{n=}=\mu_{0}(H+M) \quad \omega b / m^{2} \\
& M=\left(\mu_{r}-1\right) H \quad A_{m} . \\
& M=X H \text { All. } \\
& x=\mu_{r}-1 \text { (o) } \mu_{r}=x+1 \\
& \mu_{r}=1+\gamma=\frac{\mu}{\mu_{0}}
\end{aligned}
$$

8. Total Current density $\bar{J}=\nabla \times \bar{H} \mathrm{Alm}^{2}$.
9. Bound Current density $\bar{J}_{b}=\bar{\nabla} \times \bar{m} A \mathrm{~m}^{2}$
10. $\%$ of change in magnetization $=\frac{m_{2}-m_{1}}{m_{1}} \times 100 \%$
11. Magntic Boundary conditions.

$$
\begin{aligned}
& \oint_{\langle S\rangle} \bar{B} \cdot \overline{d s}=0 \text { and } \oint_{\langle l\rangle} \overline{d l}=I . \\
& \left(\overline{H_{1}}-\overline{H_{2}}\right) \times \overline{a_{n_{12}}}=\bar{K} \quad \text { Alm }
\end{aligned}
$$

- fangential Componento of Magnatic fieldintensity H are cqual

$$
\begin{aligned}
& \text { are cqual } \\
& H_{1 t}=H_{2 t} \\
& \frac{B_{1 t}}{\mu_{1}}=\frac{B_{2 t}}{\mu_{2}}
\end{aligned}
$$

- Normal componente of Magnutic Aluxdensity (\bar{B}) are cqual.

$$
B_{1 n}=B_{2 n} \text { whl } m^{2} \quad \text { (or) } \mu_{1} H_{1 n}=\mu_{2} H_{2 n}
$$

12. Revectance $k=\frac{l}{\mu s} \cdot H^{-1}$.
13. Dermeance $\quad p=\frac{\mu S}{l}=\beta^{-1} ; H \cdot \phi=\frac{k_{m}}{k}=\frac{N I}{k} ; \omega 1$

$$
B=\frac{\phi}{s} \omega b / m^{2}
$$

(o) $\phi=B: S$ wh.
14. Reluetance of a Seris Magnatic Circuit

$$
R=R_{1}+R_{2} H^{-1} \sigma \quad R=\frac{\mu_{1}}{\mu_{1} s}+\frac{l_{2}}{\mu_{2} s} H^{-1}
$$

15. Magnatic Energy

$$
\begin{aligned}
& \left.\omega_{m}=\frac{1}{2} L \mathcal{L}=\frac{1}{2} \int_{\left\langle v_{01\rangle}\right\rangle}(\widehat{\beta} \cdot \overline{\mathbb{E}}) d r \right\rvert\, \text { joules } \\
& \omega_{H}=\frac{1}{2} \int_{\left\langle u_{0}\right\rangle} \mu_{H^{2}} d r=\frac{1}{2} \int_{\left\langle v_{0}\right\rangle} \frac{B^{2}}{\mu} d v j^{2} \text { joulos }
\end{aligned}
$$

16. Magnotic Energy density

$$
\left.c_{m}=\frac{1}{2} \mu H^{2}=\frac{1}{2} \frac{B^{2}}{\mu} \right\rvert\, \text { Jouls } / m^{3}
$$

17. Forceon a magntic matoriab

$$
F=\frac{B^{2} S}{2 \mu}
$$

18.

$$
\sqrt{\frac{F}{S}}=\frac{1}{2} \mu_{0} B^{2}=\frac{1}{2} B H=\frac{1}{2} \mu H^{2}
$$

Part-A : Time-varying fields and Maxwell's equations

Faraday's law, displacement current, Maxwell's equations in point form, Maxwell's equations in integral form.

Topics:

5.1 a. Faraday's law
b. Lenz's law
c. Maxwell's Equation from Faraday's Law
d. Transformer and Motional EMF

Solved Problems

5.2 Inconsistency of Amperes Law (Modified Ampere's Law) +
a. Concept of Conduction and displacement current and Current densities
b. Loss tangent and its importance
c. Continuity current equation from Maxwell's Equation
d. Conduction and Displacement current in capacitor

Solved Problems
5.3 Maxwell's equations in point form Maxwell's equations in integral form
a. Maxwell's Equations for static fields
b. Maxwell's Equations for Time-varying fields
c. Maxwell's Equations in free space medium
d. Maxwell's Equations in Good conducting medium
e. Maxwell's Equations in Good dielectrics or Low loss dielectric medium Solved Problems

Summary

- List of Symbols
- List of Formulae

Module -5 part (A).
Topic 501.a. Faraday' Law angereaw
bo Len z's Law.
c. Maxnali's Equation from Foray's law

$$
\nabla \times \bar{E}=-\frac{\partial \sqrt{B}}{\partial t} \cdot V / m^{2}
$$

d. Transformer and motional Emf.

Questions.
Using the Faradayjlaw, deduce the Maxwell's equation, to relate time varying cupric and magnatictiled (sm).
(or)
prove that $\nabla \times E=-\frac{\partial \sqrt{B}}{\partial t} \cdots(6 \mathrm{~m})$
(*i)
State. Faraday, tow and obtain point and integral forms of Faraday s law of EMI.(5m).
(or).
Fora closed station ary path in Space Linked with changing agnatic fill d prove that $\nabla \times \bar{E}=-\frac{\partial \overline{3}}{\partial t}(8 \mathrm{~m})$
(or)
Starting from the concept of Faraday Law of clutromagnatic induction derive the maxurei's equation

$$
\nabla \times \bar{E}=-\frac{\partial \vec{B}}{\partial t} . \quad(6 m)
$$

Using Faraday; Law derive an exprunion for conf induced in a stationary condutor plaud in a time varying magnatic fild $\cdot(4 m)$
Ixplain Faraday's Law and Lenz's Law. (6m) [06-Dec 2010, 02-DeC 2010, 02-Jan 2009, 06-Jan 2012, 06- $\operatorname{Jan} 2014,10$ - Jan2014, 06 -Junelifilly -2011, 06 -Jund July 2012, 02 -Junal July 2012,02 Junel July 201 $06 \operatorname{Jan} 2013$, 06 -Jenel July 2014 .

8 State and explain Farday's law of electromagnetic induction Hence obtain Maxwell's equation in differential form.

\qquad
02 - June /July 2012
9. Obtain Famdays law of electromagnetic induction in integral form and hence arrive at the differential form of Faraday's lave
(08 Marks) 02- June / July 2010

10

$$
\text { Derive } \nabla \times \overline{\bar{B}}=-\frac{\partial \bar{B}}{\partial t}
$$

11 Derive the Maxwells equation in pent form as derived from Faraday's law. (06Matls) 06-fune/July 2014

12 Explain Faraday's law and Lenz's law.
Solis: Topic 5.1 la Faraday haw.
Faradayin Law:-
Faraday: Law carboy stated as "the magnitude of the indued emf ing (e) cit in coal to the rate of change of the © Gigantic flux through it and its where p - Flux Linkage with the circut-(c) coil. of coil han N tums then emf indued acrenthe coil in

$$
e=-N \frac{d \phi}{d t} \text { volts }<(2)
$$

Note:- the interpretation of -re sign in given by Len Law.
5.1 b. Lenzishaws.

- LenzLaw:- The induced emf is in such a diration as to oppose the charge causing it.
(ie the-ve sign indicates that the diration of indued. emf is such that to produce a current why will produce a magnetic field which will ope the original field).
5.1 C maxnalis Equation from Fardeqis Law. The induced emf is a scalcursentity measured in volts: and is given by 5 Note.- Stent from Foradayistan from Foradey Law,

$$
\begin{equation*}
e=\frac{d \phi}{d t} \text { volt" } e=30 \quad<> \tag{3}
\end{equation*}
$$

From aft of magnetic fluxdensity (\bar{B})

$$
\bar{B}=\frac{d \phi}{d s} w b / m^{2} \text { through specified }
$$

total Magnetic flux (ϕ) panning ${ }^{1}$ is given by

$$
\phi=\int_{\langle s\rangle} \bar{B} \cdot \sqrt{s} \quad w b^{n}<4
$$

where \bar{B} - Magnetic Pusdensity ($\omega / b / m^{2}$ (ob) Tola).

$$
\begin{align*}
& \text { From Foraday'jlow } \\
& \quad \quad e=-\frac{d \phi}{d t}=\frac{-d}{d t}\left[\int_{\langle s\rangle} \bar{B} \cdot \overline{d s}\right] \tag{40}
\end{align*}
$$

equating ρ^{u} (3) and φ^{u} (40)

$$
\frac{\int_{\langle l\rangle}^{\oint_{E} \cdot d l}=-\int_{\langle s\rangle} \frac{\partial \vec{B}}{\partial t} \cdot d s}{\text { Integral form }}
$$

$\varphi^{4}(3)$ Called Integral form of Maxwilin eq" derived from Faradayin Law

Using Stokein theorem i.e

$$
\oint_{\langle l\rangle} \bar{A} \cdot \overline{d l}=\int_{\langle s\rangle}(\bar{d} \times \bar{A}) \cdot \overline{d s}
$$

$$
\begin{equation*}
\oint_{\langle l\rangle} \vec{E} \cdot \overline{d l}=\int_{\langle s\rangle}(\nabla \times \bar{E}) \cdot \overline{d s} \tag{6}
\end{equation*}
$$

Z
$\therefore q^{4}(5)$ becomus

Maxwelin cer derived from Foraday, Law.

$$
\hat{V}^{\hat{Q}} \cdot \underset{\nabla}{V \times \bar{E}=-\frac{\partial \vec{B}}{\partial t}} \quad v / m^{2}
$$

$)^{\prime \prime} \varphi^{\prime \prime}(7)$ indicate that time-varying magnaticfeldo is Musponsiblefor rotational clutricifield.
Note: -1 . if \bar{B} is not a function of time ' t ' (ie not varying with fime) then $\frac{\partial \bar{B}}{\partial t}=0$,
\square (6)
$\Rightarrow \bar{\nabla} \times \bar{F}=\dot{0} ; \Rightarrow$ which is same as clutro Static roult ie $\oint \underset{\langle\emptyset}{ } E \cdot d l=0$.
2. if $\nabla \times \bar{E}=0$ then \bar{E} in said to be arised from a static dintribution of charges.
 Static diotribution of charge.
Now ut us Conside He force expurinced by the charge ' Q ' in prefiv of magnetic field is given by [from conat motional conf]

Eie from Lorent; force ceu

$$
\begin{equation*}
\overline{F_{m}}=Q(\bar{v} \times \bar{B}) \quad \text { Nultoris. } \tag{8}
\end{equation*}
$$

the motional cletric ficld Intensity $\overline{F_{m}}=\frac{\overline{F_{m}}}{Q}=\bar{V} \times \bar{B} \mathrm{v} / \mathrm{m}$
\therefore Induced emf is givenby

$$
\begin{equation*}
e_{m}=\oint_{\langle\lambda\rangle} \vec{E}_{m} \cdot \overline{d l}=\oint_{\langle\lambda}(\vec{v} \times \bar{B}) \cdot \overline{d l} \tag{10}
\end{equation*}
$$

Q"(10) reprisent total emf induced when a Conduofor is moved in a Uniform constant magnatic field.
Incase, the Magnatic fluxdinsity in also vanging with time then the induced erff is the combination of transformer and motional cmf. given by
x x

Topic 5.ld. Transfomen and notional Emf.

13 Explain transformer and notional induced ϵ cfo.
(06 Mark!)
02 - June /July 2011
14 Slate Faraday's law Apply Faraday's law to i) Stationary conductor and changing feel ii) Stationary field and moving conductor and derive necessary expressions.

15 a. Explain Faraday's laws applied to : i) stationary path, changing field and ii) steady field, moving circuit.

it io defined an the emf indereder in a stationary

 trantomr emf.
ii) Motional e.m.f Stationary fild and Moving Condurtor [-
it is defined as the emf indued b/w the two ends of a condurfor due to its motion in a steady

Magnetic-field.
\rightarrow from Lorent; fore ρ^{-1}

$$
\begin{aligned}
& \text { trom Lorentz fore } \varphi \\
& \bar{F}_{m}=Q(\bar{v} \times \bar{B}) \text { Nutph } \\
& \overline{\mathcal{L}_{m}}=\frac{\bar{F}_{m}}{Q}=(\bar{v} \times \bar{B})
\end{aligned}
$$

the enduced \hat{i} ortort

problem 1

$$
\bar{E}=F_{m} \sin (\omega t-\beta z) \overline{a_{y}}
$$

$$
\bar{D}, \bar{B}, \bar{H}
$$

. 06-deczalo.

17 Given $\bar{E}=\operatorname{EmSin}\left(w t-\beta z a a_{y}\right.$ in force space, find \bar{D}, \bar{B} and \bar{H}.
(06 Marki)
10-June Julv $2012 \bar{E}$

$$
t=0, \text { at } t=0
$$

19 b $-\mathrm{En} \sin (\mathrm{wt}-\mathrm{Bz})$ ay in fee space fnd $\mathrm{D}, \mathrm{B}, \mathrm{H} \Rightarrow$
sone:

$$
g_{k}^{\text {givn }}=E_{m} \sin (\omega t-\beta z) \overline{a y}=E_{y} a_{y} \text { v/m }
$$

intruespure $\mu_{r}=1$ ar $Q Q_{r}=1$

$$
\Rightarrow \quad \bar{\mu}=\left.\mu_{0} \mathrm{H}\right|_{m} \text { and } \mathrm{Am}
$$

i) Elutric Flux derity (D) $\mathrm{m}_{\mathrm{m}}{ }^{2}$

$$
\begin{aligned}
& \bar{D}=\epsilon_{0} E \mathrm{~cm}^{2} \\
& \left.\bar{D}=\epsilon_{0} E_{m} \sin (\omega t-\beta z) \bar{a}_{y}\right] \mathrm{cm}^{2}
\end{aligned}
$$

Q Sii To find $\bar{B}=$?
using point form of Maxurll's eq from Faradayi Law

$$
\begin{equation*}
\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} \tag{1}
\end{equation*}
$$

Since E is f ' of only ' z ' and has only ' $E y$ '
Component.
and $E_{y}=E_{m} \sin (\omega t-\beta z) \quad \underset{m}{\text { veg }} v / m$.

$$
\begin{aligned}
\nabla \times \bar{E} & =\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
0 & 0 & \partial / \partial_{z} \\
0 & E_{y} & 0
\end{array}\right| \\
& =\left[0-\frac{\partial E_{y}}{\partial z}\right] \overline{a_{x}}=\frac{-\partial E_{y}}{\partial z} \overline{a_{x}} \\
\frac{-\partial E_{y}}{\partial z} \overline{a_{x}} & =-\frac{\partial}{\partial z}\left[E_{m} \sin (\omega t-\beta z)\right] \cdot \overline{a_{x}} \\
& =-E_{m}[\cos (\omega t-\beta z)] x-\beta \overline{a_{y}} \\
-\frac{\partial E_{y}}{\partial z} \overline{a_{x}} & =+E_{m \beta \cos [\omega t+\beta \bar{\beta}] \overline{a_{x}} \cdot v / m^{2}}
\end{aligned}
$$

$$
\therefore \text { using } \varphi^{4} 00^{6}
$$

$$
Q^{Q} \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} \quad v / m^{2}
$$

$$
E_{m} \beta \cos [\omega t-\beta z] \overline{a_{x}}=-\frac{\partial \bar{B}}{\partial t}
$$

$$
\theta \frac{\partial}{B}=\int \frac{\partial \bar{B}}{\partial t} \cdot d t=-\int E_{m} \beta \cos (\omega t-\beta z) \overline{a_{n}} d t
$$

$$
\bar{B}=-E_{m} \beta \operatorname{Sin}(\omega t-\beta z) \times \frac{1}{\omega} \cdot \overline{a_{x}}
$$

$$
\therefore \bar{B}=-\frac{E_{m} \beta}{\omega} \operatorname{Sin}(\omega t-\beta 3) \bar{a}_{x} \quad \text { wb/m² (on) Tesla }
$$

iii) Relationohip blew \bar{B} and \bar{H}

$$
\bar{B}=\mu_{0} \bar{H} \quad \omega b / m^{2}
$$

(8) $\bar{H}=\frac{\bar{B}}{\mu_{0}}-A_{m}$

$$
\therefore \bar{H}=-\frac{E_{m} \beta}{\omega \mu_{0}} \sin (\omega t-\beta 3) \overline{a_{x}} \text { A/m } N / \omega b
$$

at time $t=0$

$$
\bar{E}=E_{m} \sin (\omega t-\beta z) \overline{a r}
$$

$$
\frac{\sigma}{E}=E_{m} \sin (\beta z)\left(-\overline{a_{y}}\right) \quad v / m=
$$

mand

$$
\because \bar{H}=\frac{-\beta E_{m}}{\omega \mu_{0}} \sin (-\beta z) \overline{a_{x}}=+\frac{\beta E_{m}}{\omega \mu_{0}} \sin (\beta z) \overrightarrow{a_{x}} A / m
$$

(6)

$$
\begin{array}{r}
\bar{H}=H_{m} \operatorname{Sin}(\beta 3) \bar{a}_{x} A / m \\
\text { where } \quad H_{m}=\frac{\beta E_{m}}{w \mu_{0}} \text { A/m. }
\end{array}
$$

$\bar{E}=E_{m} \sin (\beta z)\left(-\overline{a_{y}}\right) y_{m}$ and $\bar{H}=H_{m} \sin (\beta z) \overline{a_{n}} H_{m}$

Note:~ \bar{E} and \bar{H} are 1^{ε} to cout other.
protolem 2
If the Electric Field Intensity in free space is given in the rectangular Coordinates as
$E=E_{m} \operatorname{Sin}(\alpha x) \operatorname{Sin}(\omega t-\beta z) \alpha_{y} V / m$. Find the magnetic field Intensity H using Faraday's Law

$$
\text { - Solui: given } \bar{E}=E_{m} \sin (\alpha x) \sin (\omega t-\beta z) \bar{a}_{y} v / m \text {. }
$$

using Faradayinhaw, and In tres pace $\mu=\mu_{0} \mathrm{H} / \mathrm{m}$ $\epsilon=\epsilon_{0} \mathrm{~F} / \mathrm{m}$

$$
\nabla \times \bar{E}=-\frac{\partial \vec{B}}{\partial t} \quad v / m^{2}
$$

$$
\begin{aligned}
\frac{\partial \bar{H}}{\partial t}= & \frac{1}{\mu_{0}} \frac{\partial}{\partial z}\left[E_{m} \sin (\alpha x) \sin (\omega t-\beta z)\right] \bar{a}_{x} \\
& -\frac{1}{\mu_{0}} \frac{\partial}{\partial x}\left[E_{m} \sin (\alpha x) \sin (\omega t-\beta z)\right] \bar{a}_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \bar{H}}{\partial t}=-\frac{E_{m \beta}}{\mu_{0}} \sin (\alpha x) \cos (\omega t-\beta z) \overline{a_{x}} \\
& -\frac{E_{m} \alpha}{\mu_{0}} \cos (\alpha x) \sin \left(\overline{\omega t}-\bar{\beta} \alpha^{-}\right) \overline{a_{z}} \quad \ddot{A} / m-\sec \\
& \therefore \bar{H}=\int \frac{\partial F}{\partial t} \cdot d t \quad A l_{m} \\
& \bar{H}=\frac{-E_{m} \beta}{\mu_{0} \omega} \sin (\alpha x) \sin (\omega t-\beta z \alpha \dot{0} \\
& +\frac{E_{m} \alpha}{\mu_{0} \omega} \operatorname{con}(\alpha x)\left(\alpha_{0} \alpha_{p}(\omega t-\beta 3) \overline{a_{3}} \mathrm{~A} / \mathrm{m}\right. \text {. }
\end{aligned}
$$

problem 3

$$
c=-\frac{W B a^{2}}{2} \text { roll }{ }^{\prime n}
$$

is the angular velocity in radfsec, B is the magnetic flux density in Testa and sa' is th radius of the disc in metre.

Sol:-
radpec, τ_{B}

- ${ }^{16}$ Mask
a^{\prime}
fig. Faraday" din e generator
fromfig. the direction of magmatic flux density \bar{B} in
$\gamma=a^{\prime} m$ - radius of the $\operatorname{din} c$.
Whelincar velocity of the disc $\bar{v}=\omega r \overline{a_{p}} \mathrm{~m} / \mathrm{sec}$. where w-angular velocity (rad/sec);
the Electric field $\bar{F}_{m}=\bar{v} \times \bar{B} \quad v / m$

$$
\overline{a_{\varphi}} \times \overline{a_{3}}=+\overline{a_{r}}
$$

$$
=w \gamma \overline{a_{\varphi}} \times B \overline{a_{z}}
$$

$$
\bar{F}_{m}=\omega \gamma B \overline{a_{r}} \quad \mathrm{q} / \mathrm{m}
$$

Dept. of E\&CE., SVCE
$\overline{d l}=d r \overline{a_{r}} \ldots$ along radiclpath
the e.mif induced $\quad e==\int_{\langle\lambda\rangle} E_{m} \cdot \overline{d l}$ voltos

$$
\begin{aligned}
& e=-\int_{r=0}^{a} \omega r \text { Bar. } d r \overline{a_{r}} \\
& r=0 \\
& =-\omega B \int_{r=0}^{a} r d r \operatorname{ar} f \frac{1}{a r} \\
& c=-\left.\omega B \frac{r^{2}}{2}\right|_{0} ^{a} \\
& e=\frac{-\omega B}{2}\left[a^{2}-0\right] \\
& e=-\frac{w a^{2} B}{2} \\
& \text { from potential } \\
& \text { Concept }
\end{aligned}
$$

60°
\bigcirc
\therefore Indued e.mf in a Foraday'ndisc in given by

$$
e=\frac{-\omega B a^{2}}{2} \text { voltin }
$$

Note:- if ur arsume thectration of Mognaticfield acting downwards ie $\bar{B}=B_{3}\left(\overline{a_{3}}\right)=-B_{3} \overline{a_{3}} \omega \mathrm{~b} / \mathrm{m}^{2}$ the indred will be $e=+\frac{W B a^{2}}{2}$ volt'0 in tre sign.
problemy

$$
F=2 x^{3} a x+4 x^{4}-\bar{a} y / m .
$$

06-DEC2009/Ian 2010
22 With usual notations, derive the Maxvell s equationit pont form as derived fromTaraday's Law. Hence show that electic fide $\mathrm{E}=2 x^{3} a_{8}+4 x$ atm can not arise from a statle SfatiC discribution of cuarges.
Solu':- Maxwell'n cy" in point form from Faradayin Law our quation $: e \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} v / m^{2}$
problem: soly

$$
\text { given } \bar{E}=2 x^{3} \bar{a}_{x}+\left.4 x^{4} \overline{a_{y}}\right|_{m}=E_{x} \bar{a}_{x}+E_{y} a_{y} y / m
$$

If E in said to be not arise 0° and from a static dintribution () $\left\{\begin{array}{l}E_{x}=2 x^{3} \mathrm{v} / \mathrm{m} \\ E_{y}=4 \times 4 \mathrm{v} .\end{array}\right.$ charges then $\quad \pi \times \bar{E} \neq 0$
chule

$$
\nabla \times \bar{E}=16 x^{3} \overline{a_{3}} 4 / m^{2}
$$

$$
\text { Sinu" } \nabla \times \bar{E}=16 x^{3} \overline{z_{3}} \neq 0 \therefore \text { the given fied". }
$$

problem 5

$\vec{B}=0.5 \cos (3779)\left[3 \hat{\mathrm{a}}_{\mathrm{y}}+4 \hat{a}_{\mathrm{z}}\right] \mathrm{T}$. Calculate the vollage induced by the loop.
Solu:- give $\bar{B}=0.5 \cos (377 t)\left[3 \overline{a y}+4 \overline{a_{z}}\right]$. Tola.
T-Solu':
radius $\rho=10 \mathrm{~cm}=0.1 \mathrm{~m}$

the total flux (ϕ) traing the sustace is

$$
\begin{aligned}
& \overline{a_{y}} \cdot \overline{a_{z}}=0 \\
& \text { - } \overline{a_{3}} \cdot \overline{a_{3}}=1 \\
& 4^{4 O^{3}} \\
& \Phi \phi=\int_{\langle S\rangle}[0.5 \cos (377 t)]\left[3 \overline{a_{y}}+4 \overline{a_{3}}\right] \cdot \rho d \rho d \phi \overline{a_{z}} \\
& =\int_{\langle S\rangle}[0.5 \cos (377 t)]\left(4 \bar{a}_{3}\right) \cdot \rho d \rho d \phi \overline{a_{3}}
\end{aligned}
$$

$$
\begin{aligned}
&=2 \operatorname{con}(377 t) \times\left(5 \times 10^{-3}\right) \times(2 \pi) \times 1 \\
& *^{*} \phi \\
&=20 \pi \times 10^{-3} \cos (377 t) \mathrm{wb} \\
&=6.28318 \cos (377 t) \mathrm{mwb}
\end{aligned}
$$

the indued voltage ert in the Loop is by

$$
\begin{aligned}
& v=e=-\frac{d \phi}{d t} \text { whin } \\
& =-\frac{d}{d t}\left[20 \pi \times 10^{-3} \cos (3 \pi-1)\right] \\
& =-20 \pi \times 10^{-3} \times \frac{1}{6}(377 t) \times 377 \\
& =+7540 \pi \times 10^{-3} \sin (377 t) \\
& v=23.6876 \sin (377 t) \text { volts }
\end{aligned}
$$

Notes- if [irCulor hoop has in number of tums the indued $\operatorname{emf} v=23.6876 \mathrm{~N} \sin (377 t)$ volt's i.e $\quad v=-\pi \frac{d \phi}{d t}$ volt'?

Eq:. if $N=10$ tums $\quad u=230.6876 \sin (377 t)$ volt is

$$
20 \Omega
$$

- A circular conducting bop of radius 40 cm lee in $x y$ plane and has resistance of 20Ω. 4 the magnetic flux density in the region is givetas.
$-\hat{B}=0.2 \cos 500 t \hat{X}+0.75 \sin 400 \hat{\gamma}+12 \cos 31412 \mathrm{~T}$.
Determine effective value of induced current m the loop.

x
1 plano.

$$
\longrightarrow 2=0 \text { plane }
$$

$$
\overline{d s}=\rho d \rho d \phi \overline{a_{3}}
$$

$$
\left[\rho d \rho d \phi \overline{a_{z}}\right]
$$

$$
\phi=\int_{\langle s\rangle} 1 \cdot 2 \cos \left(314 \theta \overline{a_{z}} \cdot \rho d \rho d \phi \overline{a_{z}}\right.
$$

$$
\overrightarrow{a_{x}} \cdot \overrightarrow{a_{z}}=0
$$

$$
\bar{a}_{y} \cdot \bar{a}_{z}=0
$$

$$
\bar{a}_{3} \cdot \bar{a}_{3}=1
$$

$$
\begin{aligned}
& =1.2 \cos (314 \theta \times 0.08 \times 2 \pi \times 1 \\
& \phi=0.192 \pi \cos (314 t) \quad w b
\end{aligned}
$$

\therefore the indued voltage $e=\frac{-d p}{d t}$ volt?

$$
\begin{aligned}
& e=-0.192 \pi x-\sin (314 t) \times 314 \\
& e=189.4 \sin (314 t) \text { volth }
\end{aligned}
$$

\therefore the currust in the loop

$$
10 \text { - June /July } 2012
$$

$$
\frac{10 \text { - June play } 2012}{\leftarrow}=2 \cdot 5 \sin 10^{3} t a_{z}
$$

$$
0 . a_{4} \frac{7}{a_{x}}-1 \text { (or) }
$$

(05 Marts)
EE- Juries /July 2016
(3) c. A straight conductor of length 0.2 m , lies on x-axis with one end at origin. The conductor is subjected to a magnetic flux density $B=0.04 \bar{a}_{y}$ Tesla and the velocity $\bar{v}=2.5 \sin 10^{3} t a_{z} \mathrm{u} / \mathrm{sec}$. Determine motioual emf induced in the conductor:
solus:- i) given $\bar{B}=0.04 \overline{a y}$ Tola; $|\bar{B}|=004$.
and $\begin{aligned} & \bar{v}= 2.5 \sin \left(10^{3} t\right) \overline{a_{z}} \text { mpec. Qulocity valor } \\ &|\bar{v}|=2.5 \sin \left(10^{3} t\right)\end{aligned}$

x
Find the induced voltage in the conductor if $\bar{B}=0.04 a_{y} T$ and $\vec{v}=2.5 \sin 10^{3} \mathrm{a}_{z} \mathrm{~m} / \mathrm{s}$, fid
induced emf, if \bar{B} is changed to $0.04 \bar{a}_{x}^{2}$ T. $\bar{B}=0.04 \bar{a} y$
 m mes
\qquad

\qquad
\qquad

\qquad
\qquad
the induced emf $e_{m}=\int_{<l} E_{m} \cdot \overline{d e}$ voltio
Since the condutor in placed along x caxis. and Length $x=0.2 \mathrm{~m}$

$$
\overline{d l}=d x \overline{a_{x}}
$$

$$
\therefore \quad 0<x<0.2 m
$$

problemNo. 7
Note:- In quation NO. 23 Length of the Conduf or On not mintion \therefore we can amume it length to be ' $x \mathrm{~m}$.

$$
\begin{aligned}
& c_{m}=\int_{x=0}^{x}-0.1 \sin \left(10^{3} t\right) \overline{a_{x}} \cdot d x \overline{a_{x}} \\
& e_{m}=-0.1 \sin \left(10^{3} t\right) \int_{x=0}^{x} \mathscr{L}_{x}^{x} \times \overline{a_{y}}+\frac{1}{a_{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore e_{m}=\int_{x=0}^{0.2}-0.1 \sin \left(10^{3} t\right) \overline{a_{x}} \cdot d x \overline{a_{x}} \\
& =-0.1 \sin \left(10^{3} t\right) \int_{2=0}^{0.2} d / 2 a_{n} \uparrow \frac{1}{a_{x}} 0_{0}^{0} \\
& e_{m}=-0.1 \sin \left(10^{3} t\right)(0.2) \\
& \therefore e_{n}=-0.02 \sin ^{6}\left(0^{3} t^{6}\right. \text { volin }
\end{aligned}
$$

ii) if $\bar{B}=0.04 \overline{a_{x}}$ Teola then theindued motioniof emf is $c_{m}=\int_{\langle\Delta} \bar{E}_{m} \cdot d l=\int_{\langle i\rangle}(\bar{v} \times \bar{B}) \cdot \overline{d l}$ uofto

$$
\begin{aligned}
& \bar{v}=2.5 \sin \left(10^{3} t\right) \overline{a_{3}} \mathrm{~m} / \mathrm{sec} . \\
& \bar{E}_{m}=\bar{v} \times \bar{B}=|\bar{v}||\bar{B}| \sin \theta \bar{a}_{n} \\
& \text { Antichat } \\
& \text { rilation } \\
& x+a_{3} \times a_{x}=+\overline{a_{y}} \\
& \theta=90^{\circ} \\
& E_{m}=2.5 \sin \left(10^{3} t\right) \times 0.04 \operatorname{sip}^{\prime}\left(90^{\prime}\right)\left(+\bar{a}_{y} j_{0}^{0}\right. \\
& \therefore \overline{a_{n}}=+\overline{a_{y}} \\
& \overrightarrow{F_{m}}=0.1 \sin \left(10^{3} t\right) \overrightarrow{a_{y}} \text { voltis } \\
& \text { Sinu the condutor placed }
\end{aligned}
$$ along axin $\overline{d l}=d_{x} \bar{a} f 0<x<0.2 m$

\dot{x}
obs:- In thincase motional indued $\operatorname{emt}\left(\mathrm{em}_{\mathrm{m}}\right)$ in zero bez the Conductor cutn No field. Lines. \therefore the indoed voltage must be zero. (o) \bar{B} and $\overline{d e}$ ie magnatic filld f Condutor place che parallel to cach other \therefore notild times

for 1 minute $\rightarrow 3000$ revoluthing (given)

$$
\begin{aligned}
\text { Iminute }=60 \text { sernd } \\
1 \text { second }
\end{aligned} \rightarrow \frac{30000}{}=50 \text { revolutions } / \mathrm{sec} .
$$

$$
\text { radius } r=d / 2=\frac{40}{2} \mathrm{~cm}=20 \mathrm{~cm}=0.2 \mathrm{~m} \text {. }
$$

$$
\bar{v}=100 \pi(0.2) \overline{a_{\phi}}=20 \pi \overline{a_{\phi}} \mathrm{m} / \mathrm{sec}
$$

the fild $\bar{F}_{m}=\bar{v} \times \bar{B}=20 \pi \bar{a}_{\phi} \times 0.02 \overline{a_{r}}$

$$
\text { and } \overline{d l}=d_{3} \overline{a_{2}}
$$

$$
\begin{gathered}
\overline{a_{\varphi}} \times \overline{a_{r}}=-\overline{a_{z}} \\
\uparrow z
\end{gathered}
$$

the induced conf $\left(C_{m}\right)$

problang
$\cdots c^{12} c^{2 \Omega} \quad$ BU 2000.
Calculate the voltage across 10 hm and 2 ohm resistors shown in fig. the loop is located in the XY plane -
and $n=0.1 t w h$.
given $\phi=0.1 t$ wb.

Solus:-
the induced emf ' e ' in given by

$$
e=-\frac{d \phi}{d t}=-0.1 \frac{d(t)}{d t}=-0016
$$

the magnitude of payed emf $|e|=0.1$ volts.
applying to the bop

$$
\begin{aligned}
& 0.1=2 i+1 \\
& 0.1=3 i \Rightarrow i=\frac{0.1}{3} \\
& i=0.033] \text { Amparin. }
\end{aligned}
$$

The voltage acrom the 2Ω resistor

$$
\begin{aligned}
& V_{2 \Omega}=2 \times i=2 \times 0.0333 \\
& V_{2 \Omega}=0.0666 \text { volt's }
\end{aligned}
$$

$$
\begin{aligned}
& =\left.4 \sin (\omega t) \cdot \frac{\rho^{2}}{2}\right|_{0} ^{\rho} \times 2 \pi \times 1 \\
& \phi=4 \sin (\omega t) \times \frac{\rho^{2}}{\frac{2}{2}} \times 2 \pi=4 \pi \rho^{2} \sin (\omega t) \omega b .
\end{aligned}
$$

$$
\therefore \phi=4 \pi \rho^{2} \sin (\omega t) \text { wb for } \rho \leq \rho_{0} \mathrm{~m} \text {. }
$$

i i) if $\rho>\rho_{0} m \Rightarrow 0<\rho<\rho_{0}$

$$
\begin{aligned}
& \text { ii) if } \rho>\rho_{0} m \Rightarrow 0<\rho<\rho_{0} \\
& \Rightarrow \phi=\left.\left.\right|_{\rho=0} ^{\rho_{0}}\right|_{\phi=0} ^{2 \pi} 4 \sin (\omega, t)
\end{aligned}
$$

$$
\begin{gathered}
\alpha^{\theta^{\circ}} \phi=\left.4 \sin (\omega t) \cdot \frac{\rho^{2}}{2}\right|_{0} ^{\rho_{0}} \times 2 \pi \\
\\
\therefore \quad \phi=4 \sin (\omega t) \cdot \frac{\rho_{0}^{2}}{7} \times 2 \pi \\
\therefore \quad \phi=4 \pi s_{0}^{2} \sin (\omega t) \text { for } \rho>\rho_{0} m
\end{gathered}
$$

$$
\therefore \phi=\int_{\langle S\rangle} \bar{B} \cdot \overline{d S}= \begin{cases}4 \pi \rho^{2} \sin (\omega t) ; & \rho \leq \rho_{0} m \\ 4 \pi \rho_{0}^{2} \sin (\omega t) ; & \rho>\rho_{0} m\end{cases}
$$

the indued einf

$$
e=\left\{\begin{array}{l}
-4 \pi \rho^{2} \omega \operatorname{con}(\omega t) ; \quad \rho_{t} \leq \rho_{0} \\
-4 \pi \rho_{0}^{2} \omega \cos (\omega t)^{v o l t h} ; \rho>\rho_{0}
\end{array}\right.
$$

and $e=\oint_{\langle l\rangle}{\overline{I_{m}}} \cdot \overline{d l}=\int_{\langle\phi\rangle} E_{\phi} \bar{a}_{\phi} \cdot \rho d \phi \overline{a_{\phi}}=\left.E_{\phi} \rho\right|_{\phi=0} ^{2 \pi} d \phi \bar{a}_{\phi} \phi \overline{a_{\phi}}$
along $\overline{d l}=\rho d \phi \overline{a_{y}} m$
Civuluth puth

$$
\begin{equation*}
e=\oint_{\langle i\rangle} \bar{E}_{m} \cdot \overline{d l}=2 \pi \rho E_{\phi} \stackrel{\text { vol } H!}{\leftarrow} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& c=\frac{-d \phi}{d t} \text { ult }=\left\{\begin{array}{l}
-d / d t\left[4 \pi \rho^{2} \sin (\omega t)\right] ; \rho \leq \rho_{0} m \\
-\frac{d}{d t}\left[4 \pi \rho_{0}^{2} \sin (\omega t) ; \rho>\rho_{0} m\right.
\end{array}\right. \\
& \therefore \quad c= \begin{cases}-4 \pi \rho^{2} \operatorname{con}(\omega t) \times \omega & \rho_{0} \leq \rho_{0} \\
-4 \pi \rho_{0}^{2} \cos (\omega t) \times \rho_{0} & \rho>\rho_{0}\end{cases}
\end{aligned}
$$

equating $e^{4}(1)$ and $e q^{4}(2)$

$$
\begin{aligned}
\Rightarrow & \phi^{\prime}\left(\rho E_{\phi}=-4 \psi \rho^{2} \omega \operatorname{con}(\omega t) \quad ; \rho \leq \rho_{0}\right. \\
& \Rightarrow E_{\phi}=-2 \omega \rho \cos (\omega t) ; \rho \leq \rho_{0}
\end{aligned}
$$

and

$$
\begin{align*}
& 2 \pi \rho E_{\phi}=-4 \pi \rho_{0}^{2} \omega \cos (\omega t) ; \rho>\sin \\
& \Rightarrow E_{\phi}=-2 \int_{0}^{2} \omega \omega \cos (\omega t) ; \beta 100^{\circ} \\
& \therefore F_{\phi}=\left\{\begin{array}{l}
-2 \omega \rho \operatorname{con}(\omega t) ; \rho \leq \rho_{0} \\
-\frac{2 \rho_{0}^{2}}{\rho} \omega \cos (\omega t) ; \rho>\rho_{0}
\end{array} \quad u / m\right. \tag{4}
\end{align*}
$$

ie.
A-Ab:-- Tenfication using Maxwdís equ

$$
i e \quad \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} v / m^{2}
$$

given

$$
\bar{B}=\left\{\begin{array}{cc}
4 \sin (\omega t) \overline{a_{3}}, & \rho \leq \rho_{0} m \\
0, & \rho>0 m
\end{array}\right.
$$

$$
\frac{\partial \bar{B}}{\partial t}=\left\{\begin{array}{c}
4 \cos (\omega t)\left(\omega_{1}\right) \overline{a_{2}} ; \rho \leq \rho o m \\
0
\end{array}\right.
$$

$$
\begin{align*}
& \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}=\left\{\begin{array}{cc}
-4 \omega \operatorname{con}(\omega t) a_{z} & \prime \rho \leq \rho_{0} \\
\theta & \rho>\rho_{0} m
\end{array}\right. \\
& \text { fild } \bar{E} \text { must be }
\end{align*}
$$

the fild \bar{I} must be

$$
\begin{aligned}
& \bar{F}=E_{\phi} \bar{a}_{\phi} \text { ofm, } \quad p \mid s, \phi, z
\end{aligned}
$$

$$
\begin{align*}
& \nabla \times \bar{E}=\frac{1}{\rho} \frac{\partial^{\left(P E_{\phi}\right)}}{\partial \rho} \cdot \overline{a_{z}} \tag{b}
\end{align*}
$$

equating quation@ (D) p^{u} (b)

$$
\begin{aligned}
& 00 \frac{1}{\rho} \frac{\partial\left(\rho E_{\phi}\right)}{\partial \rho} \overline{a_{2}}=-4 \omega \cos (\omega t) \overline{a_{2}} \\
& \Rightarrow \frac{1}{\rho} \frac{\partial\left(\rho E_{\phi}\right)}{\partial \rho}=-4 \omega \cos (\omega t) \\
& \frac{\partial\left(\rho E_{\phi}\right)}{\partial \rho}=-4 \omega \cos (\omega t) \rho
\end{aligned}
$$

Integrating wrt 's' on bothside

$$
\begin{aligned}
& f E_{\phi}=-\not 4 \omega \cos (\omega t) \times \frac{\rho^{2}}{x} \\
\Rightarrow & E_{\phi}=-2 \omega \rho \cos (\omega t) ; \quad \rho \leq \rho_{0} m .
\end{aligned}
$$

Cane ii. $\quad \rho>\rho_{0} m$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\rho} \cdot \frac{\partial\left(\rho E_{\phi}\right)}{\partial \rho} \overline{a_{z}}=0 \cdot \overline{a_{z}} \\
& \Rightarrow \frac{\partial\left(\rho E_{\phi}\right)}{\partial \rho}=0
\end{aligned}
$$

Interating w. .

$$
\begin{equation*}
\rho E_{\phi}=c_{1} D_{B}^{\infty} \Rightarrow E_{\phi}=c_{1} / \rho \tag{d}
\end{equation*}
$$ using Condition i.e

at $s=\rho_{0} \mathrm{~m}$; bath firldin cre equal
Yi.e both cqu $0 c^{u}(d)$

$$
\begin{aligned}
& \rho^{y 1 \cdot e} \text { both } \varphi^{u} \odot-2 \omega \rho \cos (\omega t)=c_{1} / \rho @ \rho=\rho_{0} m \\
& \Rightarrow-2 \omega \rho_{0} \cos (\omega t)=c_{1} / \rho_{0} \\
& \Rightarrow c_{1}=-2 \omega \rho_{0}^{2} \cos (\omega t)<0
\end{aligned}
$$

using φ^{4} (c) in c^{4} (d)

$$
\begin{equation*}
\mathcal{L}_{\phi}=\frac{-2 \omega \rho_{0}^{2}}{\rho} \operatorname{con}(\omega t) ; \rho>f_{0} m= \tag{f}
\end{equation*}
$$

it inobromed that $\varphi^{4}\left(\sqrt[b]{)}\right.$ eq $^{4}(y)$
\therefore Both thougto give sume Ans.
Oleoing Maxwringy Ans. is ventifed.

$$
\text { Topic } 5.2 \text {. Ir consinteny of Amperes Law (Modified }
$$

2 ,
Ampriolaw).

What is IDe inconsistency of Ampere's lave with equation of continuity? Derive the modified form of Amperes lay by Marvel. \qquad (06 Marks)
(or) 10-DEC2011/Jan 2012

What is displacement current and equation of continuity? Derive Maxwell's equation for Ampere's citcuitlow.
(06 Marks) 06 - June /July 2012

Define displacement current density:

Derive Maxwells equation from Amperes lave

- (06 Marks) \qquad
06 - June /July 2011
Modify the Ampere's circuital law to suit the time varying condition.
(or)

$$
\begin{aligned}
\nabla \times \mathrm{H}=\mathrm{J}+\frac{\partial \mathrm{D}}{\partial t}, \overrightarrow{\mathrm{H}}= & \square \frac{\partial \widehat{J}}{\partial t} \\
& +5 \text { - May/ June } 2010
\end{aligned}
$$

Mexntil's.

06-DEC2009/Jan 2010
DANKAN V GO nt Professor
 Dept. of E8CE, SVCE Bangalore -56215
Mob : 9844554940

Sta no the t

$$
\nabla \times \bar{H}=\bar{J} A_{m}{ }^{2}
$$

$$
\begin{aligned}
& \text { taking divergence on bothside } \\
& \nabla \cdot(\nabla \times \bar{H})=\nabla \cdot \bar{J} \mathrm{Am}^{3}
\end{aligned}
$$

Note:- According to the valor identity, divergence of a
Curl of any viator is zero.

$$
\begin{aligned}
& \because \text { ide } \quad \bar{\nabla} \cdot(\nabla \times \bar{A})=0 \\
& \Rightarrow{ }^{\prime \prime} \bar{x} \cdot(\nabla \times \bar{H})=0 .
\end{aligned}
$$

$\therefore c q^{4} 0$ becomes

$$
\begin{align*}
\nabla \cdot(\nabla \times \bar{H}) & =\nabla \cdot \bar{J} A_{0} \\
\Rightarrow \nabla \cdot \bar{J} & =0 \hat{\theta}^{3} \mathrm{~A}^{3}
\end{align*}
$$

the above ie $\bar{V} \cdot \bar{J}=0$ is not [onsinten with the Continuity Current equation.

$$
\nabla \cdot \bar{J}=-\frac{\partial h_{y}}{\partial t} A m^{3}
$$

Q 0°. it in observed that Amperin Law is inconsistent and some modification is required in it. ut suppose if we add an unknown bufor \bar{G} to $q^{4}(1)$

$$
\begin{equation*}
\text { i.e } \quad \sigma \times \bar{H}=\bar{J}+\bar{G} \tag{3}
\end{equation*}
$$

Now, faking divergence on bothside

$$
\begin{aligned}
& \nabla \cdot(\bar{\nabla} \times \bar{H})=\bar{\nabla} \cdot \bar{J}+\bar{\nabla} \cdot \bar{G} \Rightarrow 0 \\
& \Rightarrow \nabla \cdot \bar{J}+\nabla \cdot \bar{G}=0
\end{aligned}
$$

$\left.{ }_{\substack{\text { Entinuity } \\ \text { equnt }}}^{\text {Using }}\right] \cdot I=-\frac{\partial \rho_{y}}{\partial t} A m^{3} 0^{\circ}$ above φ^{u}

$$
\Rightarrow-\frac{\partial l_{y}}{\partial t}=-\nabla \cdot \bar{G} C
$$

Qu.knt from point form of Gaurinkaw

$$
\text { Yi.e } \square \cdot \bar{D}=\rho_{4}
$$

taking differentiation on both side w.rt' 't'

$$
\left[\nabla \cdot \frac{\partial \vec{D}}{\partial t}\right]=\frac{\partial f_{u}}{\partial t}
$$

(大) $\left[\square \cdot \dot{\bar{D}}=\dot{\rho}_{v}\right](5)$
using $q^{4}\left(5\right.$ in eq$^{4} \otimes$

$$
\text { i.e } \bar{\nabla} \cdot \bar{G}=\frac{\partial \rho_{u}}{\partial t}=\bar{\nabla} \cdot \frac{\partial \bar{D}}{\partial t}
$$

By Comparing both sider of abome cqu
we can write the unknow vator

$$
\bar{G}=\frac{\partial \bar{D}}{\partial t}=\dot{D} \quad A_{m^{2}} \mathrm{D}_{\mathrm{G}} \mathrm{O}^{2}-\mathrm{suc} .
$$

\therefore Amparin Law in Afodited to

both \vec{J} and $\frac{\partial \vec{D}}{\partial t}$ tias same unitn ie Alm ${ }^{2}$ called
Eurrent density.
the term $\frac{\partial \vec{D}}{\partial T}$ (a) \dot{D} called Turrut density and is abo called as displacement Curnent density. While \bar{J} is

Called as Conduction Eurrent density.
Thus the sifu of Eurrent density can be formedas

$$
x^{x} \bar{J}_{\text {total }}=\overline{\bar{J}}=\bar{J}_{\text {condent }}=\overline{\bar{J}_{c}}+\overline{J_{D}} \bar{A}_{A_{m}^{2}}
$$

By Integration of eq 4 (6) ovra Sutace

Othe above eq becomes
the total Cumnt Condution $I_{\text {toal }}=\sqrt{I_{C}^{2}+I_{D}^{2}}$ Amperio bez
(0) $\left[|\varepsilon|=\sqrt{i_{c}^{2}+i_{D}^{2}}\right]$ Amperio $]$ iypavator sum sum
$\frac{\text { total }}{\text { Dept. of ERCEE, SVCE Cormt }}$ dinploument coment

$$
\begin{aligned}
& T_{0}^{b} \oint_{<l>}^{\phi} \bar{H} \cdot \overline{d l}=\int_{\text {cs }}(\nabla \times \bar{H}) \cdot \overline{d s} A
\end{aligned}
$$

 the form $\bar{J}_{c}=\sigma \bar{E} A m^{2}$ iscalled Condation
[iorrent dinsity. and comedtection Current $\bar{i}_{\dot{e}_{c}}=\left|\bar{J}_{c}\right| A \mid A_{\text {mpm }}$
 vits 贵 h^{2}

$$
\text { i.e } i_{c}=|\overrightarrow{J c}|: A=\int_{5 s} \tilde{J}_{c} \cdot \cdot \cdot d s
$$

Ampun
II when A-Arcalition
 dinplecement [umnt dissity.

$$
i_{D}=\frac{\left|J_{D}\right|}{A_{c a}}=\int_{S D} J_{D} \cdot d_{S} \quad \text { Ampan } i_{D}=\mid F_{D} \cdot A ; \text { Ampenh. }
$$

Totat cument donsing (V) $J_{\text {total }}^{2}=\overline{J_{C}}+\overline{J_{D}} \mathrm{Alm}^{2}$

Note:-

$\partial / \partial t t+] \stackrel{F \cdot T}{\rightleftarrows} j \omega F(\omega)$
$\therefore \partial / \partial t \stackrel{\text { F.T }}{\xrightarrow{*} j \omega}$

$$
\therefore J_{\text {total }}=\bar{E}+j \omega \in \bar{E} \cdot A / m^{2}
$$

(30)

$$
\bar{J}_{\text {total }}=(\sigma+j \omega \theta) \bar{E} \mathrm{Am}^{2}
$$

 opich2a, En, Empution and Ciplcuement

Densityen
from point-form Amparin Law $\nabla \times \bar{H}=\overline{J_{c}}{A h^{2}}^{2}$.

- the modified AmperinLaw

$$
\text { i.e } \quad \triangle \times \vec{H}=\frac{1}{J_{c}}+\frac{\partial \vec{D}}{\partial t} \quad A l m^{2}<(21)
$$

This in Maxnolin equection (baned on Amperen find for a time-varying field.

- Current density. and \bar{J}_{C} sendition Curent density.
i.e $J_{c}=\sigma \bar{F} \operatorname{Jrm}^{2}$...abocalled point form it ohmin Law.
 of Mife elutroris.

$$
\overline{J_{c}}=\bar{\sigma} A l_{n}^{2} \Rightarrow\left|\bar{J}_{c}\right|=\frac{i_{c}}{A} A / m^{3}
$$

$+\infty \sum_{R}$ the Conduation Cument.

$$
\begin{aligned}
& \text { Condution Lerrunt } \\
& l_{c}^{\theta}=\left|J_{c}\right| \times A
\end{aligned}
$$

The insurtion of $\overline{J_{D}}$ into $q^{u}(1)$ was one of the major contribations $\frac{\text { of Maxnell. }}{\text { Dept of ElCC., SVCE }}$
45 Page 424
without the term Jo, the propogation of elutromagnitic Wav. W.I.T \& M (Eg . radio $T V$ waves) would be impanible. at Low frequincis, J_{p} is usually negluted compared with - $-\overline{J_{c}}$.

* Howwer, at radio frequencies, the two $\operatorname{tanin}\left(i c \overline{J_{0}} \& \overrightarrow{J_{C}}\right)$. are comparable.
* Dioplacement [urrent is a rosult of time-vanging clutricfirld. A typical example of such current is this [ument through a Capacitor when an atternating vethe source in apolied to its plates.

$$
\overline{J_{D}}=\frac{\partial \bar{D}}{\partial t} A m_{m}^{2} \text { and } \sum_{i_{D}}=\left|\overline{J_{D}}\right| A \text { Amparin }
$$

$$
\text { (o) } \mid \overline{J_{D} \mid=i D} A h_{m^{2}}
$$

the Dosplacement Corrent $i_{D}=J_{D} \times A=\frac{E A}{d} \frac{\partial \cdot v(t)}{d t}$

$$
\Longrightarrow i_{D}=C \frac{d v(t)}{d t} \text { Amperch } \quad 424-Y
$$

? Displaument Eurrint is Enothing but Eument in a Capacotors 852

$$
\begin{aligned}
& \text { Mag of } \overrightarrow{J D} \\
& J_{D}=\frac{\partial D}{\partial t}+\operatorname{anm}_{2} \\
& \Rightarrow J_{D}=\frac{\partial(E t)}{\partial t} \\
& \text { Hote } \frac{\partial E}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } E=\frac{v(t)}{d} v / m \text {.for simusoibal fied } \\
& \Leftrightarrow J_{D}=\frac{\epsilon}{d} \frac{\partial v(t)}{d t} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& b_{C_{2}} \overline{J_{C}}+{ }^{\Sigma} \overline{J_{D}}
\end{aligned}
$$

problem1) $=50 \sin 10^{3 t}$ wolts
44 A parallel plate capacitor witt plate area $5 \mathrm{~cm}^{2}$ and plate separation of 3 mm has a woltage of $E=2 \epsilon_{0} \mathrm{Hm}$.
Solui- $\overline{\text { given }}$ - Area $=5 \mathrm{~cm}^{2}=5 \times\left(10^{-2}\right)^{2-} \mathrm{m}^{2}$

$$
\begin{gathered}
=5 \times 10^{-4} \mathrm{~m}^{2} \\
d=3 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m} . \quad v(t)=50 \sin \left(10^{3} t\right) \text { upltn } \\
\epsilon=2 \epsilon_{0} \quad i_{d}=?
\end{gathered}
$$

the dimptement Eurecht i_{d} ingiven
A the cimpenment incapartion Q° by $\epsilon=2 \epsilon_{0}$ by Incapartig $a_{C}=i_{D}=\frac{c d r a(t)}{d T}$ $=\frac{\varepsilon_{A}}{d} \frac{d r e c t}{d t}$; Anpi.

$$
\overline{J_{D}}=\frac{\partial \bar{D}}{\partial t}=\epsilon \frac{\partial \vec{E}}{\partial t} \text { 位 } \&|E|=\frac{v(t)}{d} v / m
$$

$$
\begin{aligned}
& J_{D}=\frac{t}{\partial t}=\frac{E}{\partial t}\left(J^{\prime} \left\lvert\,=\frac{\epsilon}{d} \frac{d v(t)}{d t} \mathrm{~A} / \mathrm{m}^{2}\right.\right. \\
&
\end{aligned}
$$

$i_{D}=\left|\overline{J_{D}}\right| \times$ Areaof Cronsution $=\frac{50 \in \times 10^{3}}{d} \operatorname{con}\left(10^{3} t\right) \times$ Area

$$
\begin{aligned}
& =\frac{5 J_{D} \mid \times \text { Area of }}{}=\frac{50 \times 2 \times 8.854 \times 10^{-12} \times 10^{3}}{3 \times 10^{-3}} \cos \left(10^{3} t\right) \times 5 \times 10^{-4} \\
& =1 \text { Andinin }
\end{aligned}
$$

$i_{D}=0.14756 \cos \left(10^{3} t\right)$ MAmpirin

$$
i_{D}=147.566 \operatorname{con}\left(10^{3} t\right) 4 A
$$

Topic5.b Lontangent (o) dimipation fator of dichetric material:Question. 10-DEC2011/Jan 2012

What is toss tangent? Explain its premical inpotatee.
Solu': w.k. the candution Curent dinsity

$$
\begin{align*}
& \overline{J_{c}}=\sigma \bar{E} \quad A_{m}{ }^{2} \\
& \left|\overline{J_{c}}\right|=\sigma|\bar{E}| \stackrel{A_{m}{ }^{2}}{\longleftrightarrow} \tag{i}
\end{align*}
$$

and dinplacement Eument dinnity $\overline{J_{p}}$

$$
\begin{aligned}
& \text { and dinplacement Cument dinnity } J_{0} \\
& \overline{I_{D}}=\frac{\partial \bar{D}}{\partial t}=E \frac{\partial E}{\partial t}=j \omega \in E \quad \\
& \left|\overline{J_{D}}\right|=\omega \in|\bar{E}| A \mid n^{2}
\end{aligned}
$$ Condotion Current densign the displacment $|J|=\sqrt{0+i^{2}}=\sqrt{1}=1$

$$
e\left|\frac{\overline{J_{C}}}{\bar{J}_{D}}\right|=\frac{\sigma|\bar{\varphi}|}{\omega \in|\bar{E}|}=\frac{\sigma}{\omega \epsilon}
$$

$$
\left|J_{C}\right|=\frac{\sigma}{I_{D} \mid} \nprec \text { Lentegent }(\infty)
$$

Lentagent (a) dibutric matrials.
thus the ratio of the magnitude of the Condution Eument density to the dimplacement Euennt dinsity deponds on the proputios of the medium σ, E and fropuncey (u)

Note: the condetion [umentdensity $\bar{J}_{C}=\sigma \bar{E}$ and dinplacement [urent dinsity $\overline{J_{D}}=\epsilon \frac{\partial \bar{E}}{\partial t} A m^{2}$ me
\therefore purpindicular $\left(I^{\varepsilon}\right)$ to each other.

i. for a condutors the value of Condugy (σ) is very Large
\therefore the condion [urrent in vinoborge compand to dinplace ment Cument.
indinatesteot
i.e if $\frac{\pi}{\omega t} \gg<\frac{\sigma}{\omega t}>1$ givn mudium

Eg'- Silver $\sigma=6.17 \times 10^{7} 0^{\circ}$.

Aluminum $0_{0}^{0.1} 3.8 \times 10^{7} \mathrm{v} / \mathrm{m}$.
(8) $\sigma \gg \omega t$
ii. In of dielutric Medium ' σ '' in vory small.

Q . The dimplaumint Eurrent in graterthan
compare to the Conduation Current.

$$
\text { i.e } \frac{\left|\bar{J}_{C}\right|}{\left|\bar{J}_{D}\right|}=\frac{\sigma}{\omega \epsilon} \ll 1
$$

$$
\left|\bar{J}_{C}\right| \ll\left|\bar{J}_{D}\right|
$$

Egi-Teflon, $\left|J_{D}\right|$ we stone, soil, ate.

$$
\sigma \ll \omega \epsilon
$$

iii. if $\left(\frac{\sigma}{\omega \epsilon}\right) \rightarrow 0$ i.e $\left|\frac{\widehat{J_{C}}}{\overline{J_{0}}}\right| \rightarrow 0$ then the given Modium in Called perpent dicletric Medium.
$\frac{1}{\frac{1}{\text { Dept. of ERCE, SVCE }} \frac{\bar{v}}{\omega t} \simeq 0 \text { Eg'-Diamond, Indulator Page 24G }}$

Topic 5.2 C Eontinuaity Current Eequation from Maxualin equation.
Quoutions
With usual notations, derive the differential form of continuity equition from the Maxwelles equations.

- d. Derive continuity equation from Maxwell's equation.
${ }^{1}$ solu:- i.e $\nabla \cdot \bar{J}=-\frac{\partial S_{y}}{\partial t} A / \mathrm{m}^{3}$ using Maxailfinequa.
from genralized Ampario Eircutal Law (大) M
amparin Law

$$
\nabla \times \vec{H}=\bar{J}_{c}+\frac{\partial \bar{D}}{\partial t}
$$

taking divergence ore Both side

$$
\begin{aligned}
& \text { taking divergence } \\
& \nabla \cdot(\times \bar{H})=\bar{B}+\nabla \cdot\left(\frac{\partial D}{\partial t}\right) \\
& 0 \text { vator } \times \text { ie } \nabla \cdot(\nabla \times \bar{A})=0
\end{aligned}
$$ \subset any vector \bar{A}.

$$
\begin{aligned}
& \vec{\nabla} 0 \pm \nabla \cdot \bar{J}+\nabla \cdot\left(\frac{\partial \bar{D}}{\partial t}\right) \\
& \bar{\nabla} \cdot \bar{J}=-\nabla \cdot\left(\frac{\partial D}{\partial t}\right) \\
& \nabla \cdot \bar{J}=-\frac{\partial}{\partial t}(\nabla \cdot \bar{D}) A \rho_{m^{3}}
\end{aligned}
$$

using pointform of Gawnitaw $\nabla \cdot \bar{D}=s_{4} \mathrm{clm}^{3}$ i.e Maxroll's firstegi (leutrostatic)

(50) Diffurcition tom of Continuity c94 fiom the Moxurilin eq". 956 -

Topic 5.2 d Conductimand Displacement Cument in a Capacitor.
Questions
O2-DEC2010

Fora tine varying field, having a cupacitor, shaw that, the condection cirrent is equal 6 Whe displacement currext.
(or)
Jostify hat for the case of a parallal plate capacitor the displacement cutrent is equivalent to garduction current Commen on the ratio of magnimdes of conduction curent densily to displacement current density.
(or)
(0f Martis)
2013/Jan 2014
F Show that, in a capacitor the conduction curent density is equal to displacement current density for the applied voltage of $v(t)=v_{0} \cos w t$.
(10 Marks)
2. Explain [oncept of displacement Cument in [apastor ...CO4 Morks)

Solu:- I. Conduction Cument in Eapacito $80^{\circ} \mathrm{C}$

(D) Lapacitor connected acrom an $A \cdot C$ Sance of voltage
$v(t)=v_{0} \cos (\omega t)$

$$
\begin{aligned}
& \text { (DA.C Same of voltage } \\
& v(t)=v_{0} \text { con }(\omega t) \text {. volt's. }<(1)
\end{aligned}
$$

- Let, the Area of cach of the plate be 'A' m^{2} and their dintance of Syparation $d^{\prime} m$.
the Capacitance blw the porallel platis ingiven by

$$
G=\frac{\varepsilon A}{d} \quad \text { Faradin } \longleftarrow \text { (2) }
$$

the Condution Curcint

$$
\begin{equation*}
I_{c}=C \frac{d v(t)}{d t} \text { Ampein } \tag{3}
\end{equation*}
$$

using $q^{4}(1)$ in $q^{4}(3)$

$$
\begin{align*}
& I_{C}=\frac{\varepsilon A}{d} \frac{d}{d t}\left[V_{0} \cos (\omega t)\right] \\
& I_{C}=\frac{\varepsilon A V_{0}}{d}[-\sin (\omega t) \times \omega] \\
& \therefore \quad I_{C}=\frac{-\varepsilon_{A} V_{0} \omega}{d} \sin (\omega t) \text { Ampoisi } \tag{4}\\
& \text { Mag of Condurtion Current density }\left|\bar{J}_{c}\right|
\end{align*}
$$

My. Mag of Condution Coment density $\left|J_{C}\right|$ ol $\quad\left|I_{C}\right|=E V_{0}$

$$
\left|J_{c}\right|=\frac{I_{c}}{A}=\frac{-\varepsilon v_{0} \omega}{d} \sin \left(r_{i}\right)^{0} A_{\text {mpure }} / /_{m} \leftarrow 4 a
$$

B. Displacement [ument:- \mathbb{I}_{D})

and the applied voltage

$$
v(t)=v_{0} \cos (\omega t) \text { volt's }
$$

$$
|E|=\frac{v(t)}{d}=\frac{v_{0}}{d} \cos (\omega t) v / m
$$

$$
\therefore \quad|\bar{D}|=\epsilon|\bar{E}|=\frac{\epsilon V_{0}}{d} \cos (\omega t) \quad v_{m} .
$$

the dioplacement Cument density in given by

$$
\overline{J_{D}}=\frac{\partial \bar{D}}{\partial t} A / m^{2} \text { (d) }\left|\overline{J_{D}}\right|=\left|\frac{\partial \bar{D}}{\partial t}\right| A / m^{2}
$$

$$
\begin{aligned}
\left|\overline{I_{D}}\right| & =\frac{\partial|\bar{D}|}{\partial t}=\frac{\partial}{\partial t}\left[\frac{\epsilon v_{0}}{d} \cos (\omega t)\right] \\
& =\frac{E v_{0}}{d} \times-\sin (\omega t) \times \omega \\
\therefore\left|\bar{J}_{D}\right| & =-\frac{E v_{0} \omega}{d} \sin (\omega t) \quad A / m^{2}
\end{aligned}
$$

and the dinplavement Current i_{D}

$$
\begin{aligned}
& l_{D}=\left|\overline{J_{D}}\right| \times \text { Arcaof Cromseltion (A) } \\
& l_{D}=\left|\overline{J_{D}}\right| A \\
& l_{D}
\end{aligned}
$$

$$
\frac{\left.e_{D}=\frac{-\left(v_{0} \omega A\right.}{d} \sin (\omega t) \right\rvert\,}{\leftarrow\left|\overline{l_{0}}\right|}
$$

18 mig t
and dinplouentent turrenk-demity $\left|\overline{J_{0}}\right|$

$$
\left|\overline{J_{D}}\right|=i D / A=\frac{-\frac{E v_{0} \omega}{d} \sin (\omega t)}{\text { and }}
$$

From c9 (4) and (5) it in obsurved that In a Capacitor Hef eq (4a) and cy (5a) the [ondution and dinplaument Lumnt and Current dinsitios are equal.

Koy Note: $=$ if we Consider the applied voltoge acron. the porallel plate capacitor is to be complex $=$ - Txpomential signal i.e $V(t)=V_{0} e^{j \omega t}$ volt'n then

$\rightarrow i_{c}=i_{D}$ $\dot{e}_{C}=i_{D}=\frac{j \omega \dot{E} A}{d} v_{0} e^{j \omega t}$ Ampario.

$$
\begin{aligned}
& \overline{J_{D}}=-10^{6} \times-\sin \left(377 t+1.2566 \times 10^{6} z\right) \times 1.2566 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2} \\
& \overline{a_{n}}=+1.2566 \times 10^{12} \operatorname{Sin}\left(377 t+1.2566 \times 10^{6} 3\right) \bar{a}_{n} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

(M) Amplitude
the magnitude of Amplite $\overline{J_{D}}$
ie Maximum value of $\sin \mid \cos ^{f^{4}}$ in one.
ther

$$
\begin{equation*}
\overline{J_{D}}=1.2566 \times 10^{12} \sin \left(377 t+102566 \times 10^{6} 3\right) \overline{a_{x}} \mathrm{~A} / \mathrm{m}^{2} \tag{D}
\end{equation*}
$$

amplitude $\left|\bar{J}_{D}\right|=1.2566 \times 10^{12} \mathrm{~A} / \mathrm{m}^{2}$
Obss- In tre space
$\left|\bar{J}_{D}\right|>\left|\overline{J_{C}}\right|=0$ ber freepace.
problemlle

$$
J_{c}=0.02 \sin \left(10^{9} t\right) \mathrm{Alm}^{2} .
$$

In a given lossy dielectric medium, conduction current density $\mathrm{J}_{\mathrm{c}}=0.02 \operatorname{Sin}\left(10^{9} t\right) \mathrm{A} / \mathrm{m}^{2}$. Find
$\mathrm{J} / \mathrm{J}-2012$
(6 m)
Solu'- for a Lonydidutic Medium $\frac{0}{\omega t} \gg 1$

$$
\frac{\text { given }}{J_{c}}=0.02 \sin \left(10^{\circ} t\right) \mathrm{Alm}^{2}, 1 \overline{J c}=0.02 \mathrm{Alm}^{2}
$$

given $\sigma=10^{3} \mathrm{~s} / \mathrm{m}$ and $E_{r}=6.5 \mathrm{flog} \frac{0}{\omega t}=\frac{10^{3}}{10^{9} \times 6.5 \times 8.85 \times 1 \mathrm{c}}$

$$
\begin{aligned}
& \omega=10^{9} \mathrm{rlsec} \\
& \frac{\left|\bar{J}_{C}\right|}{\left|\bar{J}_{D}\right|}=\frac{\sigma}{\omega \epsilon} \\
& \left|\bar{J}_{D}\right|=\frac{\omega \in\left|\bar{J}_{C}\right|}{\sigma} \Rightarrow \frac{10^{9} \times 6.5 \times 8.854 \times 10^{-12} \times 0.02}{10^{3}}
\end{aligned}
$$

(0) $1.151 \mu \mathrm{~A} / \mathrm{m}^{2}$.
w.kt \bar{J}_{C} and $\overline{J_{D}}$ are l^{k} to each other
(6) right angles to cachothor

$$
\therefore \quad J_{D}=1.151 \cos \left(10^{9 t}\right) \mathrm{MA} / \mathrm{m}^{2}
$$

biz given $\vec{J}_{C} i s$ in \sin
ObS - In Lany ${ }^{2}$ iclutric Medium
$\therefore J_{0}$ must be in

$$
\left|\overrightarrow{J_{C}}\right|>\left|\overrightarrow{J_{D}}\right|
$$

$$
\operatorname{con} \frac{b c}{J_{C}} \perp{ }^{1} \overline{J_{D}}
$$

\therefore the mediom in Condusingriediom.
froblemis
Show that for a Sinusoidal varying field the conduction current and the displacement current are atways displaced by 90° in phase.
solu! -

$$
\text { i.e Sit } \overline{J_{C}} \perp \overline{J_{D}}
$$

(6) $i_{C} \perp^{\varepsilon} i_{D}$
ent us Consider a Sinusoidal varying field -

$$
E=\left.E_{m} \cos (\omega t) \quad v o l t^{\prime}\right|_{m} \leftarrow 0
$$

$$
\begin{align*}
& \text { the Condution [urent } \\
& \begin{array}{l}
\text { Condution [urrent } \quad J_{c}|=0| \overline{J_{c}} \mid \cdot A=J_{C} \cdot A \quad \text { Ampef } \\
i_{C}=\mid
\end{array} \\
& \therefore l_{c}=1 J_{c} A \\
& \text { i.e } \quad i_{c}=\sigma e_{m} \cos (\omega t) A \\
& \text { (b) } \\
& l_{c}=\sigma A E_{m} \operatorname{con}(\omega t) \text { Ampreis } \tag{2}\\
& \text { (S) the dinplacement curnent } \\
& I_{c}=\frac{i c}{A}=\sigma E_{m} \cos u+t, m^{2} \\
& \dot{i}_{d}=J_{D} \cdot A=\frac{\partial D}{\partial t} A \\
& l_{d}=\in A \frac{\partial E}{\partial t}=A E \frac{\partial}{\partial t}[\text { Encosict]] } \\
& { }_{i_{d}}=-A E_{m} \omega \in \operatorname{Sin}(\omega t) \text { Amparis } \\
& \text { (}(\\
& l_{d}=A E_{m} \omega \in \operatorname{con}(\omega t+\pi / 2) \tag{3}\\
& <\text { Arperió } \\
& J_{D}=\frac{i_{d}}{A}=E_{m \omega} \omega \cos (\omega t+\pi / 2)
\end{align*}
$$

obf obsinving cqu (2) f(3) lly (3a) \& (3a) i_{c} and i_{D} are displaced in phase by 90°.
Dept. of ECCE, SVCE and abo Fage 437 Cond abo $\left|\overline{J_{c}}\right| f \mid J_{1} d$ ank abo is to Eaich
problem16

- Show that for a Sinusoidal varying field the conduction and the displacement current densities are always displaced by 90° in phase.
soluir from (8,eeex) solu (contd)
problum1s
\Rightarrow fromeq $^{4}(2 a)$
i.e $\left|\overline{J_{c}}\right|=\sigma E_{m} \cos (\omega t) \mathrm{A} / \mathrm{m}^{2}$
and eq" (3a)

$$
\left|\overline{J_{D}}\right|=E_{m} \omega \in \cos (\omega t+\pi / 2) \operatorname{m}^{2}
$$

it in char that bodfémdetion and displare - ment coment denatics are aluays dinplceced $\theta^{C} \bar{J}_{c}^{(Q)}=1$ by 90° in phase.
$\mathrm{Si}^{\circ} \overline{J_{\theta}}=\mathrm{JuE}$

$$
\left|\bar{J}_{C}\right| \xlongequal[\bar{\pi}^{\varepsilon}+\bar{J}_{D}]{\left.\right|_{D}}\left|\bar{J}_{D}\right|
$$

$$
\begin{aligned}
& =\bar{J}_{c}+\bar{J}_{D} \\
& \bar{J}_{\text {tobal }} \mid=\sqrt{J_{C}^{2}+J_{D}^{2}} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\Rightarrow \bar{J}=\sigma E ; A / m^{2}
$$

$$
\Rightarrow \frac{i_{\text {total }}}{A}=\frac{\sqrt{i_{C}^{2}+i_{D}^{2}}}{A}
$$

$$
\frac{\left|i_{0}+a l\right|}{A}=\sqrt{\left(\frac{i^{\prime} d}{A}\right)^{2}+\left(\frac{i D}{A}\right)^{2}} \sqrt{i^{2}+i^{2}}
$$

Dept. of E\&CE., SVCE
problem17 $\quad\left|\frac{J d}{J c}\right|=\frac{w t}{\sigma}$.
Show that $\left|\frac{\mid d a}{J / C}\right|=\frac{\omega \epsilon}{\sigma}$; and catculate its valued for aluminum at frequency of 50 Hz aud 50 MHz given the Conductivity $\sigma=10^{5} \frac{s}{\mathrm{~m}}$.
Solui: $\quad\left|\overline{J_{c}}\right|=\sigma\left[E \mid A / m^{2}\right.$ and

$$
\Rightarrow\left|\frac{\bar{J}_{D}}{\bar{J}_{c}}\right|=\frac{\omega \epsilon\left|\overline{J_{D}}\right|}{\sigma|\bar{X}|}=\frac{\omega \epsilon}{\sigma} \Rightarrow\left|\frac{\mathrm{J}_{D}}{\bar{J}_{c}}\right|=\frac{\omega \epsilon}{\sigma}
$$

a.@ $f=50 \mathrm{H}_{3}, \sigma=10^{5 \mathrm{~s} / \mathrm{m}}$

$$
\begin{aligned}
& f=50 H_{3}, \sigma=10^{5} \mathrm{~s} / \mathrm{m} \\
& \left|\frac{\bar{J}_{0}}{\bar{J}_{c}}\right|=\frac{2 \pi+\epsilon_{0} \epsilon_{r}}{\sigma}=\frac{2 T \& 50 \times 8.854 \times 10^{-12} \times 1}{22} 10^{5} \\
& \quad\left|\frac{\bar{J}_{D}}{J_{c}}\right|=\frac{\omega \epsilon}{J^{2}}=2.7815 \times 10^{-14} \\
& \Rightarrow \frac{\sigma}{\omega \epsilon}=3.595 \times 10^{13}
\end{aligned}
$$

b. @f=50 m+3
obsir both the frequacios the medium to be

$$
\begin{align*}
\Rightarrow \quad\left|\overline{J_{C}}\right| & >\left|\bar{J}_{D}\right| \tag{0}\\
\left|i_{C}\right| & >\left|i_{D}\right|
\end{align*}
$$

probumis
Wet marshy soil is characterized by $\sigma=10^{-2} s / m, \varepsilon{r}=15$ and $\mu_{r}=1$ at

- frequencies $60 \mathrm{~Hz},-1 M H z,-100 M \mathrm{~Hz}$, and 10 GHz indicate whether the soil may be considered, a dielectric or neither.
(10M)—June2012.
Tolu':-
N. kt the distinguishing conditions are

1. For good conductor $\frac{\sigma}{\omega \epsilon} \gg 1$.
2. For a petal dilutrics $\frac{\sigma}{\omega E} \rightarrow 0$.
3. for a good dilutrico $\frac{\sigma}{\omega t}<1^{\prime}$.

$$
\begin{aligned}
& f=60 \mathrm{H}_{3} . \\
& \begin{array}{l}
f=60 \mathrm{H}_{2} . \\
\sigma=10^{-2} \mathrm{~s} / \mathrm{m}, \quad G=15 \mathrm{~g} \mathrm{~m}, \mu_{r}=1 \mathrm{H} / \mathrm{m} .
\end{array} \\
& \begin{array}{l}
\sigma=10^{\sigma} \mathrm{s} / \mathrm{m} \\
\frac{\sigma_{0}}{2 \pi f \epsilon_{0} \sigma r}=\frac{10^{-2}}{2 \pi \times 6 \sigma^{8} 854 \times 10^{-12} \times 15}
\end{array} \\
& \frac{\sigma}{\omega \epsilon}=1.9972 \times 10^{5} \simeq 2 \times 10^{5} \rightarrow>1 \\
& \frac{\sigma}{\omega t} \gg 1 \\
& \text { i) at frquancy } f=60 \mathrm{~Hz}_{3} \text {. } \\
& \text { of } f=60+H_{3}
\end{aligned}
$$

ii) at frequency $f=1 \mathrm{mHz}$.

$$
\begin{aligned}
\frac{\sigma}{\omega E}=\frac{\sigma}{2 \pi f \epsilon_{0} E_{r}} & =\left(\frac{\sigma}{2 \pi /-06 r}\right) \times \frac{1}{f} \\
& =12 \times 1 \phi^{66} \times\left(\frac{1}{1 \times y^{66}}\right) \\
& =12
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sigma}{\omega t}=12 & >1 \\
& \Rightarrow \frac{\sigma}{\omega t}>1
\end{aligned}
$$

\therefore at $f=1 \mathrm{Mtl}_{3}$ the given medium is considered to be Good conductor.
iii) at $f=100 \mathrm{MH}_{3}$.

$$
\begin{aligned}
& \frac{\sigma}{\omega t}=\left(\frac{\sigma}{g_{\pi} 606 r}\right) \frac{1}{f}=1^{12} \times 10^{6} \times \frac{1}{100 M 1} \\
& \frac{\sigma}{\omega E}=0.12<1 \\
& \begin{array}{l}
\Rightarrow \frac{\sigma}{\omega \epsilon} \otimes, \quad \therefore \quad \text { at } f=100 \mathrm{mtl}_{3} \text { the given } \\
\text { Good diclutric. }
\end{array}
\end{aligned}
$$

Medium in considered to be Good dilutric.
iv> at $f-10 G H_{3}$.

$$
\begin{aligned}
& \frac{\sigma}{\omega \epsilon}=12 \times 10^{6} \times \frac{1}{10 G}=1.2 \times 10^{-3} \lll 1 \\
& \text { i.e } \frac{\sigma}{\omega t} \simeq 0 \Rightarrow\left(\frac{\sigma}{\omega t}\right) \rightarrow 0
\end{aligned}
$$

\therefore at $f=10 \mathrm{GH}_{3}$ the given medium is considered to be perfect dilutric.
problemig
Show that the ratio of amplitude of conduction current density and displacement current density
is $\frac{\sigma}{\omega \epsilon}$ for an applied field $E=E_{0} \cos (\omega t) v / m$ assume $E=\epsilon_{0}$
Tolu': given $L=E_{0} \cos (\omega t) \quad v / \mathrm{m}$
and. $\epsilon=\epsilon_{0} \mathrm{Flm}$.
the conduction Current density $\overline{J_{c}}=\sigma \bar{E} A l_{m}{ }^{2}$

$$
\begin{aligned}
& \text { the conduction currier } ; J_{c}=\sigma E \\
& \left|J_{c}\right|=\sigma \mid \mathrm{Am}^{2} ; \\
& \therefore J_{c}=\sigma E_{D} \cos (\omega t) A_{m^{2}}{ }^{2}+0
\end{aligned}
$$

the din placement Currentefensity $\overline{J_{D}}$ is given by

$$
\overline{J_{D}}=\frac{\partial \bar{D}}{\partial t}
$$

$$
\frac{J_{D}}{}=\epsilon \frac{\partial \bar{E}}{\partial t} \quad A m^{2}
$$

$$
J_{D}=\left[E \frac{\partial E}{\partial t}\right] A / m^{2}
$$

$$
\begin{aligned}
& =[E \cdot \partial t \\
& =\left[E E_{0}[-\sin (\omega t)]\right]{ }^{\omega} A / m^{2}
\end{aligned}
$$

the ratio of amplitude $=-\in E_{0} \sin (\omega t) \cdot{ }^{x \omega} \mathrm{Alm}^{2}$
density \& I_{D} is, $J_{D}=E E_{0} \omega \operatorname{Con}(\omega t+\pi / 2) \mathrm{Alm}{ }^{2}$

$$
\frac{\left|\frac{J_{C}}{J_{D}}\right|=\left|\frac{\sigma \not \subset \cos (\omega t)}{\omega t \in \rho \cos (\omega t+\pi / 2 \mid}\right|=\frac{\sigma}{\omega t}}{\therefore\left|\frac{J_{C}}{J_{D}}\right|=\frac{\sigma}{\omega t} \quad \text { Note'- } \mid(\cos (\omega t) \mid=1 \text { Page 439 }}
$$

problen 20.

$$
\bar{H}=H_{m} e^{3(\omega t+\beta z) \bar{a}_{x} A / m}
$$

\therefore n. Given $\vec{H}=H_{m} e^{i(x C e c t(\beta z)} \hat{a}_{\mathrm{s}} A / m$ in free space. Find $\overrightarrow{\mathrm{E}}$.

Soly'. given medium in frespace

$$
\sigma=0 \text { and } \overline{J_{C}}=\sigma E=0 \mathrm{Am}^{2}
$$

using Modified. AmperinLaw (ic Mosoulline ${ }^{\text {a }}$)
$\vec{H}=f^{\prime \prime}(z)$ and thas only H_{x} component.

$$
\bar{\nabla} \times \bar{H}=\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
0 & 0 & \partial / \partial_{z} \\
H_{x} & 0 & 0
\end{array}\right|=-\frac{\partial H_{x}}{\partial z}\left(-\overline{a_{y}}\right)
$$

$$
\begin{equation*}
\nabla \times \bar{H}=+\frac{\partial H_{x}}{\partial z} \bar{a}_{y} \quad A m^{2} \tag{2}
\end{equation*}
$$

qu(2) in cor (1)

$$
\begin{aligned}
& \cdots \cdot \frac{\partial \dot{D}}{\partial t}=\frac{\partial H_{x}}{\partial z} \overline{a y} A m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \vec{E}}{\partial t}=\frac{H_{m}}{\epsilon_{0}} \cdot e^{j(\omega t+\beta z)} \times \beta \overline{a_{y}} \mathcal{O}^{\hat{\sigma^{2}}} \\
& \frac{\partial E}{\partial t}=\frac{H_{m} \beta}{\epsilon_{0}} e^{j(\omega t+\beta z)} \frac{\partial y}{\partial y}
\end{aligned}
$$

$$
\begin{aligned}
& \pm \\
& \bar{F}=\frac{\beta H_{m}}{\omega \epsilon_{0}} e^{\int(\omega t+\beta z)} a_{y} \text { v/m } \\
& \text { (大) } \bar{E}=E_{m} e^{j(\omega t+\beta z)} \overline{a_{y}} / v / m \\
& \text { where } E_{m}=\frac{\beta H_{m}}{\omega E_{0}} v / m \text {. }
\end{aligned}
$$

problem21 $\overline{J_{d}}=20 \cos \left[1.5 \times 10^{8} t-\beta x\right] \bar{a}_{y} \mu \mathrm{~A} / \mathrm{m}^{2}$
54. In a certatin dialectic neda the relative permittivity $\in_{\mathrm{r}}=5$, conductivity $\sigma=0$, the $E_{r}=5 \quad \therefore \sigma=0$
$=5$, conductivity $\sigma=0$ the
$\mu A / m^{2}$. Determine the electic flux density and electric field intensity $\because{ }^{\prime} \beta$ phene comtant rad/m.
Solu': given $t_{0}=5 \mathrm{~F} / \mathrm{m} ; \sigma=0 \mathrm{v} / \mathrm{m}$.

$$
\frac{\overline{J_{D}}}{}=20 \cos \left(1.5 \times 10^{8} t-\beta x\right) \overline{a_{y}} \mu \mathrm{~A} / \mathrm{m}^{2}
$$

$\beta=\frac{2 \pi}{x} \mathrm{rad} / \mathrm{m}$... phere worrtant.
$\bar{D}=$? and $\bar{E}=$?

$$
\begin{aligned}
& \overline{J_{D}}=\frac{\partial \bar{D}}{\partial t} \\
& \bar{D}=\int \overline{J_{D}} d t \operatorname{cm}^{2}
\end{aligned}
$$

0^{3}

$$
\therefore \bar{D}=\frac{20}{1.5} \times 10^{-8} \sin \left[1.5 \times 10^{8} t-\beta x\right] \bar{a}_{y} \mathrm{~cm}^{2}
$$

$$
\therefore \bar{D}=13.333 \times 10^{-8} \sin \left[1.5 \times 10^{8} t-\beta x\right] \bar{a}_{y} \mathrm{~cm}^{2}
$$

$$
D=133.33 \operatorname{Sin}\left[1.5 \times 10^{8} t-\beta x\right] \overline{a_{y}} ; n f_{m}{ }^{2}
$$

the Elutric. Filld Intensity \bar{E} ingivenby

$$
\begin{aligned}
& D=E \dot{E} c_{m}^{2} \\
& \Rightarrow \dot{E}=\frac{\bar{D}}{\epsilon_{0} \epsilon_{r}} E \quad u / m \\
E & \left.=\frac{133.33 \times 10^{-9}}{8: 854 \times 10^{-12} \times 5} \sin \left[1.5 \times 10^{8} t-\beta x\right] \bar{y}\right) q_{m} \\
\bar{F} & =3011.746 \sin \left[1.5 \times 10^{8} t-\beta 3 \pi\right.
\end{aligned}
$$

Derive point form of Arpisin Law ie $\nabla \times \bar{H}=\bar{J} \mathrm{~A} / \mathrm{m}^{2}$
(a) $\nabla \times \bar{B} \frac{\mu_{0}}{(G)} \bar{J} \mathrm{Nb} / \mathrm{m}^{3} \quad 02$-Junefuly $2012-$

Using Ampere's circuital law, derive Maxwell's curl equation

$$
\forall \times \vec{B}=\mu_{0} \cdot \vec{J}
$$

$\nabla \times \bar{H}=丁 \mathrm{~A} / \mathrm{m}^{2}$
(0GMarks) -
Solvi- w.k. from Ampurin Circuital Law i.e the Line integral of \bar{H} around a Single closed path is equal to the Cument enclosed.
mathematically $I=\oint_{\langle i\rangle} \bar{H} \cdot \overline{d l} 0_{0}^{\circ}$
using stoks theorm $i \cdot \in \oint_{\langle i} \oint_{\langle \rangle} \cdot \overline{d l}=\int_{\langle s\rangle}((\times F) \cdot d s$
 $I=1 J \cdot d s$

$$
\int_{\langle s\rangle}(\underset{\sim}{x} \bar{H}) \cdot d s=\int_{\langle s\rangle} \bar{J} \cdot \overline{d s}
$$

pointform
$\nabla \times \bar{\triangle}=\bar{J} \mathrm{~A} / \mathrm{m}^{2}$ amparionaw using relationship bwo \bar{B} and \bar{H} i.e

$$
\bar{B}=\mu_{0} \bar{H} \quad \omega b / m^{2}
$$

(o) $\bar{H}=\bar{B} / \mu_{0} \mathrm{~A} / \mathrm{m}$.
the above ip becomus-

problem 23
Determine the frequency at which conduction current density and displacement current density are equal ina medium with $=2 \times 10^{-1}$ Sima and $\epsilon_{r}=81$., (06Matks)

$$
\sigma=2 \times 10^{-4} \mathrm{~s} 1 \mathrm{~m} . \quad \overline{\epsilon_{r}}=81
$$

10-June/luly 2016
as - Find the frequency at which conduction current density and displacement current density are equal in a medium with $\sigma=2 \times 10^{-4} \mathrm{v} / \mathrm{m}$ and $\epsilon_{\mathrm{r}}=81$.
Solus: given $\left|\overline{J_{C}}\right|=\left|\overline{J_{p}}\right| A / m^{2} \Rightarrow f=$?
@what trgany (f), the 1 density and diffotionent
i.e^ Londation current density an

Current density are equal. 90°

$$
\sigma=2 \times 10^{-4} \mathrm{~s} / \mathrm{m} \text { and } \bar{\sigma}^{\frac{2}{\mathrm{E}}=81 \mathrm{fm} .}
$$

D.k.t

$$
\begin{aligned}
f & =\frac{\sigma}{2 \pi \epsilon_{0} t_{r}} H_{z} \\
f & =\frac{2 \times 10^{-4}}{2 \pi \times 8.854 \times 10^{-12} \times 81} \\
f & =44.3839 \mathrm{kH}
\end{aligned}
$$

?.e the friquincy at whit $9 \cdot J_{C}\left|=\left|\bar{J}_{D}\right|\right.$

problem 24

$$
\sigma=10^{-8} \mathrm{~s} / \mathrm{m} .
$$

$$
G=\varphi .
$$

The dry earth has a conductivity $\sigma=-1 \theta^{-8} S / m$ and a- relative permittivity $\epsilon_{r}=4$. Find the frequency above which the conduction current dominates the displacement current.
Solve given $\sigma=10^{-8} \mathrm{~s} / \mathrm{m} . \quad \epsilon_{r}=4$
find $f=$? at which $\left|\frac{i_{C}}{i_{D}}\right| \gg 1$

$$
\Rightarrow \quad\left|\bar{J}_{c}\right| \gg\left|\bar{J}_{p}\right| \quad|i c| \gg|i D|
$$

(0) $\left|\frac{J_{C}}{J_{D}}\right|>11$

$$
\Rightarrow \frac{\sigma}{\omega E} \gg 1
$$

$$
\frac{10^{-8 \times 18 \times 10^{9}}}{(4)}>f
$$

$$
45 \mathrm{H}_{2}>f
$$

(5) $f<45 \mathrm{H}_{2}$.
$\stackrel{\text { ie }}{\longrightarrow}$ if $0<f<45 \mathrm{H}_{3} \stackrel{\text { Conduction }}{\Rightarrow}$ burnt dominates if $f>45 \mathrm{H}_{3} \Rightarrow$ Dinplacemint Current dominates the Conduction Current. $\left(i_{C}<i_{D}\right)$

$$
i=5.5 \sin \left(4 \times 10^{10} t\right) \mu A
$$

1.5 mm

Find miditude of tie displacement curent densify if a $=353 / \mathrm{m}_{3} \epsilon_{t}=10$.
(06 Nin紋
Solu!- give $\bar{r}=1.5 \mathrm{~mm}$

$$
\rightarrow \sigma=35 \mathrm{~V} / \mathrm{m}, \quad \mathrm{r}_{\mathrm{r}}=10^{1} .
$$

$$
e_{G}=5.5 \sin \left(4 \times 10^{10} t\right) \mu \mathrm{A} .
$$

the ratio of $\left|\frac{\overline{J_{c}}}{\frac{J_{d}}{}}\right|=\frac{\sigma}{\omega \epsilon}=\frac{\sigma}{\omega 60}$
$\frac{\sigma}{\omega \epsilon}=\frac{35}{4 \times 10^{10} \times 10 \times 6} G_{0}=10$.

$$
\sigma=35 \mathrm{~V} / \mathrm{m} \text { and } G_{r}=10
$$ given $i_{c}=5.5 \sin \left(4 \times 10^{q}\right) \mu \mathrm{A}$

$$
\begin{aligned}
& \left|\hat{e}_{c}\right|=5.5 \mu \mathrm{~A} \\
& \begin{array}{l}
\bar{\sigma}=9.8825
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\overline{J_{D}}\right|=\frac{\left|\overline{J_{C}}\right|}{9.8825}=\left(\frac{\left|\hat{l}_{C}\right|}{A}\right) \times \frac{1}{9.8825} \\
& \left|\overline{J_{D}}\right|=\frac{5.5 \times 10^{-6}}{\pi(1.5 \mathrm{~m})^{2}} \times \frac{1}{9.8825} \\
& A_{r a}=\pi r^{2} \\
& =\pi(1.5 m)^{2} . \\
& \left|\overline{I_{D}}\right|=0.078733 \mathrm{~A} \mathrm{~m}^{2}
\end{aligned}
$$

(0) $\left|i_{D}\right|=0.55653 \mu \mathrm{~A}$

$$
\left.i_{D}=0.55653 \cos \left(4 \times 10^{10} t\right)\right] \mu \mathrm{A}
$$

the amplitudeof Condution [urrant dersity

$$
\begin{aligned}
\left|\frac{\vec{J}_{C}}{\bar{J}_{D}}\right| & =9.8825 \\
\left|\vec{J}_{C}\right| & =9.8825\left|\overline{J_{D}}\right| \\
& =9.8825 \times 0.07873
\end{aligned}
$$

Obs:- Since $\frac{\sigma}{\omega t}=9.8825$
$i \cdot e \frac{\sigma}{\omega E}>1 \quad \therefore$ the given medium is Condoting Medium.
(6). Maxwell's equations in point form Maxwell's equations in integral form

T Derive the Maxwell's equations in the point form of the Gauss's law for time varying fields.
(06 Marks)
02-DEC2010
\Rightarrow Write Maxwell's equation in,
i) Steady magnetic field.
ii) Time varying field.

1
06-DEC2008/Jan 2009

1) Write the Maxwell's equations in point form for static fields and in integral form for tim Varying fields:
(08 Mark
02-DEC2008/Jan 2009

L List Maxwell's equations in integral forms for i) Static fieldsii) Time -varying fields (08 Marks)
\%
Write the Maxwell's equations in point form.
(04 Marks)
$10-\operatorname{Jan} 2013$

- Explain Maxwell's equations for time varying fields.
(10 Marls)
06-DEC 2013/Jan:2014
" List Maxwells equation in differential form and integral form.
(08 Marks)
10-June/July 2013
: List the Maxwell's equations in point and integral forms for time varying field. (06 Marks)
06 - June /July 2011
List the Maxwell's equations derived from Faraday's law, and Ampere's circuital lawless in differential and integral form for i) Steady fields and ii) Time - varying fields.

10 - June / July 2012

Write an explanatory note on : Maxwell's equations in point and integral forms applicable to time varying fields.
(05 Marks)
06- June /July 2009

List Maxwells equations in point form and integral form.
(08 Marks)
10- June /July 2015

It State Maxwell's equations for agood conductor and for perfect dielectrics. (08 Mark) 10- June fluty 2014

List Maxwell's equations in differential and integral forms
06-Mayfune2010 (0sMars)

06 - May/fune 2010

Write Maxwell s equations in differemal command Integral fum

(08 Marks)

EE-10 J/ 2016
F of

List Maxwell's equations for both : i) steady and ii) Time varying fields in differential and integral form, also mention the relevant laws they demonstrate.
(08 Marks)

5.3 a Maxurlin equation in for Staticfield:-

The fields taken into consideration are static Electric field The fields taken into consideration are static shes field due
due to charges at rest and the static magnetic
steady cunts.
The equations governing these fills may be summarized as follows
Work. done Concept:-
i) the workdone required to move a point chopra If unit tue coulombs over a closed path ing eq ill to zero.

$$
\text { ie } \oint_{\angle i\rangle} E \cdot \overline{d l}=0<0^{\circ} \text {. Integral form. }
$$

using stokes (orem

$$
\begin{aligned}
& \text { using stokes } \\
& \oint_{E} \bar{E} \cdot \bar{C} \int_{<S\rangle}(8 \times \bar{E}) \cdot d \bar{S}=0 \\
& \langle l\rangle
\end{aligned}
$$

the above result in true only when but $\overline{d s} \neq 0$

$$
\begin{aligned}
& \nabla \nabla \times \bar{E}=0 \quad \text { Dittenntiy/ } \\
& \text { ie } \quad \nabla \times \bar{E}=0<(2) \text {...point form. }
\end{aligned}
$$

iil. By Gaurinhaw [Elatro Statics]
The total Flux Comingout of any Elared Suface in equal to the net charge enclosed by that sustace.

$$
\begin{aligned}
& \text { i.e } \oint_{\langle S\rangle} \bar{D} \cdot \overline{d S}=Q_{\text {enctored }}=\int_{\langle v a\rangle\rangle} \rho_{u} d v \text { Coulontio } \\
& \therefore \underset{\langle s\rangle}{\phi} \bar{D} \cdot \overline{d s}=\int_{\langle v 01\rangle} \rho_{u} d v<(3)
\end{aligned}
$$

using Divergence thorem

Wi.e the total dutric Fluse Croming por unit volume
Q is nothing but the volume chorge dorsity incloned by that volume.

Wi Gourindaw. (Magneto Stecticn)
w.kt Magnetic flux Lines form a closed path. i. e the total outgoing flux is equal to the incoming magnatic flux.
[Since nor Existence of isolated South (s) isolated north poles in the magnetic field.

using divergence theorem

$$
\begin{aligned}
& \text { using divergence theorem } \\
& \phi \bar{B} \cdot \overline{d S}=\int(\sqrt{B}) d v=0 \\
& S\rangle
\end{aligned}
$$

EV. ANEurin Cirhital Law-
Wee Line integral of \bar{H} around a closed path is equal to ${ }^{\text {the }}$ Current inclored.

$$
\begin{aligned}
& \text { ide } \oint_{\langle\lambda\rangle} \bar{H} \cdot \overline{d l}=T=\int_{\langle S \lambda} \bar{J} \cdot \overline{d s}
\end{aligned}
$$

(7) Integral form.
using stokes theorem i.e

$$
\begin{aligned}
& \oint_{\langle\lambda\rangle} \bar{H} \cdot \overline{d l}=\int_{\langle s\rangle}(\nabla \times \bar{H}) \cdot \overline{d s}=\int_{-\ldots \leq\rangle\rangle} J \cdot \overline{d s} \\
& \Rightarrow D \nabla \times \bar{H}=\overline{\mathrm{A}} \mathrm{~m}^{2} _ \text {(8) Diffentital }
\end{aligned}
$$

Q. Continuity [umnt cq":-

From the concypt of [umnt dersity (i)

$$
\text { ie } I=\frac{d I}{d S} \mathrm{Alm}^{2} Q
$$

(क) $I=\oint_{J} \cdot \overline{d s}, \frac{Q L Q}{d t}$; Since for a

$$
\begin{equation*}
\oint_{S T} J \cdot d s=0 \text { Amperin } \tag{9}
\end{equation*}
$$

using divugence thorem pointform.

The above equations from (1) to (10) are calledon Maxwells quation for static fictd. i.e for the fitd whose time Variation isequal to zero.
The eq4. (1), 3, 5, 7 , and 9 are called Maxuilin equs in integral form. While $q^{4}(2), 4,6,8$ and 10 are Called Maxurlin equ's in point form for statioficlds.

84

Inaddition to these equation's two more conceptr are -introdused i.e
$i>$ the clutric firld is produred by changing magnctic fild. [i.e Time-varying Magnatic field]...Faradayin Law

$$
\nabla \times \bar{E}=-\frac{\partial \vec{B}}{\partial t}: v / m^{2}
$$

ii) The magnutic Fild is produced by changing Elctric field. [i.e Time-varying Elutic field]. AAodificd Amperin Law

$$
\begin{aligned}
& \text { AAodificd Amperin Law } \\
& \text { ic } \nabla \times \bar{H}=\overline{J_{c}}+\frac{\partial \bar{D}}{\partial t},
\end{aligned}
$$

The First concept was introdued by michad Faraday and the Second by Maxurlin, the form the basic equatiers of clutromagnatic thoory
5.5. Maxwil Equations for Tine-vanying Fild's
(1)

$$
\begin{gathered}
\text { Foradayin } \\
\text { Law }
\end{gathered}
$$

Gourrishaw (E-lutrostation)
[a]
Gaunhlaw Majinato
statica
\square
[ontinuity equation.

II Maxwill's equation from Modified Amperi'n Law:-
The total Current $I=\oint_{\langle i\rangle} \bar{H} \cdot \overline{d l}=\int_{\langle s\rangle}\left(\bar{J}_{c}+\overline{J_{p}}\right) \cdot \overline{d s}$ Ampareb where $J_{c}=\sigma E A / m^{2}$; Condution [ument dersity. $\frac{J_{D}}{}=\frac{\partial \bar{D}}{\partial t} A / m^{2} ;$ displaument Currant density.

$$
\begin{equation*}
\therefore\left[\oint_{\langle l\rangle} \overline{F \cdot} \cdot \overline{d l}=\left.\right|_{\langle s\rangle}\left[\overline{J_{c}}+\frac{\partial \vec{D}}{\partial t}\right] \cdot \frac{1}{d s}\right] A \tag{1}
\end{equation*}
$$

Ampere b
-.-Integral form.
using stokes theorem $\oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=\int_{\langle S\rangle}(\nabla \times \bar{H}) \cdot \overline{d S}$ Anpuis

Word Statement: - The Magnationotive force around a closed path is equal to the pollution Current plus the time derivative of clutric density through any surface bounded by the path.
12 Maxnalinguation from Faraday's Law -
In $a<0$ closed path (00 hop the Elutric potential (cerf) is developed due to time-vaming. infield in the vicinity of that Closed path.

$$
e=-\frac{d \phi}{d t}=\frac{-d}{d t}\left[\int_{\langle S \lambda} \bar{B} \cdot \overline{d s}\right]=-\int_{\langle S\rangle} \frac{\partial \bar{B}}{\partial t} \cdot d s
$$

$$
e=\oint_{\langle\langle \rangle} \bar{E} \cdot \overline{d l}=\left\lvert\,\left(\frac{\partial \vec{B}}{\partial t}\right) \cdot d \bar{S}\right.
$$ volt's

$$
\begin{aligned}
& \int_{\Delta S\rangle}(\nabla \times \bar{H}) \cdot \overline{d s}=\int_{\langle S\rangle}\left(\overline{J_{C}}+\frac{\partial D}{\partial t}\right) \cdot \overline{d s} \\
& \nabla \times \bar{H}=\overline{J_{C}}+\frac{\partial \bar{D}}{\partial t} \quad \operatorname{Al}^{2} \mathrm{~A}^{2} \mathrm{Q}^{2} \text { (2) ofterntial }
\end{aligned}
$$

$$
\begin{equation*}
\phi \vec{E} \cdot \overline{d r}=\int_{\langle s\rangle} \frac{-\partial \vec{b}}{\partial t} \cdot \overline{d s}{ }^{w_{0} \mid t \cdot} \tag{3}
\end{equation*}
$$

using stokes therena ie $\oint_{\langle\Lambda\rangle} E \cdot \overline{d x}=\int_{\langle s\rangle}(\mathbb{E} \times \overline{\bar{E}}) \cdot d$ dold

Word statement:- The elutromotiver around a closed path is equal to the time derivatixes of the magnatic tux density (\bar{B}) through any surtaro Dounded by the path.
[3) Maxwillin quation for Gawrinlaw (N-latrostatic)
Total Frlutic Croming the closed Surtace in equal to the total ctorge enclased by the clased surface.

$$
\text { total chage enclased by the } \oint_{\langle s\rangle} \bar{D} \cdot \overline{d s}=Q_{\text {nnclued }}=\int_{\langle v o l\rangle} \rho_{\uparrow} d v \text { Coulombin }
$$

$$
\begin{equation*}
\text { ie } \oint_{\langle s\rangle} \bar{D}^{D} \cdot \overline{d s}=\int_{\langle\text {voli }\rangle} p_{u} d v \tag{5}
\end{equation*}
$$

using Divugence thorem i.e $\oint_{\langle S\rangle} \oint_{\langle\bar{D} \cdot \overline{d s}}=\underset{\langle v\rangle\rangle}{\int}(\nabla \cdot \bar{D}) d v C_{i}$

$$
\begin{aligned}
& \int_{\langle s\rangle}(\Delta \times \bar{E}) \cdot \cdot \overline{d s}=\int_{\langle s\rangle}\left(-\frac{\partial \bar{B}}{\partial t}\right) \cdot d s
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\langle s\rangle}{\oint_{\left.\left\langle v_{0}\right\rangle\right\rangle} \bar{D} \cdot \overline{d s}=\int_{\left.\left\langle v_{0}\right\rangle\right\rangle}(\nabla \cdot \bar{D}) d v=\int_{\langle u} S_{u} d v \quad \text { Coulombin }} \\
& \dot{X}^{4} \nabla \cdot \bar{D}=\rho_{v} \rho_{m}^{3} \longleftarrow \text { (6) Ditterntial }
\end{aligned}
$$

Word Statement:- The total Elutric Flux density through the Surface enclosing a volume is equal to the chang with in the volume.

In case of Magnatictild the totedeyboing flux is equal to incoming mognatic flux.

$$
\text { ie } \oint_{\langle S\rangle} \bar{B} \cdot d S=O \text { Integral form. }
$$

using divergence theorem
but $\sqrt{\nabla \cdot B}=0$ (8) Differential through
Word Statement: - The not Magnetic Flux Emerging a any closed Suftace is zero.
[5) Maxwelin equation from Eontinuity eq 4 :-
W.K.t Lontinuity Lument eq from Law of Comervation of chorge

$$
\begin{aligned}
& \text { i.e } I=\underset{\langle s\rangle}{ } \oint_{\uparrow} \bar{J} \cdot \overline{d s}=-\frac{d Q}{d t}=-\int_{\left.\left\langle\omega_{0}\right\rangle\right\rangle \uparrow}^{\left\langle\frac{\partial h_{1}}{\partial t} d v\right.}
\end{aligned}
$$

using divergence theorem

Word Statement:- Current diverging from a Small volume por unf rolume is equal to the rate of decrease of OCharge per unit volume at curry point.

Table 3: Max will i sequin for free Space
Note:- In free space $\mu_{r}=i$ and $E_{r}=1$
Conductivity $\sigma=0 \mathrm{v} / \mathrm{m}$

$\therefore \mu_{0}+\mu_{0} / m$ and $\left.E=G_{0} \mathrm{~F} / \mathrm{m}\right\}$| these |
| :--- |
| Condition | and $\left[v=0 \mathrm{~cm}^{3}\right.$

3. $\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=0 ; G_{i,}$

$$
\nabla \cdot \bar{D}=0 \rho_{m}^{3}
$$

$$
\nabla \cdot \bar{B}=0 \mathrm{wb} / \mathrm{m}^{3} \quad \begin{aligned}
& \text { Gaurin Law } \\
& \text { (Magnutostatic). }
\end{aligned}
$$

5. $\oint_{\langle s\rangle} \bar{J} \cdot \overline{d s}=0 ;$ Amprit

$$
\nabla \cdot \vec{J}=0 A / m^{3} \quad \text { Continuity } \varphi^{4} \text {. }
$$

KupNoter-if given Medium to be pertest didutrics, Consider it to be antre spare case only. bi_{2}. Air medium/fre Dept of EXCE. SVCE Space is the best example tor pefutdilufry. Page

Topic 5.3d Dept. of ECE, B.N.S.I.T \& M
Table4:- Mavalli' qu for Good. Condufori:-
In Cood Conductorin $\quad\left(\frac{\sigma}{\omega \epsilon}\right) \gg 1 \Rightarrow \sigma \gg \omega$.

$$
\begin{aligned}
& \text { inod Conductor' } \quad\left(\frac{\omega t}{\omega \epsilon}\right) \gg 1 \Rightarrow \frac{\partial D}{\partial t} \therefore \bar{J}_{G} \gg \text { neglet the tem } \overline{J_{D}}\left(\frac{\partial D}{\partial t}\right)
\end{aligned}
$$

Since $\frac{\partial \vec{D}}{\partial t}$ invory Len $\therefore \beta_{u}=\bar{\nabla} \cdot \bar{D} \rightarrow 0: \underbrace{}_{h_{1}=0} \bar{f}_{m^{3}}$
Cond"f: $J_{D} \rightarrow 0$ and $h_{e} \rightarrow 0$; ure ther, itpdition's in General set.

Topic 53 e enginerang electromagnetics (15ec36) module
 for dow ton ditutrion $\left(\frac{\sigma}{\omega \epsilon}\right) \ll 1 \Rightarrow \sigma=<\epsilon \omega \epsilon$
$\therefore \overline{J_{C}} \ll \frac{\partial \bar{D}}{\partial t} \therefore$ neglutect the term $\overline{J_{C}}$.

$$
\text { i.e } \quad \bar{J}_{\mathrm{C}} \rightarrow 0
$$

and $\beta_{4}=0$ bu No free chargus in diclutrice.

Nof Note:-
I: In Free Space Medium

$$
\sigma=0, \epsilon=6_{0} \text { and } \mu=\mu_{0}
$$

2. Londen dielutrics (or) purfut dilutrics

$$
\text { i.e } \sigma \simeq 0, \quad \epsilon=\epsilon_{r} \epsilon_{0}, \mu=\mu_{r} \mu_{0}
$$

$$
\sigma \neq 0, E=G_{\gamma} \epsilon_{0}+\mu=\mu_{r} \mu_{0}
$$

U] Good Erofertors/Lony und $_{i}\left(\frac{\sigma}{\omega t}\right) \gg 1$.

$$
\frac{\sigma_{0},+\infty}{2, v_{0}}, ~ E=\epsilon_{0} \quad \mu=\mu_{r} \mu_{0}
$$

(9b.) List Maxweil's equations for steady and time varying fields in
i) Point form

15- June Jely 2017 (CBCS) (06 Marks)

Soln:-

Maxnill's equations for Time-vanying ficle.

Slino.
$01 .\left|\begin{array}{cc}\oint_{\langle l\rangle} \bar{E} \cdot \overline{d l}=-\int_{\langle S\rangle} \frac{\partial \vec{B}}{\partial t} \cdot \overline{d s} j v o l l t \\ 02 n \\ \oint_{\langle l|} \vec{H} \cdot \overline{d l}= & \left(\overline{J_{c}}+\frac{\partial \bar{D}}{\partial t}\right) \cdot \overline{d s} ; \\ \langle S\rangle & \text { Ampain }\end{array}\right|$
DB. $\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=\int_{\left\langle v_{0}\right\rangle} \rho_{v} \cdot d v ; G$
04. $\begin{aligned} & \oint_{\langle S\rangle} \bar{B} \cdot \overline{d s}=0 ; \omega b \\ & \oint_{\langle S\rangle} \bar{J} \cdot \overline{d s}=\int_{\langle 1001\rangle} \frac{-\partial S_{v}}{\partial t} \cdot d v\end{aligned}$

Foradayitaw

> Eontinuity [coment eq.
problem 26. $\overline{\bar{E}}=[\mathrm{kx}-100 t] \overline{a y} 4 / \mathrm{m}$.

$$
\begin{aligned}
& a_{y} 4 \mathrm{~m} . \\
& \bar{H}=[x+20 t] \bar{a}_{z} \text { Atm. }
\end{aligned}
$$

Determine the value of K such that following pairs offelds satisfies Maxwell's equation in the region where $0=0$ and $\mathrm{p}_{\mathrm{x}}=0$.
a) $\overline{\mathrm{E}}=\left[\mathrm{K} x-1001 \mathrm{~A}_{\mathrm{y}} . \mathrm{Vm} \quad \overline{\mathrm{H}}=\left[x+20 \mathrm{f} \bar{a}_{2} \mathrm{~A} / \mathrm{m}\right.\right.$
$\mu=0.25 \mathrm{Hm}, \quad \varepsilon=0.01 \mathrm{Bm}$
b) $\bar{D}=5 x \overline{a_{x}}-2 y \bar{a}_{y}+k_{z} \bar{a}_{z} \mu c / m^{2}$
$\bar{B}=2 \overline{a_{y}} m$ and $\mu=\mu_{0} ; \epsilon=60 \mathrm{~F} / \mathrm{m}$.
Tolu:- a) Given \bar{E} and \bar{H} are time-vanyingicld' $'$
\therefore the Maxuilis cqu is

$$
\bar{B}=\mu_{0} \bar{H} w 6 / m^{2}
$$

$$
\bar{E}=[k x-100 t] \bar{a} y \mathrm{k} / \mathrm{m} .
$$

$$
\begin{aligned}
& E=[k x-100 t] v_{y}, \bar{E} \Rightarrow f^{4}(x, t) \\
& \text { only } \\
& E_{y}=(k x-100 t) \\
& {[x+20 t] \overline{a_{3}} \mathrm{Alm}}
\end{aligned}
$$

$$
\bar{H}=[x+20 t] \overline{a_{z}} \mathrm{Alm}
$$

$$
\vec{H}=[x+20 t] f^{n}(x, t) \text { and } H_{y}=(x+20 t) A l_{m}
$$

$$
\begin{aligned}
\Rightarrow & \frac{\partial E_{y}}{\partial x} \overline{a_{z}}=-\mu_{0} \frac{\partial F}{\partial t} \\
& \frac{\partial}{\partial x}[k x-100 t] \overline{a_{z}}=-\mu_{0} \frac{\partial}{\partial t}[x+20 t] \overline{a_{z}}
\end{aligned}
$$

$$
k \overline{a_{2}}=-\mu_{0}(20) \overline{a_{3}}
$$

Equating the ' 3 ' component n on bothside
wnit et ' K '

$$
\begin{aligned}
& k=-20 \mu_{0}=-20(0.25) \\
& \Rightarrow \quad k=-5 \quad v / n^{2} \\
& \therefore \text { for } k=-5 \mathrm{v}^{2} \text { the pair of fild }
\end{aligned}
$$

E and \bar{H} are satistion the maxurdo cquation.

$$
i \underbrace{\bar{\nabla} \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}} / m_{m}^{2} \bar{\theta}
$$

b) given $\bar{D}=5 x \bar{a}_{x}\left(-\bar{y} \bar{a}_{y}+k_{2} \bar{a}_{2} \mu \rho_{m}{ }^{2}\right.$

$$
Q \bar{B}=2 \overline{a_{y}} \text { nा and } \mu=\mu_{0}, \epsilon=\epsilon_{0} \text {. }
$$

Since the given fieldin \bar{D} and \bar{B} are not time-varying field:
\therefore using Maxwili: cq ${ }^{+s} \quad \nabla \cdot \bar{D}=S_{4} \mathrm{~cm}^{3}$ and $\bar{B}=\bar{B} \mathrm{wb}_{\mathrm{m}}{ }^{3}$
given $f_{y}=0$

$$
\therefore \quad \begin{aligned}
& \nabla \cdot \bar{D}=0 ; \rho_{m}^{3} \\
& \frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=0
\end{aligned}
$$

Dept. of.E\&CE., SVCE

$$
\begin{aligned}
& D_{x}=5 x u f_{m}^{2} ; D_{y}=-2 y \mu \ln _{m}^{2} ; \quad D_{z}= \\
& \therefore \bar{x} \cdot \operatorname{lm}_{m} 2 \\
& \therefore \bar{D}= \frac{\partial}{\partial x}(5 x) \mu+\frac{\partial}{\partial y}(-2 y) \mu+\frac{\partial}{\partial z}(k z) \mu=0 \\
& {[5-2+k] \mu=0 } \\
& k=-3 \quad q_{m^{3}}
\end{aligned}
$$

\therefore the value of $K=-3$ c/m suth that tho given fied \bar{D}. Sutistin the maxurilin cq T " $0 \mathrm{Cl}^{3}$.
luy. given $\bar{B}=2 \bar{a} y T_{B}$

$$
\begin{aligned}
& =0+\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}(2)+0 \\
& =0+0
\end{aligned}
$$

$$
b^{0}=
$$

$$
\bar{\nabla} \cdot \bar{B}=0
$$

\therefore given $\vec{B}=2 \overline{a_{y}}$ mा satintios the Maxwills quation $\overline{\nabla \cdot B}=0$ wb/n \quad OTuola.

10-DEC2011/Jan 2012
3 Determine whether or not the following pairs of fields satisfy Maxwell's equation.
$\vec{E}_{=1} E_{m} \sin x \sin \hat{a}_{y} \quad$ vin $\rightarrow \bar{F}=\bar{E}_{m} \sin x \sin t \bar{a}_{y} v / m$ \qquad
$\vec{H}=\frac{E_{m}}{\mu} \cos x \operatorname{cost} \hat{a}_{z} \rightarrow \bar{H}=\frac{E_{m}}{\mu} \cos x \cos t \overline{a_{z}} \mathrm{~A} / m$.
06. June /July 2013
(or)
 equations?
Solvi- the giver field eq" are Time-vanging freld'

$$
\begin{aligned}
& \text { i.e } E=E_{m} \sin x \sin t a_{y} v / m \cdot 00 \\
& E \Rightarrow f^{4}(x, t) \text { and } E_{y}=E_{n} \min ^{n} \sin t / m .
\end{aligned}
$$

and $\bar{H}=\frac{E_{m}}{\mu} \cos x+\bar{a}_{z}, A / m$

$$
\bar{H} \Rightarrow f^{\mu}\left(H^{\prime} \text { and } H_{3}=\frac{E_{m}}{\mu} \cos x \operatorname{cost} A l_{m}\right.
$$

Since the fipld E and F are Time-vanging: the Maxwefforin rluted to time-varying filds one

1. Furadayjo law i.e $\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} \cdot v / m^{2}$
2. Modifid Amparin Law

$$
\nabla \times \overparen{H}=\overline{J_{c}}+\frac{\partial \bar{D}}{\partial t} ; A l_{m}^{2} \leftarrow(2)
$$

Easei. By Considering $q^{4}(1)$

$$
\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}: \omega_{m}^{2} \text { and } \bar{B}=\mu_{0} \overline{\mathrm{~F}} \omega b / \mathrm{m}^{2}
$$

$$
\therefore \nabla \times \bar{E}=-\mu_{0} \frac{\partial F}{\partial t} \therefore v_{m}^{2}
$$

$$
\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\cdot \partial / \partial x & 0 & 0 \\
0 & E_{y} & 0
\end{array}\right|=-\mu_{0} \frac{\partial}{\partial t}\left[\frac{E_{m}}{\mu_{0}} \cos x \cos t\right] \overline{a_{z}}
$$

$$
\frac{\partial E_{y}}{\partial x} \bar{a}_{z}=-\mu_{0} \cdot \frac{E_{m}}{y_{0}} \cos (x)[-\sin]_{0}
$$

$$
\frac{\partial}{\partial x}\left[E_{m} \sin x \sin t\right] \overline{a_{2}}=+E_{m} 0_{0}{ }^{\cos } \sin t \overline{a_{2}}
$$

$$
\Rightarrow E_{m} \operatorname{con} x \sin t \overline{a_{3}}=E_{\text {gi }} \text { (con } x \sin (t) \overline{a_{z}}
$$

\Rightarrow Equating the 0 components

$$
E_{m} \cos x \sin (t)=E_{m} \cos x \sin t
$$

thus the dion field E and \bar{F} Satinfin the Maxurlis

$$
\text { e givertilds } \nabla \times \bar{E}=-\frac{\partial \sqrt[B]{t}}{\partial t} ; v / m^{2} \text {. }
$$

 given $E=E_{m} \sin x \sin t \bar{a}_{y} v / m$
and $\bar{H}=\frac{E_{m}}{\mu_{0}} \cos x \cos t \bar{a}_{3} A l_{m}$
Sine given $\mu=\mu_{0}+\mu_{m} \therefore$ the given Medium into be Considered as free Space.

In frespace $0=0 \mathrm{~s} / \mathrm{m}$

$$
\therefore \bar{J}_{6}=\sigma \bar{E}=0 \mathrm{~A} / \mathrm{m}^{2}
$$

$\therefore \quad q^{-1}$ (a) becomy

$$
\begin{aligned}
& \nabla \times \bar{H}=\frac{\partial \bar{D}}{\partial t} A m^{2} \text { and } \bar{D}=\cos ^{E} \varphi_{m^{2}} \\
& \nabla \times \bar{H}=\frac{\partial \bar{D}}{\partial t}=\epsilon_{0} \frac{\partial \vec{E}}{\partial t} ; \mathrm{Alm}^{2} \\
& \nabla 7 \times \vec{H}=\epsilon_{0} \frac{\partial \vec{E}}{\partial t} ; A m_{m} \\
& \left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & 0 & 0 \\
0 & 0 & H_{z}
\end{array}\right|=b_{0} \frac{\partial E}{\partial t} \\
& \theta^{0}-\frac{\partial H_{z}}{\partial x} \overline{a_{y}}=\epsilon_{0} \frac{\partial E}{\partial t} \\
& \sigma^{0}-\frac{\partial}{\partial x}\left[\frac{E_{m}}{\mu_{0}} \cos x \cos t\right] \overline{a_{y}}=\epsilon_{0} \frac{\partial}{\partial t}\left[E_{m} \sin x \sin t\right] \overline{a_{y}} \\
& -\frac{E_{m}}{\mu_{0}} \cos t x-\sin x \bar{a}_{y}=\epsilon_{0} E_{m} \sin x \operatorname{cost} \overline{a_{y}}
\end{aligned}
$$

Equating the y-component on bothside

$$
\begin{aligned}
& +\frac{E_{m}}{\mu_{0}} \operatorname{copt} \operatorname{sip} x=\epsilon_{0} \text { I/m sipx copt } \\
& \Rightarrow \quad \frac{1}{\mu_{0}} \neq 60 \quad b_{L_{2}} \quad \epsilon_{0}=8.854 \times 10^{-12} \cdot \mathrm{Fm} \\
& \text { \& } \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
& \Rightarrow \epsilon_{0} \neq 1 \mu_{0}
\end{aligned}
$$

\therefore the given fild'n E and \bar{H} doennd O Hintion the Maxurlin equation $\nabla \times \overline{O D} \mathrm{O}$ Alm${ }^{2}$. i.e $\nabla \times \bar{H} \neq \frac{\partial \bar{D}}{\partial t}$, for the gion fildo $E f$

problem 28

$$
\begin{aligned}
& \left.\mu=10^{-5} \mathrm{H}\right)_{m} \quad \epsilon=4 \times 10^{-9} \mathrm{Plm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { pair of fields satisfifes Maxwelis sequations: } \\
& 02 \text { JlJ } 2010 \\
& \text { i) } \mathrm{D}=\left(6 \mathrm{a}_{4}-2 \mathrm{za} \mathrm{a}_{x}+2 \mathrm{za} \mathrm{a}_{7} \mathrm{C} / \mathrm{m}^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10-DedJan } 2013(\mathrm{~cm}) \\
& \text { NA } 15 \text { Del Jan } 2017 \text { (} 8 \mathrm{~m} \text {) }
\end{aligned}
$$

ficilgefisty Maxwelts equitions:

$$
\begin{aligned}
& \text { fiel geaciisty Maxwells equation: }
\end{aligned}
$$

$$
\begin{align*}
& \nabla \times \bar{H}=\overline{J_{c}}+\frac{\partial \bar{D}}{\partial t} \tag{1}\\
& \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}< \\
& \nabla \cdot \bar{D}=f \rho_{m}^{3} \tag{3}\\
& \nabla \cdot \bar{B}=0 \quad \omega b / m^{3} \tag{4}
\end{align*}
$$

(2) $u_{m}{ }^{2}$
given data
$\mu=10^{-5} \mathrm{f} / \mathrm{m}, \epsilon=4 \times 10^{-9} \mathrm{Flm}, \sigma=0 \sin$ and

$$
f_{v}=0 \rho_{m^{3}}
$$

Case: :- (i) set $\cdot \bar{D}=6 \overline{a_{x}}-2 y \overline{a_{y}}+2 z \overline{a_{z}} n \bar{c}_{m}{ }^{2}$ and $\bar{H}=k x \bar{a}_{x}+10 y \bar{a}_{y}-25 z \overline{a_{z}}$, AIm
Since the given fild'n are static. un (3) and $Q^{4}(4) \cdot b_{c} \bar{D} \& \bar{H}$ are independent of time ' t '.
using $g^{\prime}(3)$.

$$
\nabla \cdot \bar{D}=\rho_{V}
$$

$$
\operatorname{given} K_{V}=0 \text { si }
$$

\therefore given field \bar{D} Satisfies the Maxuritineq $\nabla \cdot \bar{D}=0$.

$$
\begin{aligned}
& \frac{\square}{C \rightarrow} \vec{D}=0 \operatorname{cm}^{3} \\
& D_{x} C_{n} \mathrm{Clm}^{2}, \quad D_{y}=-2 y \mathrm{ncm} m^{2}, \quad D_{2}=22 \mathrm{ncm}_{m^{2}} \\
& \nabla \cdot \bar{D}=\frac{\partial}{\partial x}(6)+\frac{\partial}{\partial y}(-2 y)+\frac{\partial}{\partial z}(2 z) \\
& \nabla \cdot \bar{D}=0-\not f+2=0 \\
& \Rightarrow \quad\left[\cdot 0=0 \mathrm{~cm}^{3}\right.
\end{aligned}
$$

using $q^{4}(4)$ i.e $\nabla \cdot \bar{B}=0$
given $\bar{H}=k x \overline{a_{x}}+10 y \overline{a_{y}}-25 z \overline{a_{z}} A_{m}$.

$$
\begin{gathered}
\nabla \cdot \frac{\dot{B}}{\frac{=O}{B=\mu F} \cdots b m^{2}} \Rightarrow \nabla \cdot(\mu \bar{H})=0 \\
\mu \neq 0 \Rightarrow \nabla \cdot \bar{H}=0
\end{gathered}
$$

$$
\frac{\partial H_{x}}{\partial x}+\frac{\partial H_{y}}{\partial y}+\frac{\partial H_{z}}{\partial z}=0
$$

$$
\frac{\partial}{\partial x}[k x]+\frac{\partial}{\partial y}(10 y)+\frac{\partial}{\partial z}(-25 z)
$$

$$
k+10-25=0
$$

$0^{\left(0^{8}\right.} \Rightarrow k=15 \mathrm{Am}^{2}$.
usints of ' k '
obs $H_{x}=k k x ; A I_{m}$
$\underset{x_{m}}{k \rightarrow A l_{m}}$

$$
\begin{aligned}
& x \rightarrow A l_{m} \\
& \therefore \longrightarrow \rightarrow \text { Am }^{2}
\end{aligned}
$$

\therefore the value of $k=15 \mathrm{~A} / \mathrm{m}^{2}$ Suh that \bar{H} satinfios the Maxuilin $q^{4} \nabla \cdot \bar{B}=0$ i.e $\nabla \cdot \bar{H}=0 \mathrm{Am}^{2}$ $\omega \mathrm{b} / \mathrm{m}^{2} \mathrm{~J}$

Coneri
set $2 y^{4 \lambda}$ given $E=(20 y-k t) \bar{a}_{x}$ v/m.

$$
E \Rightarrow f^{n}(y, t) \text { and } E_{x}=(20 y-k t) v_{m} .
$$

and $\bar{H}=\left(y+2 \times 10^{6} t\right) \overline{a_{2}} \cdot A m_{m}$.

$$
\bar{H} \Rightarrow f^{n}(y, t) \text { and } H_{2}=\left(y+2 \times 10^{6} t\right) A l_{\mathrm{m}} \text {. }
$$

Since the given freld's are time-varying fold'n and given $\sigma=0 \therefore$ using $q^{4} 0$

$$
\begin{aligned}
& \text { i.e } \nabla \times \bar{H}=\frac{70}{7 c}+\frac{\partial D}{\partial t} ; Q^{\circ} \sigma=081 \mathrm{~m} \text {. } \\
& \therefore \Rightarrow \vec{\nabla} \times H=\frac{\partial \vec{D}}{\partial t}+C^{C} \frac{\partial E}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{H}^{+}\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
0 & \partial / \partial y & 0 \\
0 & 0 & H_{z}
\end{array}\right|=\epsilon \frac{\partial \vec{E}}{\partial t} \\
& \frac{\partial H_{3}}{\partial y} \overline{a_{x}}=\epsilon \frac{\partial \vec{E}}{\partial t} \\
& \frac{\partial}{\partial y}\left[y+2 \times 10^{6} t\right] \bar{a}_{x}=\epsilon \frac{\partial}{\partial t}[20 y-k t] \bar{a}_{x} \\
& {[1+0] \overline{a_{x}}=\in[0-k] \overline{a_{x}}}
\end{aligned}
$$

Equating the componentin of ' x '

$$
\begin{aligned}
1 & =-k \in \\
\Rightarrow \bar{k} & =-1 / \epsilon(\mathrm{F} / \mathrm{m})^{-1} \omega \mathrm{~V} / \mathrm{m} \cdot \mathrm{sec} . \\
\text { given } & \epsilon
\end{aligned}
$$

$$
\therefore K=-250 \times 10^{6} \mathrm{~m} / \mathrm{F} \text { (T) } / \mathrm{m}-\mathrm{sec}
$$

\therefore the value of $K=-\frac{1}{\epsilon}(\mathrm{~F} / \mathrm{m})^{-1} 00^{0}-250 \times 10^{6} \mathrm{~m} / \mathrm{F}(\mathrm{B}) \mathrm{V} / \mathrm{m}$ ince such that \bar{H} and \bar{E}, Satiotios the Maxnell'nepu $\bar{T} \times \bar{H}=\frac{\partial \bar{D}}{\partial t} \mathrm{Alm}^{2}$.
$\theta^{(\mathrm{B})}$
Note:- unit of k

$$
\therefore K=-\frac{1}{\epsilon} \mathrm{~m} / \mathrm{F} \text { (0) } K=-250 \times 10^{6} \mathrm{~m} / \mathrm{F} \text { (0) } V / \mathrm{m}-\sec
$$

$$
\begin{aligned}
& \begin{array}{l}
E=\underbrace{(20 y-k t)}_{v / m} \bar{A} \text { given } u / m
\end{array} \\
& \mathrm{Kt}_{\mathrm{c}} \rightarrow \mathrm{~V} / \mathrm{m} \\
& \xrightarrow{\text { Csec }} V / m-\sec .
\end{aligned}
$$

poiblem29
$\rightarrow E=2.5 E_{0}=10 \mu_{0}$.
-

(i) $\bar{E}=3 y \hat{a}$, and $\bar{M}=4 x \hat{a}$
$\rightarrow F=u x \bar{a}_{x} A l_{m}$
(12 צ.
Solu:- $\bar{E}=3 y a_{y} u \bar{m} \bar{E}=3 y \overline{a_{y}} \quad v / m$ and $\overline{H_{0}}=4 x \overline{a_{x}} \pi / m$.
$\sigma=0 \mathrm{~s} / \mathrm{m} ; \quad \epsilon=2.5 \epsilon_{0} \mathrm{H} / \mathrm{m}$ and $\mu=10 \mu_{0} \mathrm{t} / \mathrm{m}$.
Since the given fild'n are not time-varying focis the
Maxwilin eq in that relates to statidificady fieldin ane
$\bar{V} \cdot \bar{D}=\rho_{v} \varphi_{m}$ and $\sigma \cdot \bar{B} \cdot(1) m^{3}$
Sinue p_{v} is not given anfine $f_{1}=0 \mu^{3}$
\therefore the Maxwill's cq $\square \cdot \bar{D}=0 \operatorname{cm}^{3}$

$$
\begin{aligned}
& \quad \in \cdot(\epsilon \bar{E})=0 \\
& \therefore \neq 0 \\
& \therefore \quad \nabla \cdot E=0 .
\end{aligned}
$$

given $E_{y}=3 y \mathrm{u} / \mathrm{m}$.

$$
\begin{aligned}
& \nabla \cdot \bar{E}=\frac{\partial E_{x}}{\partial x}+\frac{\partial E y}{\partial y}+\frac{\partial E_{z}^{0}}{\partial z} \\
& \nabla \cdot E=\frac{\partial}{\partial y}(3 y)=3 \neq 0 \\
& \quad \therefore \nabla \cdot E \neq 0 \quad m^{2}
\end{aligned}
$$

\therefore the given field $\bar{E}=3 y \overline{a_{y}} \mathrm{vfm}$ dounot satiosfing The Maxnill's equ $\nabla \cdot \bar{D}=0 \rho_{m^{3}}$.
My. using eq" ie $\nabla \cdot \bar{B}=0$
using $\bar{B}=\mu \bar{H} \quad \omega b / m^{2}$

$$
\begin{aligned}
& \therefore \nabla \cdot(\mu \bar{H})=0 \\
& \mu \neq 0 \\
& 0^{\circ} \\
& \frac{\partial H_{x}}{\partial x}+\frac{\partial H \neq 0}{\partial y}+\frac{\partial \theta z}{\partial z}=\nabla \cdot \vec{H}, A m^{2} \\
& \theta^{\text {Qogon }} \bar{H}=4 x \bar{a}_{x}=H_{x} \overline{a_{n}} H l_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \square \cdot H=\frac{\partial}{\partial x}(4 x) \\
& \square \cdot H=4 \neq 0 \text { Alm } \\
& \text { Alm does }
\end{aligned}
$$

\therefore the given fied $\bar{H}=4 \times \overline{a_{x}}$: Alm doernot Sationtios the Maxwili's $q^{u} \nabla \cdot \bar{B}=0$ (ब) $\bar{D}^{\circ} \bar{H}=0$. $\therefore \Rightarrow \operatorname{A} \cdot \bar{H} \neq 0$ my $\bar{B} \neq 0$.
problem 30
(3) A homogeneousnaterial has \& $-2 \times 10^{-6} \mathrm{Ftm}$ and $\mu=128 \times 10^{5} \mathrm{H} / \mathrm{m}$ and $\sigma=0$. Electric

\vec{B}, \vec{H} and k using Mappers equations - $\quad \therefore$ (12 Marks) $\& K$.
Solu:- given $\epsilon=2 \times 10^{-6} \mathrm{~F} / \mathrm{m}$ and $\mu=1.25 \times 10^{-5} \mathrm{H} / \mathrm{m}$ and

$$
\sigma=0 .
$$

$$
\begin{aligned}
& \sigma=0 . \\
& \rightarrow \bar{E}=400 \cos \left(10^{9} t-k_{3}\right) \bar{a}_{x} \mathrm{v} / \mathrm{m} . \\
& E_{0}=400 \mathrm{cos}
\end{aligned}
$$

$E \Rightarrow f^{u}(z, t)$ and $E_{x}=400 \cos \left(10^{9} t(z) v / n\right.$.

$$
\begin{aligned}
& i \quad \bar{D}=\epsilon \bar{E} f_{m}{ }^{2} \\
& \quad \text { given } \epsilon=2 \times 10^{-6} \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

$\therefore \bar{D}=2 \times 10^{-6}[400$ cunt edt $\left.-k 2)\right] \overline{a_{x}} \quad d_{m}^{2}$

$$
\left.\vec{D}=800 \cos \left[10^{9} t-k z\right] \bar{a}_{x}\right] \rho_{m}{ }^{2}
$$

ii ${ }^{\circ} \frac{\square}{0}$ find \bar{B}, using $\nabla \times E=-\frac{\partial \bar{B}}{\partial t}$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \bar{a}_{z} \\
0 & 0 & \partial / \partial z \\
E_{x} & 0 & 0
\end{array}\right|=-\frac{\partial \bar{B}}{\partial t} \\
& -\frac{\partial E_{x}}{\partial z}\left(-\bar{a}_{y}\right)=-\frac{\partial \bar{B}}{\partial t} \\
& \Rightarrow \frac{\partial \bar{B}}{\partial t}=-\frac{\partial E_{x}}{\partial z} \overline{a_{y}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \vec{B}}{\partial t}=-\frac{\partial}{\partial z}\left[400 \cos \left(10^{9} t-k_{z}\right)\right] \overline{a_{y}} \\
&=+400 \sin \left(10^{9} t-k z\right) \times-k \overline{a_{y}} \\
& \frac{\partial \bar{B}}{\partial t}=-400 k \sin \left(10^{9} t-k z\right) \overline{a_{y}} \\
& \bar{B}=\int \frac{\partial \vec{B}}{\partial t} \cdot d t=+400 k \cos \left(10^{9} t-k z \bar{a} y\right. \\
& 10^{9}
\end{aligned}
$$

$$
\therefore \bar{B}=400 k \cos \left(10^{9} t-k_{3}\right) a_{y}+906 / m^{2} \text { (0) nTesla. }
$$

iii) $\bar{H}=\frac{\bar{B}}{\mu} A / m$.
given $\mu=1.25 \times 100$

$$
\begin{aligned}
& 2 . \bar{H}=\frac{400 k}{1.25 \times 10^{-5}} \cos \left[10^{9} t-k_{z}\right] a_{y} \times 10^{-9} \\
& \left.\therefore \bar{H}=32 k \cos \left[10^{9} t-k z\right] a_{y}\right] \mathrm{mAlm}
\end{aligned}
$$

To Find value of ' k '; using Maxurliscq"

$$
\nabla \times \bar{H}=\bar{J}_{c}+\frac{\partial \bar{D}}{\partial t}: A_{m}^{2}
$$

given $\sigma=0 \therefore \bar{J}_{C}=\sigma \hat{E}^{0}=0$.

$$
\begin{align*}
& \therefore \nabla \times \bar{H}=\frac{\partial \bar{D}}{\partial t} \\
& \left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
0 & 0 & \partial z \\
0 & H_{y} & 0
\end{array}\right|=\frac{\partial \bar{D}}{\partial t} \\
& -\frac{\partial H_{y}}{\partial z} \bar{a}_{x}=\frac{\partial \vec{D}}{\partial t} \\
& \frac{\partial \bar{D}}{\partial t}=-\frac{\partial}{\partial z}\left[3 2 k \operatorname { c o n } \left[10^{9} t-60^{\circ} \times 10^{-3} \overline{a_{x}}\right.\right. \\
& =-32 k x-\sin \left(4 \theta^{6}-k 3\right) x-k \times 10^{-3} \overline{a_{n}} \\
& \frac{\partial \vec{D}}{\partial t}=-32 k \sigma^{-3} \sin \left[10^{9} t-k z\right] \overline{a_{x}} \\
& \theta_{0}^{\circ}=\int \frac{\partial D}{\partial t} \cdot \partial t \\
& \bar{D}=\frac{-32 k^{2} \times 10^{-3} x-\cos \left(10^{9} t-k z\right)}{10^{9}} \overline{a_{x}} \\
& \bar{D}=+32 k^{2} \times 10^{-12} \operatorname{con}\left[10^{9} t-k_{z}\right] \overline{a_{x}} \tag{6}
\end{align*}
$$

Equeting magnitudes of qu (a) and (b) [ie componentin of ' x].
\therefore using ' K ' value in obfained \bar{D}, \bar{H} and \bar{B}
$\bar{D}=800 \cos \left[10^{9} t \div 50003\right] \mathrm{chm}^{2}$

$$
\begin{aligned}
& D^{\prime} \\
& \bar{B}=400 K \cos \left[10^{9} t-k z\right] \overline{a_{y}} n \omega b / m^{2} \\
& \bar{B}=400(\pm 5000) \operatorname{con}\left[10^{\circ} t \mp 50002\right] \overline{a_{y}} n \omega b / m^{2}
\end{aligned}
$$

$$
\therefore x^{+\infty} \bar{B}= \pm 2 \cos \left[10^{9} t \mp 50003\right] \overline{a_{y}} \mathrm{mwb} / \mathrm{m}^{2}
$$

$$
\begin{aligned}
& i \cdot e \rightarrow \bar{D}=8000{ }^{\circ} \mathrm{Con} t-k 3 \mathrm{clm}{ }^{2} \\
& \text { © put } k= \pm 5000 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& 10^{-6} \times 800 \cos \left[10^{9} t-k_{z}\right]=32 k^{2} \times 10^{-12} \operatorname{con}\left[1 g^{9} t-k_{z}\right] \\
& \Rightarrow k^{2}=\frac{800 \times 10^{-6}}{32 \times 10^{-12}} \\
& K^{2}=25 \times 10^{6} \\
& k= \pm \sqrt{25 \times 10^{6}} \\
& x 0 \\
& k= \pm 5000 \mathrm{rad} / \mathrm{m} \\
& \text { note:- } \\
& \text { unit of } k^{\prime} \\
& \bar{E}=400 \cos \left(10^{9} t-k z\right) \overline{a_{a}} \cdot v / m \\
& \bar{E}=E_{0} \cos (\omega t \pm \phi) \bar{a}_{x} \omega_{m} \\
& \text { Georal form. } \\
& \text { phaxeangle } \\
& \text { in'rad' } \\
& \mathrm{kz} \rightarrow \mathrm{rad} \\
& 100^{\circ} \\
& \therefore k \rightarrow \mathrm{rad}_{\mathrm{m}}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{H} & =32 k \cos \left[10^{9} t-k z\right] \overline{a_{y}} ; m A / m: \\
\bar{H} & =32(\pm 5000) \cos \left[10^{9} t \mp 5000 z\right] a_{y} ; m A l_{m} . \\
\bar{H} & = \pm 160 \cos \left(10^{9} t \mp 5000 z\right) \bar{a}_{y} ; A / m
\end{aligned}
$$

problem 3)
What values of A and β are required for two fields $\bar{E}=120 \pi \cos \left[10^{6} \pi t-\beta x\right] \alpha_{y}$ vain and
$\rightarrow \bar{H}=A \operatorname{Cos}\left[10^{6} \pi t-\beta x\right] a_{z} A / n$. Satisfies Maxwells equation in a medium
$\epsilon_{r}=\mu_{r}=4$ and $\sigma=0$.
Solus?. given $\bar{E}=120 \pi \cos \left[10^{6} \pi t-\beta x\right] \bar{a} y v / m$.

$$
\Rightarrow \begin{aligned}
& \bar{H}=A \cos \left[10^{6} \pi t-\beta x\right] \overline{a_{z}} A l_{m} . \\
& \epsilon_{r}=\mu_{r}=4 \text { and } \sigma=0 .
\end{aligned}
$$

using Maxwells c ${ }^{4}$

$$
\begin{align*}
& \nabla g \quad \operatorname{Max} \times \bar{H}=\frac{F_{c}^{0}}{J_{c}}+\frac{\partial \bar{D}}{\partial t} \\
& \nabla \times \bar{H}=\epsilon \frac{\partial E}{\partial t} \leftarrow(1) \tag{1}
\end{align*}
$$

and

$$
\begin{aligned}
& \nabla \times E=-\frac{\partial \bar{B}}{\partial t} m^{2} \\
\Rightarrow & \nabla \times E=-\mu \frac{\partial H}{\partial t} \quad v / m^{2} \leftarrow \text { (2) }
\end{aligned}
$$

using ot 1

$$
\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & 0 & 0 \\
0 & 0 & H_{z}
\end{array}\right|=\epsilon \frac{\partial E}{\partial t}
$$

$$
-\frac{\partial H_{z}}{\partial x} \cdot \overline{a_{y}}=E \frac{\partial E}{\partial t}
$$

$$
\begin{aligned}
& \frac{\alpha}{\partial x} \cdot a y=E \overline{\partial t} \\
& \frac{-\partial}{\partial x}\left[A \cos \left(10^{6} \pi t-\beta x\right)\right]^{\bar{a}}=-\epsilon \times 120 \pi \times \sin \left[10^{6} \pi t-\beta x\right] a^{2} \\
& \times 1^{6} \pi
\end{aligned}
$$

$$
\Rightarrow A \beta \sin \left(10^{6} \pi t-\beta x\right) \overline{a_{y}}=-120 \pi^{2} \epsilon \times 10^{6} \sin \left(10^{6} \pi t-\beta x\right) \overline{a_{y}}
$$

Equating ' y ' component n or both side

$$
\begin{align*}
& \text { Equating y compont } \\
& A \beta \sin \left(10^{6} \pi t-\beta x\right)=-120 \pi^{2} \epsilon \times 10^{6} \sin \left(y^{6} \pi t-\beta x\right) \\
& \Rightarrow A \beta=-120 \pi^{2} \epsilon \times 10^{6} \leftarrow \text { al }
\end{align*}
$$

lly using equ (2) $\quad \nabla \times \bar{E}=-\mu \frac{\partial H}{\partial t} \quad 4 / m^{2}$

$$
\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & 0 & 0 \\
0 & E_{y} & 0
\end{array}\right|=-\mu \frac{\partial F}{\partial t}
$$

$$
\frac{\partial E_{y}}{\partial x} \bar{a}_{3}=-\mu \frac{\partial \vec{H}}{\partial E}
$$

$120 \pi \beta \sin \left(10^{6} \pi t-\beta x\right) a_{z}=-A \mu \sin \left(10^{6} \pi t-\beta x\right) \overline{a_{2}} \times 10^{6} \pi$
Equating $a^{\text {components on bothside. }}$

$$
\begin{align*}
\Rightarrow & 120 / \beta=-A \mu \times 10^{6} \frac{1}{1} \\
& \theta^{\prime} \beta=\frac{-\mu A \times 10^{6}}{120}< \tag{b}
\end{align*}
$$

using cq (b) in cqu (a)

$$
\begin{aligned}
& \text { using cq(B) incqu } \\
& A\left[\frac{-\mu A \times 10^{6}}{120}\right]=-120 \pi^{2} \in \times 10^{6} \Rightarrow A^{2}=\frac{(190)^{2} \pi^{2} \epsilon}{\mu} \\
& A^{2}=1.00136 \Rightarrow A= \pm 1.00068 \\
& \text { if } A=+1.00068 \rightarrow B=-0.0425 .
\end{aligned}
$$

(0) if $A=-1.00068 \rightarrow B=+0.0425$
protelem 32
A certain material bas conductivity $\sigma=0$ and relative permeability $\mu_{r}=1$. Make use of Maxwell's equations to find the following.

1. . $\begin{aligned} & H(z, t) \text { and II. } \epsilon_{r} \\ & \text { assume } \vec{E}=800\end{aligned}$
assume $\vec{E}=800 \sin \left(10^{6} t-0.1 z\right) \bar{a}_{y} v / m$ inside the material. $\quad[$ Schaumin Octine.].
solue-

$$
\begin{align*}
& \text { given } \\
& \sigma=800 \sin \left(10^{6} t-0.1 z\right) \overline{a_{y}} \text { vem. } \tag{a}\\
& \sigma / m ; \quad \mu_{r}=1 .
\end{align*}
$$

using Maxwilin qu derived from Faradayj k,

$$
\begin{aligned}
& \text { i.e } \nabla \times \bar{E}=-\frac{\partial \vec{B}}{\partial t} \quad \text { ofm }{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\partial \bar{B}}{1 \partial t}=\frac{\partial}{\partial z}\left[800 \sin \left(10^{6} t-0.13\right)\right] a_{x} \\
& \frac{\partial \bar{B}}{\partial t}=800 \cos \left[10^{6} t-0.13\right] \times-0.1 \overline{a_{x}} \\
& \frac{\partial \vec{B}}{\partial t}=-80 \cos \left[10^{6} t-0.12\right] \overline{a_{x}} \\
& \bar{B}=\int \frac{\partial \bar{B}}{\partial t} \cdot \partial t=\frac{-80 \times \sin \left(10^{6} t-0.13\right)}{10^{6}} \overline{a_{x}} \\
& \bar{B}=-80 \times 10^{-6} \operatorname{Sin}\left(10^{6} t-0.12\right) \overline{a_{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{B}=\mu_{0} \mu_{\gamma} \bar{H} \\
\therefore & \bar{H} / \mathrm{m}^{2} \\
\therefore & \frac{\bar{B}(z, t)}{\mu_{0} \mu_{r}}=\frac{-80 \times 10^{-6} \sin \left(10^{6} t-0.13\right)}{4 \pi \times 10^{-7}} \overline{a_{x}}
\end{aligned}
$$

$$
\bar{H}(z, t)=-63.66 \sin \left(10^{6} t-0.1 z\right) \overline{a_{x}} \text { Am }
$$

using Maxwilin cqu derived from Amperis cift tait haw

$$
\text { ie } E=\frac{6.366 \times 10^{-6}}{60 \epsilon_{r}} \sin \left[10^{6} t-0.12\right] \overline{a y} v / m<-(b)
$$

$$
\text { Lomparing } q^{4}(0) \text { and } C_{q} \times(b) \Rightarrow \frac{6.366 \times 10^{-6}}{8.854 \times 10^{-12} \epsilon_{r}}=800
$$

$$
\begin{aligned}
& \text { ie } \nabla \times \frac{1}{H}=F_{C}+\frac{\partial \vec{D}}{\partial t} \Rightarrow \infty{ }^{\frac{1}{H}+\frac{\partial \vec{D}}{\partial t}} \mathrm{Alm}^{2} \\
& \left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
0 & 0 & \partial / \partial z \\
H_{x} & 0 & 0
\end{array}\right|=\frac{\partial \bar{D}}{\partial t} \\
& \frac{\partial H_{x}}{\partial z} \overline{a_{y}}=\frac{\partial \bar{D}}{\partial t} \rightarrow \frac{\partial \bar{D}}{\partial t}=\frac{\partial}{\partial z}\left[-63.66 \sin \left(10^{6} t-0.12\right)\right] \overline{a_{y}} \\
& \frac{\partial \bar{D}}{\partial t}=-63.6 .6 \cos \left(10^{6} t-0.12\right) \times-0.1 \overline{a_{y}} \\
& \frac{\partial \bar{D}}{\partial t}=t \cdot 3.366 \cos \left(10^{6} t-0.13\right) \overline{a_{y}} \\
& D+\int \frac{\partial D}{\partial t} \cdot \partial t=6.366 \frac{\sin \left(10^{6} t-0.1 z\right)}{10^{6}} \bar{a} a \\
& \bar{D}=6.366 \times 10^{-6} \sin \left(10^{6} t-0.1 z\right) \overline{a_{y}} \mathrm{~cm}^{2} \\
& \bar{D}=\epsilon \bar{E}=\epsilon_{0} \sigma r \bar{E} \Rightarrow \bar{E}=\frac{\bar{D}}{\epsilon_{0} \sigma_{r}} \mathrm{v} / \mathrm{m}
\end{aligned}
$$

problem 3
show that an emf induced in a Faraday dis C generator is $C=-\frac{\omega B a^{2}}{2}$ volts where ' w ' in the angular velocity in rad/sec, B is the magnetic Flupdrsity in Tesla and ' a ' in the radius of the dis C in meter.
problem 6 .
A Circular conducting Loop of radius 400 m Lies in Dy plane and has resintance of $20 n$. if the magnetic fluxdursity in the region in given as

$$
\bar{B}=0.2 \cos (500 t) \bar{a}_{x}+0.75 \sin (u 00 t) \bar{a}_{y}
$$

Determine sffetive value of induced current in the Loop.
Problem 7. A Straight conductor of Length 0.2 m , Lies on x-axis with one end at origin. The conductor is Subjuted to a magnetic fluxdersity $\bar{B}=0.04 \overline{a_{y}}$ Tesla and the velocity $\bar{v}=2.5 \sin 10^{3} t \bar{a}_{2} \mathrm{~m} / \mathrm{sec}$. Determine notional Emf induced in the Conductor. (Gm).
problem 8.
A copper disc leocm diameter in rotated at 3000 rpm on a horizontal axis pupindiular to and through the centre of disc axis, lying in magnetic meridian. Two brushes make contain with disc at diametrically opposite points on the edge. if horizontal component of earth's fold is 0.02 mT , find the in dud emf between brushes.
\therefore A Condudor Larmo Steady Lurint of I amperin:
The componento of [urent elensity vator \bar{J} are
$J_{x}=2 a x$ and. $J_{y}=$ say. Find the third componant
J_{z} : Derive any relation employed:
Note'. Module-5A Quotion. Jone-2006 (10M).
Soly:-
using [ontinuity eq"

$$
\nabla \cdot \bar{J}=-\frac{\partial / v}{\partial t} A / m^{3}
$$

if Condutor corrics Steady Current then

$$
\begin{aligned}
& \rho_{u}=\text { conptent } \Rightarrow \frac{\partial \rho_{y}}{\partial t}=0 \rho_{m}{ }^{3}-\mathrm{sec} \text {. } \\
& \Rightarrow \nabla \cdot \bar{J}=0 \\
& \frac{\partial J_{x}}{\partial x}+\frac{\partial J_{y}}{\partial y}+\frac{\partial J_{3}}{\partial z}=0 \\
& \frac{\partial}{\partial x}(2 a x)+\frac{\partial}{\partial y}(2 a y)+\frac{\partial J_{z}}{\partial z}=0 \\
& 2 a+2 a+\frac{\partial J_{3}}{\partial z}=0 \\
& \frac{\partial J_{z}}{\partial z}=-4 a . \\
& \text { Integrating wrt 'z. }
\end{aligned}
$$

$$
\left.J_{3}=-4 a_{3}+k\right] A / m^{2}
$$

Summany.
a) List of Sprobols.

1. angular frequeny $(\omega)=2 \pi f$ radpec.
2. freporncy $(f) \rightarrow H_{z}$ (ar cycles/ sece
3. Timeporiod $(T)=\frac{1}{f} \rightarrow \operatorname{second}(S y)$.
4. Spect of Light $v=\frac{1}{\sqrt{\mu_{0} G 0}}$ mpe.

$$
V=3 \times 10^{8} / \mathrm{m} / \mathrm{sec}
$$

5. Faradayin Law,

$$
\begin{aligned}
& e=-\frac{d \phi}{d t} \text { volfn } \\
& \phi=\text { NLI;wb } \\
& e=-N L \frac{d I}{d t} \text { volls }
\end{aligned}
$$

6. $V \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} \vee / m^{2} \quad \begin{aligned} & \text { Maxwilinc } y^{\prime} \\ & \text { from foraday' }\end{aligned}$
7. Modified Amperin Cirkuital Law

$$
\nabla \times \bar{H}=\overline{J_{0}}+\frac{\partial \bar{D}}{\partial t} \quad \mathrm{Aln}^{2} .
$$

8. $\overline{J_{c}}=\sigma \bar{E} \mathrm{Alm}^{2} \ldots$ poinfformot
(6) Conduting curint-densify
9. displacement Eument density

$$
\overline{J_{D}}=\frac{\partial D}{\partial t}=j \omega \in E
$$

10. Lositangent $\left\lvert\, \frac{\overline{J_{0}}}{\sigma_{d}}=\left(\frac{\sigma}{\omega \epsilon}\right)\right.$... dimention.
11. $J \cdot \bar{B}=0$ Wb/ $n^{3} \cdots$ pont-form of Gaunir Law (Maunh Law
\vec{b}-List of Formulaes:
i. Faraday' Law:- The Magnitude of the indoud unf in a Circuit is equal to the rate of change of the magnitic flux through it and itidirution oppos s the Flux change.

DANKAN VGOWDA, w.Ten. (Ph.D., Asstant Protesior

Dept. of E\&CE SVCE | Bangalore- -652157 |
| :---: |
| Bat | Mgb :9844554940

$e=-\frac{d \phi}{d t}$ wolfo coilwith Ni miturno

$$
e=-\left.N \frac{d \phi}{d+}\right|^{\mid} \text {solkn. }
$$

2. Leng Lawi. the indrud cmf is in Such a diration as to oppose the change caising it. Maxarli's quection from Faradayi Lavo. interal
3.

4. Total (d) nct Einf.
5. if given E field in said to be arise from Static distribution of charges only when $\square \times \bar{E}=0 \mathrm{~m} \mathrm{~m}^{2}$.
if $\nabla \times \bar{\square} \neq 0$ dm en E dounot arise from Static distribution of charges.
6. Ampcrin Circuital Law $\nabla \times \bar{H}=\overline{\bar{\gamma}} \mathrm{Alm}^{2}$.
7. Modified Amperin Circuital Law.

$$
\frac{\frac{\square \times H}{}=\vec{J}_{c}+\frac{\partial D}{\partial t}}{\frac{I}{J_{t}}=\overline{J_{c}}+\overline{J_{p}}} \mathrm{Alm}^{2}
$$

8. Condution Current density ($\overline{J_{C}}$).

$$
\overline{J_{c}}=\sigma \bar{E} \mathrm{Am}_{m^{2}} \cdots \text { poinf form of ohmilau. }
$$

qn Displacument Current density $\left(\bar{J}_{0}\right)$

$$
\overline{J_{D}}=\frac{\partial \bar{D}}{\partial t}=j \omega \in \vec{E} A m^{2}
$$

10. Losstangent.
note'- $\left(\bar{J}_{G}+J_{D} J_{D}\right)$ always.

$$
\left.\left|\frac{\bar{J}_{Q}}{\bar{J}_{D}}\right|=\frac{\sigma_{0}}{\omega_{G}} \right\rvert\,- \text { Lontengent. }
$$

if $\left(\frac{\sigma}{\omega t}\right) \gg$; Mediuin is Cood conderfor.

$$
\begin{aligned}
& \text { Medium is Ciood dielutric. } \\
& \left(\frac{\sigma}{\omega t}\right) \rightarrow 0 ; \text { Medivm is orfent }
\end{aligned}
$$

11. Maxarils equations in point and integral form.
a. Maxurlt equations for stady (a) static firlds.

Slino Integralform
pointform Remork.

1. $\oint_{\langle l\rangle} \bar{E} \cdot \overline{d l}=0 ; V \quad \nabla \times \bar{E}=0: V / m^{2}$ workdone.
2. $\oint_{\langle S\rangle} \bar{D} \cdot \overline{d s}=\int_{\langle v o 1\rangle} \rho_{u} d v ; G$
$\nabla \cdot \overline{O_{-}}=\rho \mathrm{SN}_{\mathrm{n}}=\mathrm{clm}^{3}$ Gacerintau (Elutrostatios).
3. $\oint_{\langle l\rangle} \bar{H} \cdot \overline{d l}=\int_{\langle S\rangle} \bar{J} \cdot \overline{d s} ; A \cdot \nabla \overline{\nabla \times H}=\bar{J} A A_{m}^{2}$ Amperin Law
4. $\begin{aligned} & \oint_{<S\rangle} \bar{B} \cdot \overline{d s}=Q+\omega b \\ &\end{aligned}$ $\nabla \cdot \bar{B}=0 ; w_{b} / \mathrm{m}^{3} \quad$ Gaurinlay (magnetostactic (n)
5. $\oint_{3} \frac{d s}{d S}=0 ; A$ $\nabla \cdot \bar{J}=0 ; A / \mathrm{m}^{3}$. Continuity Curinteg ${ }^{4}$.

- Maxurll Guations in purfet Dielutricu Medium. (LomLenmudium)
$\left(\frac{\nabla}{\omega}\right) \rightarrow 0 \therefore \bar{J}_{C}=0$ and No freecherge
Exint in drlutric Medium

$$
\therefore S_{u}=0 .
$$

$E=\operatorname{Er} \mathrm{Et}_{0} \mathrm{Hm}$ and $\mu=\mu_{0} \mu_{r} H I_{m}$
Integral form pointform femark.
Slino.
01.

$$
\begin{aligned}
& \oint_{\langle l\rangle} \bar{E} \cdot \overline{d l}=-\int\left(\frac{\partial \bar{B}}{\partial t}\right) \cdot \overline{d S}
\end{aligned}
$$

ϕ_{2}.

Gaurrin Law

$$
\nabla \cdot \bar{D}=0 \cdots \text { Yaurrin Law }
$$

$\nabla \cdot \bar{B}=0$ Garnilaw (Megratorfectics)
05. $\oint_{\langle s\rangle} J \cdot d s=0$
$\nabla \cdot J=0 \quad$ Continuity quation.
e. Maxurlfs Equation In Cwod Condurting Medium. (Lony-medeum)

$$
\left(\frac{\sigma}{\omega t}\right) \gg 1 \Rightarrow \overline{J_{C}} \gg \overline{J_{D}}
$$

\therefore neglet $\overline{J_{D}}$. Since $\frac{\partial D}{\partial t}$ is Small.
Since $\frac{\partial \vec{D}}{\partial t}$ invinglem \therefore he $=\sigma \cdot \bar{D} \rightarrow 0$

$$
\therefore \rho_{r}=0 \mathrm{~cm}^{3} .
$$

slino. Integral form poinfform

1. $\oint_{\langle l\rangle} E \cdot \overline{d l}=-\int_{\langle s\rangle} \frac{\partial \bar{B}}{\partial t} \cdot \overline{d s} \quad \nabla \times \bar{E}=\frac{-\partial \bar{B}}{\partial t}$, Foradajilaw

2. $\oint_{\langle\bar{\prime}\rangle \cdot \overline{d s}=0} \quad \nabla \cdot \bar{D}=0 \quad$ Gaumilaw
$\nabla \cdot \bar{B}=0 \quad$ Gaumi Law
(magnetostatics)
O4. $Q_{s} B \cdot d s=0$
$\nabla \cdot \bar{J}=0$
Continuitplumat equation.
F. Maxurlis Equation Ior Ciood dieletric Medium (o)

LawLon Medium.
In Lasoh hon (ar) Good dieltric medium $\left(\frac{\sigma}{\omega \epsilon}\right) \ll 1$.

$$
\begin{aligned}
& \Rightarrow \sigma<c \omega \epsilon \quad \\
& \quad \bar{J}_{c} \ll \frac{\partial \bar{D}}{\partial t} \\
& \bar{T}_{0} \rightarrow 0
\end{aligned}
$$

\therefore neglut the term \bar{J}_{c}. ie $\bar{J}_{c} \rightarrow O$

$$
\begin{aligned}
& \therefore \text { Neglut the tem sc. } \\
& \text { and Pe=0 bes no frechorges indichtris. } \\
& \text { Integralform Roinform Remat. }
\end{aligned}
$$

Slno.

1. $\oint_{\langle l\rangle} \underset{E}{E} \cdot \overline{d l}=-\int_{\langle s\rangle} \frac{\partial \bar{b}}{\partial t} \cdot \overline{d s}$
$\operatorname{Ba}^{2} \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} \cdot \mathrm{v} / \mathrm{m}^{2} \quad$ Foraday,

$\nabla \cdot \sigma=0 ; A_{m^{3}} \cdot \begin{gathered}\text { Eontrinuily } \\ \text { Eument }\end{gathered}$ Curcent

Part-B : Uniform Plane Wave

Wave propagation in free space and good conductors. Poynting's theorem and wave power, Skin Effect.

Topics:

5.4 Introduction to Electro-Magnetic Waves.
$>$ 'Recap of Maxwell's Equations in Free Space.
$>$ Concept of Wave Motion.
$>$ Concept of Wave Equation.
5.5 Wave Propagation in Free Space/General Wave Equation in Free space + Solution of Wave Equation in Free Space.
5.6 Definition of Plane Waves and Uniform Plane Waves.
5.7 Wave Propagation in Good Conductors/ Wave Equation in Good Conducting medium + Solution of Wave Equation in Good Conducting Medium.
5.8 Wave Propagation in Good Dielectrics and Perfect dielectrics / Wave Equation in Good Dielectrics and Perfect dielectric medium + its Solution.
5.9 Transverse nature of Electro-Magnetic Waves.
5.10 Relationship b/w |E| and |H|.
5.11 Characteristics of Medium/ General Definitions of:
$>$ Propagation Constant (γ)
$>$ Attenuation Constant (α)
$>$ Phase Constant (β)
$>$ Wave Velocity (v)
$>$ Wave Length (λ)
$>$ Intrinsic Impedance (η)
5.12 Wave Equation in Phasor form.
5.13 Expressions for $\alpha, \beta, \gamma, \lambda, v$, and η in

\Rightarrow General case
\Rightarrow Free Space
$>$ Perfect Dielectrics
> Good Conductors and
$>$ Good Dielectrics
5.14 Concept of Skin effect and Skin depth for Good Conductors.
5.15 Poynting's theorem and wave power.
$>$ State and Prove Poynting's theorem
\Rightarrow Expression for wave power/ average Power density in Lossless and Lossy medium
Miscellaneous Topics:
5.16 Polarization of Uniform Plane waves.
5.17 Brewster angle in Wave Propagation.

Summary

- List of Symbols
- List of Formulae

Topics:

1. Introduction to Electro-Magnetic Waves.
$>$ Recap of Maxwell's Equations in Free Space.
$>$ Concept of Wave Motion.
$>$ Concept of Wave Equation.
2. Definition of Plane Waves and Uniform Plane Waves.
3. Wave Propagation in Free Space/General Wave Equation in Free space + Solution of Wave Equation in Free Space.

Introduction:-
An Eluatromagnatic wave propogation can be explained by
using Maxnele'n equations. The Existence of $E M$ waves
was stated by Prof. Heinrich H / H, actually Maxwell himsif predicted the existent EM wars earlier. Hertz was the first scenting who gen crated and detach radio wares such orfulty. EM waves are fantom of space and time. Typical example of EM waves are radio waves, TV signals it c.

Derive the wave equations for \vec{E} and \vec{H} in a general mediurn.

06-DEC2011/Jan 2012
Derive general wave equations in terms of \bar{D} and \bar{B} in uniform medium using Maxwells equations.

With usual notations, obtain the general wave equations for electric and magnetic fields.
(06 Marks)
10-san 2013
Starting from Maxwell's equations obtain the general wave equations in electric and magnetic field.

Using Maxwell's equation derive an expression for uniform plane wave in fice space.
(08 Marks)
10-sune/July 2013
Starting from Maxwell's equations, obtain the wave equations in free space.
(07 Marks)
06 - June / July 2011
Starting from Maxwell's equations obtain the general wave equations in electric and magnetic fields.
(10 Ms 亩g)
10 - June / Julv 2012
Starting from Maxwell's equation, derive the wave equation for a uniform plane wave travelling in free space.
(08 Marks)
02 - June /July 2012
Using Maxwell's equations, show that the free space wave equation in E may be writen as

$$
\begin{equation*}
\nabla^{2} \overrightarrow{\mathrm{E}}-\mu \in \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}^{2}}=0 \tag{06Marks}
\end{equation*}
$$

010-Dec/Jan 2015
Starting form Maxwells equations derive wave equation in E and H for a uniform plane wave travelling in free space.
(10 Marks)
06 - May/June 2010

Method I: -
In free Space [Source free region, where $\beta_{v}=0 ; \sigma=0^{-}$ and $\overline{J_{c}}=07$, the Maxuillis equation for frespace which are $\epsilon=\epsilon_{0}$ flo and $\mu=\mu_{0} H / \mathrm{m}$.

$$
\begin{align*}
& \nabla \times \bar{H}=\overline{J_{c}}+\frac{\partial \bar{D}}{\partial t} ; \overrightarrow{A \times m^{2}} \Rightarrow \nabla \bar{H}=\epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
& \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} ; \mu_{m} \Rightarrow \nabla \times E=-\mu_{0} \frac{\partial H}{\partial t} \tag{2}\\
& \vec{\nabla} \cdot \vec{D}=\rho_{v} \cdot \rho_{m^{3}} \Rightarrow \bar{\nabla} \cdot \bar{D} \text { and } \\
& \text { w.k.t } \bar{D}=\epsilon_{0} \bar{E} \varphi_{m}^{2} \\
& \text { and } \epsilon_{0} \boxtimes \cdot E=0 \\
& \text { (क) } \nabla \cdot \bar{E}=0 \\
& \nabla \cdot \bar{B}=0 \Rightarrow \mu_{0}(\cdot H \cdot H)=0 \\
& \text { and } \bar{B}=\mu_{0} \bar{H} \omega b / m^{2} \Rightarrow \nabla \cdot \bar{H}=0 \rightarrow(4) \\
& \text { and } \bar{B}=\mu_{0} H \quad 1 m^{2}
\end{align*}
$$

Concept of Wave motion:-
$q^{4}(1)$ States that if the Electric field \bar{E} changes with time. at some point this change produce a rotating curling Magnticifild at that point; \bar{H} varying Spatially in a diration normal to its orientation.
$e q(2)$ at time-varying \bar{H} generation a rotating $\bar{E}[c u \mid \vec{E}]$ and this \bar{E} varies spatially in a direction normal to its orientation.

Concept of Wave Equation:-
anime an EM wave travelling in free space. Consider that an Elatric field is in. x-direction; while a Magncticfield is in y-diration. both the field will not v any with x and y but with z only. they will also change with time as the wave propogating nitre space.
Consider a Maxurli's qu expromed in \bar{E} and \bar{H} as

$$
\nabla \times \bar{H}=\overline{J_{c}}+\frac{\partial \bar{D}}{\partial t}: A_{m}{ }^{2}
$$

in fresespace $\sigma=0 \dot{v} / \mathrm{m}: \overline{J_{c}} \rightarrow 0$.

$$
\begin{equation*}
\nabla \times \bar{H}=\frac{\partial \widetilde{D}}{\partial t} \tag{1}
\end{equation*}
$$

ut $\bar{D}=D_{x} \bar{a}_{x}+D_{y} \bar{a}_{y}+D_{2} \overline{a_{z}} \mathrm{~cm}^{2}$

$$
\text { and } \nabla \times H=\left|\begin{array}{lll}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
H_{x} & H_{y} & H_{z}
\end{array}\right|
$$

$$
\begin{aligned}
=\left[\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right] \overline{a_{x}} & +\left[\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}\right] \overline{a_{y}} \\
& +\left[\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right] \overline{a_{z}}
\end{aligned}
$$

\therefore equ $^{4}(1)$ Ean be writfen as

$$
\begin{align*}
{\left[\frac{\partial H_{z}>0}{\partial y}-\frac{\partial H_{y}}{\partial z}\right] \overline{a_{x}} } & +\left[\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x^{0}}\right]^{0} \overline{a_{y}}+\left[\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right]^{0} \overline{a_{z}} \\
& =\frac{\partial}{\partial t}\left[D_{x} \overline{a_{x}}+D_{y} \overline{a_{y}}+D_{z} \overline{a_{z}}\right] \tag{2}
\end{align*}
$$

as wave \bar{H} is travelling in y-diration: $H_{x}=H_{z}=0$. and $H_{y}=f^{\prime}(z, t)$ only $\therefore \frac{\partial H_{y}}{\partial x}=0 ; \frac{\partial H_{y}}{\partial y}=0$.
$\therefore q^{4}(2)$ becoms

$$
\begin{gathered}
-\frac{\partial H_{y}}{\partial z} \overline{a_{x}}=\frac{\partial}{\partial t}\left[D_{x} a_{x}+D_{y} \overline{a_{y}}+D_{z} \overline{a_{z}}\right] \\
\text { tin both side }
\end{gathered}
$$

quating \dot{x} componentin both side

$$
\Rightarrow-\frac{\partial H_{y}}{\partial z}=\frac{\partial D_{x}}{\partial t}
$$

and $\bar{D}=E E \quad \|_{m}{ }^{2}$
(b) $D_{x}=\in E_{x} C_{m}^{2}$

$$
\therefore \frac{\partial H_{y}}{\partial z}=-\epsilon \frac{\partial E_{x}}{\partial t}
$$

Now Consider a Maxurlin qu derived from FaradayinLaw

$$
\text { i.e } \quad \nabla \times \bar{E}=-\frac{\partial \vec{B}}{\partial t}
$$

$$
\begin{array}{r}
{\left[\frac{\partial E_{y}^{\pi}}{\partial z}-\frac{\partial E_{z}^{2}}{\partial y}\right] \overline{a_{x}}+\left[\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right] \overline{a_{y}}+\left[\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x}\right] \overline{a_{x}}} \\
=-\frac{\partial}{\partial t}\left[B_{x} \overline{a_{x}}+B_{y} \overline{E_{y}}+B_{z} \bar{a}_{z}\right] \tag{3}
\end{array}
$$

as E is in x-direction $\therefore E_{y}=E_{3}=0$.

$$
\text { F is in } \mathcal{F}_{x}=f^{n}(z, t) \text { only } \therefore \frac{\partial E_{x}}{\partial x^{\prime}}-\frac{\partial E_{x}}{\partial y}=0 \text {. }
$$

\therefore the cqu (3) becomes

$$
\frac{\partial E_{x}}{\partial z} \overline{a_{y}}=-\frac{\partial}{\partial t}\left[B_{x} \bar{a}_{x}+B_{y} a_{y}+B_{z} \bar{a}_{z}\right]
$$

Comparing y-componentin on bothside

$$
\frac{\partial E_{x}}{\partial z}=\frac{\partial B_{y}}{\partial t}
$$

using $+\bar{B}=\mu \bar{H}$ wh/m m^{2}
and $B_{y}=\mu H_{y} \omega b / m^{2}$

$$
\begin{equation*}
\frac{\partial E_{x}}{\partial z}=-\frac{\mu H_{y}}{\partial t} \text { (6) } \frac{\partial H_{y}}{\partial t}=-\frac{1}{\mu} \frac{\partial E_{x}}{\partial z} \tag{b}
\end{equation*}
$$

Differntiating cqu@ w.rt ' t '

$$
\begin{equation*}
\frac{\partial}{\partial t}\left[\frac{\partial H_{y}}{\partial z}\right]=-\epsilon \frac{\partial^{2} E_{x}}{\partial t^{2}}= \tag{C}
\end{equation*}
$$

Differnticting qu(b) w.r.t ' z '

$$
\begin{equation*}
\frac{\partial}{\partial z}\left[\frac{\partial H_{y}}{\partial t}\right]=-\frac{1}{\mu} \frac{\partial^{2} E_{x}}{\partial z^{2}} \tag{d}
\end{equation*}
$$

from oq" (c) and (d) L.H.S are same by interchanging the order of differentiation.
\therefore Equating R.H.S of $q^{4}(0)$ and q^{u} (d)

$$
\begin{align*}
& \epsilon \frac{\partial^{2} E_{x}}{\partial t^{2}}=\frac{1}{\mu} \frac{\partial^{2} E_{x}}{\partial z^{2}} \\
& \therefore \frac{\partial^{2} E_{x}}{\partial t^{2}}=\frac{1}{\mu \epsilon} \frac{\partial^{2} E_{x}}{\partial z^{2}} \tag{丹}
\end{align*}
$$

The Elanical wave cqu is represisted by $\nabla^{2} F=\frac{1}{v^{2}} \frac{\partial^{2} \bar{F}}{\partial t^{2}} \leqslant$ the abovec, (8) reprosento a wave travelling with a velocity vimpec
Comparing cq"(9) with (Q), it is clear that $v=\frac{1}{\sqrt{\mu \epsilon}} m / s e c$
With this as reference Maxnilis predicted that, the empty space Supporto the propogation of Elutromagnatic ware at Spad $v=\frac{1}{\sqrt{\mu_{060}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec} \ldots$ in incespace.
Hence we can write the eq (f)

$$
\begin{equation*}
\frac{\partial^{2} E_{x}}{\partial t^{2}}=v^{2} \frac{\partial^{2} E_{x}}{\partial z^{2}} \tag{i}
\end{equation*}
$$

The solution of thin wave equation is given Bept. of ECE, B.M.S.I.T \& M

$$
\begin{equation*}
E_{\alpha}=E_{m}^{+} \cos (\omega t-\beta z)+E_{m}^{-} \cos (\omega t+\beta z) \quad v / m \tag{3}
\end{equation*}
$$

Sole Consist of one component of field traveling in positive z-direction having amplitude E_{m}^{+}; while other component having amplitude of E_{m}^{-}traveling in negative
Z-diration.
the ware velocity $v=\frac{1}{\sqrt{\mu \epsilon}}=\frac{\omega}{\beta} m$

$$
\begin{aligned}
& \text { ie } \beta=\frac{2 \pi}{\lambda} \mathrm{rad} / n=\frac{2 \pi}{\lambda f} \frac{\omega}{v} \\
& \therefore \beta=\frac{\omega^{2}}{\omega} \mathrm{rad} / \mathrm{m}\left(v=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu E}} \mathrm{~m} / \mathrm{pec}\right.
\end{aligned}
$$

we can obtain My type of eq u for magnetic field \bar{H} by

$$
\begin{aligned}
& \text { ie } \frac{\partial H_{y},}{m+t}-\frac{1}{\mu} \frac{\partial E_{x}}{\partial z} \\
& \left.\frac{\partial H_{y}}{\partial t}=-\frac{1}{\mu} \frac{\partial}{\partial z}\left[E_{m}^{+} \operatorname{con}(\omega t-\beta 3)+E_{m}^{-} \cos \omega t+\beta 3\right)\right] \\
& =-\frac{1}{\mu}\left[E_{m}^{+} \beta \sin (\omega t-\beta 3)-E_{m}^{-} \beta \sin (\omega t+\beta 3)\right]
\end{aligned}
$$

By Integrating ort time ' t '

$$
\begin{aligned}
& H_{y}=-\frac{1}{\mu}\left[\frac{-E_{m}^{+} \beta}{\omega} \cos (\omega t-\beta 2)+\frac{E_{m}^{-} \beta}{\omega} \cos (\omega t+\beta \xi)\right] \\
& \therefore H_{y}=\frac{E_{m}^{+\beta}}{\omega \mu}\left(\cos (\omega t-\beta z)-\frac{E_{m}^{-} \beta}{\omega \mu} \cos (\omega t+\beta z)\right. \text { All. }
\end{aligned}
$$

- x x

$$
\begin{equation*}
H_{y}=H_{m}^{+} \operatorname{con}(\omega t-\beta z)-H_{m}^{-} \text {con }(\omega t+\beta z) \tag{Am}
\end{equation*}
$$

thin equ My to eq (3) representing two components of a Magnetic field one is in forward diration while other is in backward dire".

He ware eq" ie from equ(i)

$$
\begin{equation*}
\frac{\partial^{2} E_{x}}{\partial t^{2}}=v^{2} \frac{\partial^{2} E_{x}}{\partial z^{2}} . \tag{i}
\end{equation*}
$$

Since $\bar{E}=E_{x} \overline{a_{x}} ; v / m$, ain only in x dire 4 .

$$
\therefore C_{y}=G_{3}=0
$$

$$
\begin{equation*}
\therefore \frac{\partial^{2} E_{x}}{\partial z^{2}}=\nabla^{2} E \tag{0}
\end{equation*}
$$

$$
\begin{align*}
& \text { using } q^{4}(2) \text { in } \\
& w^{2} E_{x}=v^{2} \sigma^{2} \cdot E \\
& \Rightarrow \nabla \frac{A}{E}=\frac{1}{u^{2}} \frac{\partial^{2} E_{x}}{\partial t^{2}} \text { and } v=\frac{1}{\sqrt{\mu \epsilon}} \\
& \therefore \nabla^{2} \cdot \vec{E}=\frac{1}{(1 / \sqrt{\mu} t)^{2}} \frac{\partial^{2} E x}{\partial t^{2}} \\
& \therefore \nabla^{2} \cdot E=\mu \in \frac{\partial^{2} E_{x}}{\partial t^{2}} \text { (O) } \\
& \bar{E}=E_{x} \overline{a_{n}} \psi_{m} \\
& E_{n}=f^{\prime \prime}(z, t) \\
& \bar{H}=H_{y} \sigma_{y} A A_{m} \\
& H_{y}=f^{n}(z, t)
\end{align*}
$$

Ingeneral $X^{\infty} \nabla^{2} \cdot \bar{E}-\mu \in \frac{\partial^{2} \bar{E}}{\partial t^{2}}=0$
Dept of Eccles sue lyly tee Can write for Magnetic field in page $512-B$
$\mathscr{X}_{i=e}^{\text {Dep }}$

$$
\begin{equation*}
\nabla \nabla^{2} \cdot \bar{H}-\mu \in \frac{\partial^{2} F}{\partial t^{2}}=0 \tag{B}
\end{equation*}
$$

V先 in Aethod-II:- Wave Equation in tre Space
solui- Let wo Consider the two Time-varying Maxwellis equs

$$
\nabla \times \bar{H}=\bar{J}+\frac{\partial \bar{D}}{\partial t} ; \overline{A / m}^{2} \text { and } \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} ; v / m^{2}
$$

but $\bar{D}=\epsilon \bar{E} \mathrm{~cm}^{2}$ and $\bar{B}=\mu \bar{H} \mathrm{wb} / \mathrm{m}^{2}$
infrespace $\mu=\mu_{0}+1 / m$ and $\epsilon=\epsilon_{0} \mathrm{Fm}$.;

$$
\begin{align*}
& \nabla \times \bar{H}=\bar{J}+\epsilon_{0} \frac{\partial \vec{E}}{\partial t} \tag{1}\\
& \nabla \times \bar{E}=-\mu_{0} \frac{\partial \vec{H}}{\partial t} \tag{2}
\end{align*}
$$

from $q^{4}(2)$ i.e $\nabla \times \bar{E}=-\mu_{0} \frac{\partial \vec{H}}{\partial t}$
Cul on both side to abore equ

$$
\begin{align*}
& \text { Curl on } \tag{3}\\
& \nabla \times \nabla \times \bar{E}=-\mu_{0} \frac{\partial}{\partial t}(\nabla \times \bar{H}) \\
& \hline
\end{align*}
$$

using Vetor identity i.e $\quad \nabla \times \nabla \times \bar{A}=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \mathrm{~A}$
wean prite

$$
\begin{aligned}
& \text { prite } \\
& \nabla \times \nabla \times \bar{E}=\nabla(\nabla \cdot \bar{E})-\nabla^{2} \bar{E} \\
& \text { i.e } \nabla \cdot \bar{D}=
\end{aligned}
$$

using poimoris qu" i.e $\nabla \cdot \dot{\bar{D}}=\rho_{v} \mathrm{~cm}^{3}$

$$
\begin{equation*}
\nabla \times \nabla \times \bar{E}=\nabla\left(\rho_{v} \mid \epsilon_{0}\right)-\nabla^{2} \bar{E} \tag{4}
\end{equation*}
$$

$\therefore q^{4}(3)$ becomes

$$
\nabla\left(\rho_{v} \mid \epsilon_{0}\right)-\nabla^{2} \bar{E}=-\mu_{0} \frac{\partial}{\partial t}\left[\bar{J}+\epsilon_{0} \frac{\partial \vec{E}}{\partial t}\right]
$$

$$
\begin{equation*}
\dot{x} x \nabla^{2} E-\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\mu_{0} \frac{\partial J}{\partial t}+\nabla\left(\delta_{y} \mid \epsilon_{0}\right) \tag{5}
\end{equation*}
$$

the L.H.S of above equ is in the charatioristic form of a Wave $c q$. The sole of Such an equation represent a propogating wave. The R.H.S represents the Sources which are rosponsiblit for the Wave field ie the charges and Cument.
\therefore Hence cq"(5) reprint the wave equation in E for a medium with Constant ' H ' and \in, ie for a tromegencous and isotropic medium.
Now taking [url on bottrside for $C^{4}(1)$.

$$
\nabla \times \nabla \times \bar{H}=\nabla \times \bar{J}+\epsilon_{0} \frac{\partial}{\partial t}(\nabla \times \bar{E})
$$

using $q^{u}(2)$ in R.H.s

$$
\nabla(\nabla \cdot \bar{H})-\nabla^{2}=\nabla \times \bar{J}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{H}}{\partial t^{2}}
$$

asper Maxnillin $q^{4} \quad \nabla \cdot \bar{B}=0$ and $\nabla \cdot \bar{H}=0$ $m_{0} \neq 0$.

$$
\begin{equation*}
\therefore \nabla^{2} \bar{H}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{H}}{\partial t^{2}}=-(\nabla \times \bar{J}) \tag{6}
\end{equation*}
$$

The above equation reprcontt the Wave qu in \bar{H} for a medium with [instant μ_{0} and ϵ_{0}.

For a Soure frie region and fre space

$$
\text { ie } \quad \sigma=0 \quad \therefore \quad \bar{J}=0 \text { and } \int_{y}=0
$$

$\therefore c q^{4}(5)$ andequ(6) becomes
义

$$
\frac{\frac{1}{\nabla^{2} E-\mu_{0} \epsilon_{0} \frac{\partial^{2} \bar{G}}{\partial t^{2}}=0} \text { and }}{\dot{x}^{+} \cdot \sqrt{\nabla^{2} H-\mu_{0} \epsilon_{0} \frac{\partial^{2} H}{\partial t^{2}}}=0}
$$

the clanical Wlare equation in qupranted by

$$
\nabla^{2} \bar{F}-\frac{1}{v^{2}} \frac{\partial^{2} \bar{F}}{\partial t^{2}}=0
$$

where $v=\frac{1}{\sqrt{\mu_{0} G_{0}}-\frac{w}{\beta} \text { m/sec; wave velocity }}$ i. intrespace

$$
v=3 \times 10^{8} \mathrm{~m} / \mathrm{xc}
$$

Note:- Students are advised to mite Method-II in Eramination.
\qquad
2.

Obtain solution of the wave equation for a uniform plane wave (UPW) in freaspace. ${ }^{-} \mathrm{O}$
sou:-
N.K.t the Wave equ in tree Space

$$
\nabla^{2} \vec{E}-\mu \epsilon \frac{\partial^{2} E}{\partial t^{2}}=0
$$

ut sole $\bar{E}=E_{0} e^{j \omega t} v / m * 2$
where \bar{E}-instantaneous field at time ' t '
E_{0}-amplitude of $\vec{E} \cdot J=\vec{I} ; \omega=2 \pi$ radisec (angular frequency).

$$
\begin{align*}
& \frac{\partial^{2} E}{\partial t^{2}}=j^{2} \omega^{2}\left[E_{0} e^{j \omega t}\right]=-\omega^{2} \bar{E} \tag{3}\\
& \text { for Lon te }
\end{align*}
$$

using cq (3) he have Glove qu for Lenten Medium as

$$
\underbrace{\nabla^{2} \bar{E}+\omega^{2} \mu \in E=0} \underset{\text { Helmholtz eq u }}{ } \stackrel{\text { Hall ed }}{4}
$$

Helmholtz eq u.
and the sole [onsinte of

$$
\begin{aligned}
& E=E_{m}^{+} \operatorname{con}(\omega t-\beta z)+E_{m}^{-} \cos (\omega t+\beta z) \quad \text { Nave trailing } \\
& \square_{-3} 3^{\prime} \text { dire }^{4} \\
& \text { Wave travelling along }
\end{aligned}
$$

tue 3 direction.
lief. $\nabla^{2} \bar{H}-\mu \in \frac{\partial^{2} H}{\partial t^{2}}=0$; the solus

$$
\left.\bar{H}=H_{m}{ }^{+} \operatorname{con}(\omega t-\beta \beta)-H_{m}^{-} \operatorname{con}(\omega t+\beta \xi)\right] A I_{m}
$$

Note:- for more details rifer page NO -512A and 512B
3. Define Plane Waves and Uniform Plane Waves
plane Wave: - plane waves are waves that pons Variation only in the direction of wave propogation and their Characteristics remain constant acrom planes normal to the diration of propogation.
Uniform plane haves (UPW):-
In the case of Elutromagntic wave propagating along x-axis, they are referred to as "Uniformplane waves" if the Electric field and magnoticfelds are independent of y and 2 but function f, x and t only. Further for Such aware, it is inpottant to note that there will be no. field component along the direction of wave propogation. this is "Called transverse nature of Elutromagnatic wave. (TEM-wove).
4. Wave Propagation in Good Conductors/ Wave Equation in Good Conducting medium + Solution of Wave Equation in Good Conducting Medium.
4.

Discuss the uniform plane wave propagation in a good conducting medium.
(06 Mark:
06-DEC 2013/Jan 2014
Derive an expression for uniform plane waves in good conductor.
(06 Marks)
06 - June /July 2012
With suitable assumption work out the solution of wave equation for uniform plane wave propogating in a good conductor.

Diseliss uniform plane wave propagation in a good conducting media,

Discuss the uniform plane wave propagation in a good conducting medium.
Obtain the Solution of Wave Equation in Conducting Medium.
Soluir In a Conducting medium (or) Good. Conductor's
$\sigma \neq 0$.
w. t from Moxnilin qu's

$$
\begin{aligned}
& \nabla \times \bar{H}=\bar{J}+\frac{\partial \vec{D}}{\partial t} ; A / m^{2} \text { and } \nabla \times \bar{E}=-\frac{\partial \vec{B}}{\partial t} ; V / m^{2} \\
& \text { end } \bar{D}=\in \bar{E} \varphi_{m}{ }^{2} \quad, \bar{B}=\mu \bar{H}, W b / m^{2} \text {; }
\end{aligned}
$$

$\mu=\mu_{0} \mu \mathrm{H} \mid m$ and $\epsilon=$ Go fr Ff .

$$
\begin{aligned}
\nabla \times \bar{H}= & \bar{J}+\epsilon \frac{\partial \vec{E}}{\partial t} \leftarrow(1) \\
& \text { and } \nabla \times \bar{E}=-\mu \frac{\partial H}{\partial t} \leftarrow(2)
\end{aligned}
$$

$$
\text { fromeq" (2) ie } \nabla \times E=-\mu \frac{\partial F}{\partial t}
$$

Dept. of E\&CE, SVCE

Eurl on bothside

$$
\begin{equation*}
\nabla \times \nabla \times E=-\mu \frac{\partial}{\partial t}(\nabla \times \bar{H}) \tag{3}
\end{equation*}
$$

using vator identity i.e $\nabla \times \nabla \times \bar{A}=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}$

$$
\nabla \times \nabla \times \bar{E}=\nabla(\bar{\nabla} \cdot \bar{E})-\nabla^{2} \bar{E}
$$

$\omega \cdot k \cdot+\nabla \cdot \bar{P}=\rho_{u} \rho_{m}{ }^{3}$ and $\nabla \cdot \bar{E}=\rho_{4} / E v / m^{2}$

$$
\nabla \times \nabla \times \bar{E}=\nabla(\rho v \mid \epsilon)-\nabla^{2} \bar{E}
$$

Cqu(3) beones

$$
\begin{aligned}
& \nabla\left(\rho_{v} \mid \epsilon\right)-\nabla^{2} \bar{E}=-\mu \frac{\partial}{\partial t}\left[\bar{J}+\epsilon \frac{\partial E}{\partial t}\right] \\
& \nabla^{2} E=\nabla\left(\rho_{u} \mid \epsilon\right)+\mu \mu^{2} \frac{\partial E}{\partial t}+\mu \epsilon \frac{\partial^{2} E}{\partial t^{2}}
\end{aligned}
$$

most of the region inare Source frce $\therefore \rho_{v}=0 \mathrm{~cm}^{3}$.
\therefore the a bove og becomes

$$
\nabla^{2} \bar{E}=\mu \sigma \frac{\partial E}{\partial t}+\mu \in \frac{\partial^{2} E}{\partial t^{2}}
$$

My taking [urlon bothside to cqe (i)

$$
\nabla \times \nabla \times \bar{H}=\nabla \times \vec{J}+\epsilon \frac{\partial}{\partial t}(\nabla \times \bar{E})
$$

using $q^{u}(2)$ and vetor identity

$$
\begin{aligned}
& \nabla \cdot(\notin \cdot \bar{H})-\nabla^{2} \bar{H}=\nabla \times \bar{J}+\epsilon \frac{\partial}{\partial t}\left[-\mu \frac{\partial \vec{H}}{\partial t}\right] \\
& 0 \text { using maxuring }{ }^{\mu}-\nabla \cdot \bar{B}=0 ; \nabla \cdot(\mu \bar{H})=0
\end{aligned}
$$

$$
\text { i.e } \quad x \neq 0 \Rightarrow \sigma \cdot \bar{H}=0
$$

and $\bar{J}=\sigma \bar{E} A m^{2} ; \quad \nabla \times \bar{E}=-\mu \frac{\partial \vec{H}}{\partial t} v / m^{2}$

$$
\begin{aligned}
\Rightarrow-\nabla^{2} \vec{H} & =\sigma(\nabla \times \bar{E})-\mu \epsilon \frac{\partial^{2} \vec{H}}{\partial t^{2}} \\
-\nabla^{2} \bar{H} & =\sigma\left[-\frac{\mu \partial F}{\partial t}\right]-\mu \epsilon \frac{\partial^{2} \vec{H}}{\partial t^{2}} \\
\nabla^{2} \bar{H} & =\mu \sigma \frac{\partial \vec{H}}{\partial t}+\mu \epsilon \frac{\partial^{2} \vec{H}}{\partial t^{2}}
\end{aligned}
$$

The cquation (a) and cq4 are called Electric and
Magnatic filld'n of Wave equations in conduting Medium
(0) Good condertors.
us $C^{4}(a)$ and c^{4} (b) ingencal ve con write for all field vators E, \bar{D}, \vec{H} and \bar{B}
XP

$$
\overrightarrow{E,} \bar{D} \cdot \vec{H} \text { and } \bar{B}
$$

indicates that the ficedn dec y as the propogate through fhe 1059 Medium. [\therefore Conduting Nedfum $(\sigma \neq 0)$ called Lonymedium].

Solution of Wave equation in Conducting Medium:-
The Wave equation in. Londerting Medium

$$
\nabla^{2} \vec{E}=\mu \sigma \frac{\partial \vec{E}}{\partial t}+\mu \epsilon \frac{\partial^{2} E}{\partial t^{2}}
$$

and

$$
\begin{equation*}
\nabla^{2} \vec{H}=\mu \sigma \cdot \frac{\partial \vec{H}}{\partial t}+\mu \epsilon \frac{\partial^{2} \vec{H}}{\partial t^{2}} \tag{6}
\end{equation*}
$$

assume EM wave in propagating in z direction

$$
\begin{aligned}
\bar{E} & =E_{x} \overline{a_{x}} v / m \text { and } E_{x}=f^{u}(z, t) \text { only } \\
\bar{H} & =H_{y} \bar{a}_{y} \text { Almond } \quad H_{y}=f^{u}(z, t) \text { only }
\end{aligned}
$$

the solution of co- @) +1

$$
F_{x}^{\prime}(z, t)={F_{m}}^{+} e^{\alpha z} \cos (\omega t-\beta z)+E_{m} e^{+\alpha z} \cos (\omega t+\beta z)+v / m
$$

and $H_{m}=\frac{\delta_{m}}{Y}$ Aim and $y=|y| \angle \theta_{n}$ a Ω.
\therefore the sole of eq is

$$
\begin{aligned}
& H_{y}(z, t)=\frac{E_{m}^{+}}{\mid W} e^{-\alpha z} \operatorname{con}\left(\omega t-\beta z-\theta_{4}\right)-\frac{E_{m}^{-} e^{+\alpha z}}{|y|} \cos \left(\omega t+\beta z-\theta_{4}\right) \\
& -H_{y}(z, t)=H_{m}^{+} e^{-\alpha z} \cos \left(\omega t-\beta z-\theta_{y}\right)-H_{m}^{-} e^{\alpha z} \cos \left(\omega t+\beta z-\theta_{4}\right)
\end{aligned}
$$

FUNDAMENTALS of EM Wave Propagedhtrof ECE, B.M.S.I.T \& M ENGINEERING ELECTROMAGNETIC (15EC36) MODULE-5B

DANKAN V GOWDA MTech., (PhD)
Note 1. if $\bar{E} \rightarrow \bar{a}_{x}$ then $\bar{E}=E_{x} \bar{a}_{n} v / m$

$$
\bar{H} \rightarrow \overline{a y} \text { then } \bar{H}=H_{y} \bar{a}_{y} A A_{m}
$$

then direction of $E-M$ wave propagates in 3 'dire 4 '.
and $E_{x}, H_{y} \Rightarrow f^{4}(z, t)$. only.
Note 2. if $\bar{E} \rightarrow \overline{a_{y}}$ then $\bar{E}=E_{y} \bar{a}_{y} v / m$.

$$
\begin{aligned}
& L-a_{y} \\
& H \rightarrow \overline{a_{z}} \text { then } \bar{H}=H_{z} \bar{a}_{z} A / m \text {. }
\end{aligned}
$$

then direction of $E-M$ wave propagation is in ' x^{\prime} dire" and $\mathcal{F}_{y}, H_{z} \Rightarrow f^{n}(x, t)$ only
Note 3 , if $\bar{E} \rightarrow \bar{a}_{3} ; E=E_{3} \bar{a}_{2} v / m$.

$$
\bar{H} \rightarrow a_{x}, F=H_{x} \bar{a}_{x} \text { A lm }
$$

then direction of EM Wove propagation is in " y 'dire" and $E_{z}, H_{x} \Rightarrow f^{n}(y, t)$ only.
Note 4 . Non-Exintance of fill component along the direction of Wave propagation.
E. ie if EM wave is propagating along z'diration then $\sqrt{2}_{3}=H_{3}=0$, ie fill component o along

Topic:
Wave Propagation in Good Dielectrics and Perfect dielectrics / Wave Equation in Good Dielectrics and Perfect dielectric medium + its Solution.
.5.
Discuss the wave propagation in a good dielectric (absorption medium).

Tolu'- A dibutric Medium is a one in which the Conduction Cur int is almost zero in comparison to the displacement current and Supt Medium Called as dielutria Medius:

Dibutric Medium
partan didutricis

$$
\frac{\pi}{\omega t} \rightarrow 0
$$

Nave" - N.k.t from Maxnallin qu's
but. $\bar{D}=\in E q_{m}^{2}$ and $\bar{B}=\mu \bar{H} \omega / / m^{2}$

$$
\begin{aligned}
& \nabla \times \vec{H}=\bar{J}+\epsilon \frac{\partial \vec{E}}{\partial t}-0 ; \nabla \times \bar{E}= \\
& \text { from cgl(2) ie } \nabla \times \bar{E}=-\mu \frac{\partial \vec{H}}{\partial t} \nu / \mathrm{m}^{2}
\end{aligned}
$$

Curlon both side

$$
\begin{align*}
& \text { Colon both } \bar{\nabla} \times \bar{E}=-\mu \frac{\partial}{\partial t}(\nabla \times \vec{H}) \tag{3}
\end{align*}
$$ using vutoridentity $\nabla \times \nabla \times \bar{E}=\nabla(\nabla \cdot \bar{E})-\nabla^{2} \bar{E}$

$$
\nabla \cdot \bar{D}=\rho_{v} \rho_{m}{ }^{3} \Rightarrow \nabla \cdot E=\rho_{v} f_{E} v / m^{2}
$$

$$
\begin{equation*}
\nabla \times \nabla \times \vec{E}=\nabla\left(P_{n} \mid E\right)=\nabla^{2} \bar{E} \tag{4}
\end{equation*}
$$

Gu(3) berome

$$
\begin{aligned}
& \nabla(\delta u / \epsilon)-\nabla^{2} \bar{E}=-\mu \frac{\partial}{\partial t}\left[\bar{J}+\epsilon \frac{\partial \vec{E}}{\partial t}\right] \\
& \nabla^{2} E=\nabla\left(S_{v} \mid \epsilon\right)+\mu \sigma \cdot \frac{\partial E}{\partial t}+\mu \epsilon \frac{\partial^{2} E}{\partial t^{2}}
\end{aligned}
$$

most of the region are sourcefree,$h=0 \operatorname{lm}^{3}$
the above cqu becoms

$$
\nabla^{2} E=\mu \sigma \frac{\partial E}{\partial t}+\mu \epsilon \frac{\partial^{2} E}{\partial t^{2}}
$$

for a perfut diclutrie $\frac{0}{Q E} \rightarrow 0 \therefore 0 \simeq 0 \mathrm{~V} / \mathrm{m}$. using there conditions the above cqu becomis

$$
\begin{aligned}
\nabla^{2} E=\mu E \frac{\partial^{2} E}{\partial t^{2}} \\
\nabla^{2} E-\mu \in \frac{\partial^{2} E}{\partial t^{2}}=0
\end{aligned}+\text { Nore eq of }{ }^{4} E \text { fild }
$$

Note!- (force (ic $\frac{\sigma}{\omega \in} \rightarrow 0$).
Note: For a liood diclutric Medium $\frac{\overline{U E}}{\omega t}<1$; \therefore, the Lave for for liod dillutric Medium is
(2)

$$
\bar{V}^{2} \bar{F}=\mu \sigma \frac{\partial E}{\partial t}+\mu \in \frac{\partial^{2} E}{\partial t^{2}}
$$

My the Magnetic field Wave equ, take Cusl on bothside to

$$
\nabla \times \nabla \times \bar{H}=\nabla \times \bar{J}+\epsilon \frac{\partial}{\partial t}(\underline{\nabla} \times \bar{E})
$$

using $q^{u(2)}$ and vatoridentity

$$
\begin{aligned}
& \nabla(\notin \cdot \bar{H})-\nabla^{2} \frac{\nabla}{H}=\nabla \times \bar{J}+E \frac{\partial}{\partial t}\left[-\mu \frac{\partial \vec{H}}{\partial t}\right] \\
& \text { osing Maxwilincq } \\
& \text { us }
\end{aligned} \quad \nabla \cdot \bar{B}=0 \Rightarrow H_{H}=0
$$

using Maxwatincq $\quad \nabla \cdot \bar{B}=0 \Rightarrow \vec{A}=O \cdot A l \mathrm{~m}$ and $\bar{J}=\sigma \bar{E} A m^{2}$

$$
\begin{aligned}
\text { and } J & =\sigma E A / m^{2} \\
-\nabla^{2} \bar{H} & =\sigma(\nabla \times \bar{E})-\mu \epsilon \frac{\partial \vec{H}}{\partial t^{2}} \\
-\nabla^{2} \bar{H} & =\sigma\left[-\mu \frac{\partial \bar{H}}{\partial E}\right]-\mu \epsilon \frac{\partial^{2} \bar{H}}{\partial t^{2}} \\
\nabla^{2} \bar{H} & =\sigma \mu \frac{\partial \vec{H}}{\partial t}+\mu \epsilon \frac{\partial^{2} \vec{H}}{\partial t^{2}}
\end{aligned}
$$

for a perfat diclutric Medium $\frac{\bar{\sigma}}{w \epsilon} \rightarrow 0 ; \sigma \simeq 0 \mathrm{v} / \mathrm{m}$.
\therefore the above equation beiomus

$$
\begin{aligned}
& \nabla^{2} \bar{H}=\mu \in \frac{\partial^{2} H}{\partial t^{2}} \\
& \nabla^{2} F-\mu \in \frac{\partial^{2} H}{\partial t^{2}}=0
\end{aligned}
$$

Wave qu of H field for puifutdichatric Medium. $\left(\frac{\pi}{\omega t} \rightarrow 0\right)$ ie LLonLin diclutrico (0) rudium]

Note:- for a Cood diclutric Medium $\frac{\sigma}{\omega t} \ll 1$

$$
\therefore \nabla^{2} \bar{H}=\mu \sigma \frac{\partial \bar{H}}{\partial t}+\mu \epsilon \frac{\partial^{2} \bar{H}}{\partial t^{2}} \text { Wlare equ of }
$$

diclutries (LawLondiclutrics) Mediun ic $\frac{\sigma}{\omega E} \ll 1$.

Note:-
Dielutric Medium Clanfed into
[perfect diclutrics/LonLen diclutrics]
(Good diclutries/Lawhon dicluty -ics)
Cond $\quad \frac{\sigma}{\omega t} \ll 1$.
conder $\left(\frac{\sigma}{\omega t}\right) \rightarrow 0, \sigma \simeq 0$

$$
\mu=\mu_{0} \mu_{r}+\left.\right|_{m} \& E=\sigma_{0} \sigma_{r} \mathrm{~F} / \mathrm{m}
$$

Ex: all Trsulatom.

$$
\text { diamond } \sigma=2 \times 10^{-13} \mathrm{v} / \mathrm{m} \text {. }
$$

polystyrene, Quants, marble, Bakelite cte.

Topic:
6. Transverse Nature of EM waves (TEM)/ Non Existence of field components along the direction of wave propagation for a Uniform Plane Waves.

02-DEC2010
6.

Show that the uniform plane wave is transverse in nature.
What are uniform plane waves? Show that a UPW is transverse in nature.

Prove that traveling electromagnetic waves are transverse in nature.
Prove that a Uniform plane wave travelling along x-direction has no x-componentiof \mathbf{E} or \mathbf{H}.
Solve:- Defy of Upwat-rerer pagenO-517.
anume that EM Wave is propagating along x-diration then Corresponding wave qu is given by

$$
\frac{\partial^{2} E}{\partial x^{2}}=\mu E \frac{\partial^{2} E}{\partial t^{2}}
$$

the there scalar equation's along x, y and z dirations are given by

$$
\begin{align*}
& \frac{\partial^{2} E_{x}}{\partial x^{2}}=\mu \in \frac{\partial^{2} E_{x}}{\partial t^{2}} \\
& \frac{\partial^{2} E_{y}}{\partial x^{2}}=\mu \in \frac{\partial^{2} E_{y}}{\partial t^{2}} \tag{2}\\
& \frac{\partial^{2} E_{z}}{\partial x^{2}}=\mu \in \frac{\partial^{2} E_{z}}{\partial t^{2}} \tag{3}
\end{align*}
$$

on where there in No charge density (free Space)

$$
\rho_{v}=0 \quad \therefore \nabla \cdot 0=S_{v} \quad q_{m^{3}}
$$

Dept. of E\&CE., SVCE
Page 527

Since the Wave is travelling along x dirution then E is independent of ' y ' and ' 3 '. \therefore the Last two terms are equal to zero.

$$
\Rightarrow \frac{\partial E_{x}}{\partial x}=0
$$

This means that there is no Variation of E_{x} along x-diration.

$$
\text { fromeq } \quad \frac{\partial^{2} E_{x}}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial E_{x}}{\partial x}\right)=0=\mu \epsilon \frac{\partial^{2} E_{x}}{\partial t^{2}}
$$

$$
E \neq 0 \text { and } u \neq 0
$$

$$
\frac{\partial^{2} E_{x}}{\partial t^{2}}=0
$$

it is seen from equ(s) that the second derivative of E_{x} w.r.t ' t ' must be zero. This rquirs that E_{x} must either i) to be zero.
ii) (or) Constant in time.
iii) increasing Uniformly Page 528

$$
\begin{aligned}
& \bar{D}=E \bar{E} \quad \mathrm{Cm}^{2} \\
& \therefore E \nabla \cdot \bar{E}=0 \\
& \epsilon \neq 0 \quad \Rightarrow \nabla \cdot \bar{E}=\bar{O} \\
& \text { ide } \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z} 7^{\circ}}{\partial z}=0
\end{aligned}
$$

A Fild satistying (ii) and (iii) above [an never be a wave tence E_{x} must be zero.
Hence a upW is transvorst and heoce componento of E and H only in a diration perpundicular to the diration of propogation.

Note:- Wave isknothing but aperiodic oscillations.

Topic 5.10
Topic:
7. Relationship b/w $|E|$ and $|H|$.
7.

For an electromagnetic wave propagating in free space prove that $\frac{|\overrightarrow{\mathrm{E}}|}{|\overrightarrow{\mathrm{H}}|}=\eta$. uniform plate wave.

Solui- We know that, the general Wave equation in free Space: anuming Wave propagating along 'z'diration

$$
\begin{equation*}
\nabla^{2} \bar{E}-\mu \in \frac{\partial^{2} E}{\partial t^{2}}=0 \tag{r}
\end{equation*}
$$

the solution of the above qu in given by

$$
\begin{equation*}
F_{x}=E_{m}^{+} \cos (\omega t-\beta z)+E_{m}^{-} \cos (\omega t+\beta z) v / m \text {. } \tag{2}
\end{equation*}
$$

Lh. the Magnetic field.
the wave iq. $\nabla^{2} \bar{H}-\mu \in \frac{\partial^{2} \bar{H}}{\partial t^{2}}=0$

the solu:-

Dept. of E\&CE., SVCE

\therefore the ratio's of $\frac{|\bar{E}|}{|\vec{H}|}=\frac{\left|E^{+}\right|}{\left|H^{+}\right|}=\frac{|E|}{\left|H^{-}\right|}=\frac{E_{m}}{\left(\frac{\beta G_{m}}{\omega \mu}\right)}$

$$
\begin{equation*}
\left|\frac{E}{H}\right|=\frac{\omega \mu}{\beta}=\left(\frac{\omega}{\beta}\right) \cdot \mu ; \Omega \tag{4}
\end{equation*}
$$

$\left|\frac{E}{H}\right| \rightarrow Y / A \backsim \Omega$
Noter. $|E| \rightarrow V /_{m} \quad \& \quad|H| \rightarrow A I_{m}$
the wave vlocity $v=\frac{\omega}{\beta} n / \sec =\frac{1}{\sqrt{\mu \epsilon}} \mathrm{~m} / \mathrm{se}$.
using $q^{u}(5)$ in cq^{u} (4)

$$
\left|\frac{E}{T}\right|=\frac{1}{\sqrt{u \epsilon}} \times \mu=\frac{1}{\sqrt{u E}}(\sqrt{u})^{2}
$$

iv.

$$
\left|\frac{\bar{E}}{H}\right|=\sqrt{\frac{\mu}{\epsilon}}=y
$$

where 9 intrinsic impedance.
for a free space $\mu=\mu_{0} H_{m}$ and $\epsilon=60 \mathrm{Flm}$

$$
\frac{|E|}{|\vec{H}|}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=\sqrt{\frac{4 \pi \times 10^{-7}}{8.854 \times 10^{-12}}}=120 \pi
$$

(d) 377Ω

Dept. of E\&CE., SVCE

$$
y=120 \pi 377 \Omega
$$

Eharateristic (or) Intrinsic Impedance (4):- The ratio of Umplitude/magnitude of \bar{E} to \bar{H} of the Waves in either diretion is called intrinsic impedance of the material in which wave is travelling and is dinoted by ' 4 '.

$$
\text { i.e }\left|y=\left|\frac{E}{H}\right|=\frac{E_{m}}{H_{m}}=\frac{\omega \mu}{\beta}=\sqrt{\frac{\mu}{\epsilon}}\right.
$$

Note:- intre space $\mu_{0} \mu_{0}$ and $t=\epsilon_{0} \mathrm{flm}$ $X^{X}: y=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=120 \pi$ (0) 377Ω

7a. A UPW with an Electric field Intensity equal to $1 \mathrm{v} / \mathrm{m}$ is travelling in free space. Find-the magnitude associated Magnetic field.
Sole:- given $\left|F_{m}\right|=1 \mathrm{~V} / \mathrm{m}$

$$
\left|H_{m}\right|=?
$$

W.k.t In Irce space

$$
\begin{aligned}
& 4=\frac{\left|E_{m}\right|}{\left|H_{m}\right|}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=377 \\
\Rightarrow & \left|H_{m}\right|=\frac{1}{377} \mathrm{~A} m_{m} \\
\Rightarrow & \left|H_{m}\right|=2.6525 \times 10^{-3} \mathrm{Alm} \\
\Rightarrow & H_{m}=2.6525 \times 10^{-3} \mathrm{Alm}
\end{aligned}
$$

7b. Show that Electric and Magnetic energy densities in a travelling Plane wave are Equal.
solu?-
D.k.t the upwtraulling in a freespace
(0) portut diclutric medivem

$$
\begin{aligned}
& y=\left|\frac{E}{H}\right|=\sqrt{\frac{\mu}{\epsilon}} \\
\Rightarrow & \frac{E}{H}=\sqrt{\frac{\mu}{\epsilon}} \\
& \left(\frac{E}{H}\right)^{2}=\frac{\mu}{\epsilon} \\
& \frac{E^{2}}{H^{2}}=\frac{\mu}{\epsilon} \\
\Rightarrow & \epsilon E^{2}=\mu H^{2}
\end{aligned}
$$

Note: :

$$
\begin{aligned}
\frac{\text { Noter }}{\text { Energy dinsity }} & =\frac{\text { Evergystord }}{\text { volume }} \\
& \Rightarrow J / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& X^{2} \frac{1}{2} E^{2} \text { on bothside } \\
&
\end{aligned}
$$

Topic 5.11
Topic:
8.
8. Characteristics of Medium/ General Definitions of:
$>$ Propagation Constant (γ)

- Attenuation Constant (α)
$>$ Phase Constant (β)
$>$ Wave Velocity (v)
$>$ Wave Length (λ)
$>$ Intrinsic Impedance (η)

Define phase velocity, wavelength and propagation constant.
\qquad
i) attenuation Constant (α) :-

Ingencral when any wave propogates in the medium, it gets attenuated. ie the amplitude of the signal reduces. this is euprosented by" attenuation constant (α ". and is. Measured in neper per meter (Np / m).

$$
1 N_{p}=8.686 \mathrm{~dB}
$$

ii) Phase Constant (β) : when a wave propogate, phase change abs takeoplace. Such a phase change is exprined by aphare constant (β). and is Measured in $(\mathrm{rad} / \mathrm{m})$.

$$
\beta=\frac{2 \pi}{\lambda}=\frac{\omega}{v} \quad \mathrm{rad} / \mathrm{m}
$$

iii) propogation constant (7): attenuation constant (α) and phase constant (β) together Constitutes a propogation constant of Medium for uniform plane lalave and it is muprosented by γ. it is exproned per unit Length

$$
\gamma=\alpha+3 \beta \mathrm{~m}^{-1}
$$

iv) Wavelength (λ)

Wave length (λ) in the distance blu any two points with the same phase, such as blu crests (or) troughs (or) Corresponding zerocromings as shown intig.

the Wavelength of a Sinusoidal wave is the spatial period of the wave - the distance over which the Wave's shape repeats.

$$
\begin{aligned}
& \therefore \text { Shape } \\
& \therefore \text { Wave Length }(\lambda)=\frac{2 \pi}{\beta} m
\end{aligned}
$$

v) Characteristics (or) Intrinsic Impedance (4)

The ratio of amplitudes of \bar{E} to \bar{F} of the wars in either dictation is called -intrinsic impedance of the material in which wave is travelling. and in denoted by (4).

$$
\begin{aligned}
& \left.y=\left|\frac{E}{H}\right|=\frac{E_{m}}{H_{n}}=\frac{w \mu}{\beta}=v \mu=\sqrt{\frac{\mu}{\epsilon}} \right\rvert\,<2 \\
& E=+l_{m}
\end{aligned}
$$

In true space $\mu_{1}=\mu_{0} H / m$ and $\epsilon=0$ of m

$$
\begin{equation*}
\therefore y=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=120 \pi \tag{6}
\end{equation*}
$$

Ingenral

$$
\begin{aligned}
& =y=\sqrt{\frac{\mu}{\epsilon}} \sqrt{\frac{u_{0} \mu_{r}}{\epsilon_{0}}}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \sqrt{\frac{\mu_{r}}{\epsilon_{r}}} \\
& \therefore y=377 \sqrt{\frac{\mu_{r}}{\epsilon_{r}}}
\end{aligned} \Omega .
$$

vi) phase velocity (or) Wave velocity (up) - -
the phase velocity (v) of a plane wave is the velocity with which the phase of the nave propogates.
for a wave traveling in tie ' z ' diration, the Effed in given by

$$
\mathcal{E}=\mathcal{L}_{m}^{+} \cos (\omega t-\beta \alpha) \quad v / m
$$

the phane $=$ constant (k)

$$
(w t-\beta 3)=t
$$

the phase volocity $u_{p}=\frac{d_{z}}{d t} \mathrm{~m} /$ rec

$$
w(1)-\beta \frac{d z}{d t}=0 \Rightarrow w=\beta \frac{d z}{d t}
$$

(6) $v_{p}=\frac{d z}{d t}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu \epsilon}}$

Note'- Wave volocity in fre space $\hat{y}_{p}=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{pec}$

$$
V_{p}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}
$$

(o) Ingenial $\quad V_{p}=\frac{1}{\sqrt{\mu_{0} \mu_{r} \sigma_{0} G r}} \mathrm{n}$ pece

$$
u_{p}=3 \times 10^{8} \frac{1}{\sqrt{\mu_{r}+r}} \mathrm{n} / \mathrm{sec}
$$

Relation blw wavehengt (λ) and phase constant (β)
If ' λ ' is the Length of one complete cyle \& Sinusoid al wave
then $\beta=\frac{2 \pi}{\lambda} \mathrm{rad} / \mathrm{m}$
(6) $\lambda=\frac{2 \pi}{\beta} m$

$$
\beta=\frac{2 \pi}{\lambda}=\frac{2 \pi f}{\lambda f}=\frac{\omega}{v} \Rightarrow \beta=\frac{\omega}{v} \mathrm{rad} / \mathrm{m}
$$

(6)) $\beta=\frac{\omega}{1 / \sqrt{\mu \epsilon}}=\omega \sqrt{u_{\epsilon}}$
(6) Phane velocity
(35)

Topic 5. 12 тspic:
9. Wave Equation in Phasor form.
9.Derive Wave Equation in Phasor form.
w.k.t Maxwell's cqu from Faraday's Law -

$$
\begin{align*}
& \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} ; v / m^{2} \\
& \bar{B}=\mu \bar{H} \omega / m^{2} \\
& \therefore \nabla \times \bar{E}=-\mu \frac{\partial \bar{H}}{\partial t}
\end{align*}
$$

Note:-vator identity

$$
\nabla \times \nabla \times \bar{A}=\nabla \cdot(\nabla A)-\nabla^{2} \cdot \bar{A}
$$

Maxuilli equ from Modifind Amperin Low

$$
\nabla \times \bar{H}=\overline{J_{c}}+\frac{\partial \bar{D}}{\partial t} ; A m^{2}
$$

taking Eurl on bothside to \& " (1)

$$
\nabla \times \nabla \times \bar{E}=-1 \frac{\partial}{\partial t}[\nabla \times \bar{H}]
$$

using vator tentity and $q^{4}(2)$

$$
\begin{gathered}
\nabla(\nabla / E)-\nabla^{2} \bar{E}=-\mu \frac{\partial}{\partial t}\left[\bar{J}_{C}+\frac{\partial \bar{D}}{\partial t}\right] \\
\nabla \text { for souru fre rgion } \nabla \cdot \bar{E}=0
\end{gathered}
$$

\therefore above equation becomes

$$
\begin{gathered}
\text { above cquation becomes } \\
-\square^{2} \bar{E}=-\mu \frac{\partial}{\partial t}\left[\bar{J}_{c}+\frac{\partial \vec{D}}{\partial t}\right] \\
\partial \rightarrow j \omega \text { and } \overline{J_{c}}=c
\end{gathered}
$$

using $\frac{\partial}{\partial t} \rightarrow j \omega$ and $\overline{J_{c}}=\sigma E$ Alm; $\bar{D}=E E \mu_{n^{2}}$

$$
\begin{aligned}
\nabla^{2} \bar{E} & =\mu j \omega[\sigma \bar{E}+j \omega E \bar{E}] \\
\bar{V}^{2} E & =j \omega \mu[\sigma+3 \omega \bar{E}]
\end{aligned}
$$

Dept. of E\&CE., SVCE
M_{y} if we take curlon bothside for $\operatorname{cq}^{x}(3)$

$$
\nabla \times \nabla \times \bar{H}=\bar{\nabla} \times \bar{J}+\epsilon \frac{\partial}{\partial t}[\nabla \times \bar{E}]
$$

using vutor identity and $q^{u}(1)$

$$
\nabla(\nabla \cdot \bar{H})-\nabla^{2} \bar{H}=\nabla \times \bar{J}+\epsilon \frac{\partial}{\partial t}\left[-\mu \frac{\partial \vec{H}}{\partial t}\right]
$$

For a source fre rgion $\sigma \cdot \bar{H}=Q$ and

$$
\begin{gathered}
\bar{J}=\sigma E A / n^{2} \\
-\nabla^{2} \cdot \bar{H}=\frac{\partial}{\partial t}\left[-\mu \frac{\partial \bar{H}}{\partial t}\right]+\sigma[\nabla \times \bar{E}] \\
\nabla \times \bar{E}=-3 \omega \mu \bar{H}=-\frac{\partial \bar{B}}{\partial t} \\
\Rightarrow \nabla^{2} \bar{H}=\epsilon j \omega\left[-\mu j \omega \bar{H}^{\prime}\right]+\sigma[-j \omega \mu \bar{H}] \\
-\nabla^{2} H=-[\sigma+\omega \omega \bar{H}] \mu \omega \bar{H} \\
\left.\nabla^{2} \bar{H}=j \omega \mu[\sigma+] \omega \epsilon\right] \bar{H} \\
\square \nabla^{2} \bar{H}=\nabla^{2} \bar{H}
\end{gathered}
$$

$$
\begin{equation*}
\Rightarrow \nabla^{2} E=8^{2} \bar{E} \tag{b}
\end{equation*}
$$

a@ and $\bar{V}^{2} \bar{H}=8^{2} E$
q^{4} (a) and $q^{u(b)}$ are called phasorform of Wave equation. where $\gamma=\alpha+j \beta=\sqrt{j \omega \mu(\sigma+j \omega \epsilon)} \mathrm{m}^{-1}$ is the propogetion Constant Can be exprined intermin of α and β.

Topic 5.13 10. Expressions for $\alpha, \beta, \gamma, \lambda, v$, and η in
\Rightarrow Free Space
$>$ Perfect Dielectrics (loss less dielectrics)
$>$ Good Conductors(Lossy dielectrics $/ m$ medium) and
Specific
Cases.
$>$ Good Dielectrics (Low Loss dielectrics/medium)
10. Expressions for $\alpha, \beta, \gamma, \lambda, v$, and η in

$$
>\text { Free Space }
$$

a. General Expromion's for $\alpha, \beta, 8, y, Y_{p}$ and $\lambda_{\text {an }}$.
I. Expruion for attenuation constant (α), phase constant (β) and propogation constant (γ)
w.k.t from phas or form representation of Wave equation for Elutricfild in given by

$$
\begin{gathered}
\nabla^{2} \bar{E}=j w \mu[\sigma+j \omega E] E \\
\left.\sigma^{2} E=\gamma^{2} \bar{E}=j \omega E\right]
\end{gathered}
$$

where $\lambda^{2}=3 \omega \mu[+j \omega \in]$
and $\beta=\alpha+9 \beta \mathrm{~m}^{-1}$
Square on both side

$$
\begin{aligned}
& \text { Square on } \\
& \gamma^{2}=(\alpha+j \beta)^{2}=\rho \omega \mu[\sigma+\rho \omega \epsilon] \\
& \alpha^{2}-\beta^{2}+j 2 \alpha \beta=-\omega^{2} \epsilon \mu+\rho \sigma \omega \mu
\end{aligned}
$$

Comparing real and Imaginary parts

$$
\begin{array}{r}
\alpha^{2}-\beta^{2}=-\omega^{2} \in \mu-i \tag{2}\\
\text { and } \quad 2 \alpha \beta=\sigma \omega \mu-
\end{array}
$$ for simplicity put $\omega^{2} \in \mu=a^{2}$ and $\bar{\sigma} \mu=b^{2}$

$$
\begin{align*}
\alpha^{2}-\beta^{2} & =-a^{2} \\
2 \alpha \beta & =b^{2}
\end{align*}
$$

Square and adding equ and cqu (6)

$$
\begin{gather*}
\left(\alpha^{2}-\beta^{2}\right)^{2}+4 \alpha^{2} \beta^{2}=a^{4}+b^{4} \\
\text { using }(x+y)^{2}=(x-y)^{2}+4 x y \\
\therefore \quad\left(\alpha^{2}-\beta^{2}\right)^{2}+4 \alpha^{2} \beta^{2}=a^{4}+b^{4} \\
\left(\alpha^{2}+\beta^{2}\right)^{2}=a^{4}+b^{4} \\
\alpha^{2}+\beta^{2}=\sqrt{a^{4}+b^{4}}-(7) \tag{7}\\
\Rightarrow q^{4}(5)+q^{4} 7 \\
2 \alpha^{2}=\sqrt{a^{4}+b^{4}}-a^{2} \\
2 \alpha^{2}=\sqrt{a^{4}\left[1+\frac{b 4}{a 4}\right]}-a^{2} \\
2 \alpha^{2}=a^{2} \sqrt{1+\frac{b^{4}}{a^{4}}}-a^{2} \\
\alpha^{2}=\frac{a^{2}}{2}\left[\sqrt{1+\frac{b^{4}}{a^{4}}}-1\right]
\end{gather*}
$$

Square and divide $q^{4(3)} / q^{4}(4)$

$$
\frac{\frac{a^{4}}{b 4}=\frac{\left(\omega^{2} \epsilon \mu\right)^{2}}{(\sigma \omega \mu)^{2}} \Rightarrow \frac{b 4}{a^{4}}=\frac{\sigma^{2} \psi^{2} \alpha^{2}}{\left(\omega^{2}\right)^{2} \alpha^{2}}}{(3)} \frac{b^{2}}{a^{4}}=\frac{\sigma^{2}}{\omega^{2} \epsilon^{2}} \text { (9) }
$$

using $q^{4}(9)$ in $q^{4}(8)$ and $a^{2}=w^{2} \in \mu$

$$
\begin{aligned}
& \alpha^{2}=\frac{\omega^{2} \epsilon \mu}{2}\left[\sqrt{\left.1+\frac{\sigma^{2}}{\omega^{2} \epsilon^{2}}-1\right]}\right. \\
& \therefore \alpha=\omega \sqrt{\mu \epsilon}\left\{\frac{1}{2}\left[\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}-1\right]\right\}^{1 / 2}
\end{aligned}
$$

$$
\Rightarrow e q^{4}(9)-c q^{4}(5)
$$

$$
\begin{gathered}
\alpha^{2}+\beta^{2}-\alpha^{2}+\beta^{2}=\sqrt{a^{4}+b^{4}}+a^{2} \\
2 \beta^{2}=\sqrt{a^{4}+b^{4}}+a^{2} \\
\beta^{2}=\frac{a^{2}}{2}\left[\sqrt{1+\frac{b 4}{a^{4}}+}\right]
\end{gathered}
$$

using $\frac{b_{4}}{a^{4}}=\frac{0^{2}}{\omega^{2} \epsilon^{2}}$; and $a^{2}=\omega^{2} \in \mu$

$$
\begin{aligned}
& \beta^{2}=\frac{\omega^{2} \epsilon \mu}{2}\left[\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}+1\right] \\
& \beta=\omega \sqrt{\mu \epsilon}\left\{\frac{1}{2}\left[\sqrt{\left.1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}+1\right]}\right\}^{1 / 2} \cdot \mathrm{rad} / \mathrm{m}\right.
\end{aligned}
$$

Note: - 1. attenuation [onstant (α)

$$
\begin{aligned}
& \text { ration [onstant }(\alpha) \\
& \alpha=w \sqrt{M \epsilon}\left\{\frac{1}{2}\left[\sqrt{1+\left(\frac{\sigma}{\omega_{\epsilon}}\right)^{2}}-1\right]\right\}^{1 / 2} \mathrm{~Np} / \mathrm{m}
\end{aligned}
$$

2. Phase Constant (β)

$$
\begin{aligned}
& \text { Contant }(\beta) \\
& \beta=\omega \sqrt{\mu \epsilon}\left\{\frac{1}{2}\left[\sqrt{1+\left(\frac{\bar{\sigma}}{\omega \epsilon}\right)^{2}}+1\right]\right\}^{1 / 2} \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

3. Propagation Constant (8)
(40) $\gamma=(\alpha+j \beta) \mathrm{m}^{-1}$
2). Intrinsic Impedance (or) Tharacterintic impedance (4) N.K.t from Faraday; Law $\nabla \times \vec{E}=-\frac{\partial \bar{B}}{\partial t} ; v / n^{2}$.

$$
\left|\begin{array}{ccc}
\overline{a_{x}} & \overline{a_{y}} & \overline{a_{z}} \\
\partial / \partial x & \partial \partial y & \partial / \partial z \\
E_{x} & E_{y} & E_{z}
\end{array}\right|=-\mu \frac{\partial}{\partial t}\left[H_{x} \overline{a_{x}}+H_{y} \overline{a_{y}}+H_{z} \overline{a_{z}}\right]
$$

anume that EAM Wlave is propogating along 3 diration then $E=E_{x} \bar{a}_{x} \mathrm{~V} / \mathrm{m}$ and $\bar{H}=\mathrm{Hy}_{\mathrm{y}} \widehat{a y ~}^{\mathrm{Alm}}$

$$
E_{x}, H_{y} \Rightarrow f^{4}(z, t) \text { only and } \begin{aligned}
& E_{y}=E_{z}=0 \\
& H_{x}=H_{z}=0
\end{aligned}
$$

$$
H_{x}=H_{3}=0 .
$$

$$
\begin{gathered}
{\left[\frac{\partial E_{f}}{\partial z}-\frac{\partial E_{z}}{\partial y}\right] \overline{a_{x}}+\left[\frac{\partial E_{x}}{\partial z}-\frac{\partial A_{2}}{\partial x}\right]^{0} \bar{a}_{y}+\left[\frac{\partial E_{x}^{0}}{\partial y}-\frac{\partial E_{y}}{\partial x}\right]^{0} \bar{a}} \\
0 \quad=-\mu\left[\frac{\partial}{\partial t}\left[H \psi_{x}^{0} \bar{a}_{x}+H_{y} \bar{a}_{y}+H_{z}^{0} \bar{a}_{z}\right]\right]
\end{gathered}
$$

$$
\frac{\partial E_{x}}{\partial z} \bar{a}_{y}=-\mu \frac{\partial H_{y}}{\partial t} \bar{a}_{y}
$$

Tomporing y-componention bothside

$$
\begin{equation*}
\frac{\partial E_{x}}{\partial z}=-\mu \frac{\partial H_{y}}{\partial t} \tag{1}
\end{equation*}
$$

the representation of UPW travalling in +z diration in given by $E_{x}=E_{m} e^{-8 z} \mathrm{v} / \mathrm{m}$

$$
\begin{gathered}
\frac{\partial E_{x}}{\partial z}=E_{m} C^{-8 z}(-8) \\
\frac{\partial E_{x}}{\partial z}=-7 E_{x}
\end{gathered}
$$

$$
n e^{-8 z-E_{x}}
$$

using $e^{4}(2)$ in equ $^{4}(1)$

$$
\begin{aligned}
-\partial E_{x} & =-\mu \frac{\partial H_{y}}{\partial t} \\
\Rightarrow \quad \partial E_{x} & =\mu \frac{\partial H_{y}}{\partial t}=\mu(j \omega)+H_{y}
\end{aligned}
$$

using $\gamma=\sqrt{j \omega \mu(\sigma+j \omega t)}$ and $\frac{\partial}{\partial t} \rightarrow j \omega$

$$
\begin{aligned}
& y=\frac{E_{x}}{H_{y}}=\frac{j \omega \mu}{\gamma}=\frac{E_{x}}{\sqrt{j \omega \mu}(\sigma+j \omega \epsilon)} \\
& y=\frac{\sqrt{(j \omega \mu)^{2}}}{\sqrt{j \omega \mu(\sigma+j \omega \epsilon)}} \\
& y=\sqrt{\frac{(j \omega \mu)^{2}}{(j \omega \alpha \mu)(\sigma+j \omega \epsilon)}}=\sqrt{\frac{j \omega \mu}{(\sigma+j \omega \epsilon)}}
\end{aligned}
$$

Intrinsic impedance

$$
\Rightarrow \quad \begin{aligned}
& \text { Intrinsic impecance } \\
& \Rightarrow \quad E_{x} \times \frac{E_{x}}{H_{y}}=\sqrt{\frac{j \omega \mu}{\sigma+j \omega t}}
\end{aligned}
$$

ENGINEERING ELECTROMAGNETICS (15EC36) MODULE-5B DANKAN V GOWDA MTech., (Ph.D)
3) Wave velocity (or) phase velocity (U_{p}): -

- the phase velocity v of a plane wave is the velocity with which the phase of the wave propagates. for a wave travelling in tee ' z ' direction, the E field is $\quad E=E_{m}^{+} \operatorname{con}(\omega t-\beta z) \quad v / m$.
the phase $=\operatorname{constant}(k)$

$$
w t-\beta z=k
$$

the phase velocity $v_{p}=\frac{d z}{d t} m / \mathrm{sec}$.

$$
\begin{aligned}
& \omega(1)-\beta \frac{d z}{d t}=0 \Rightarrow \omega=\beta \frac{d z}{d t} \\
& \quad v_{p}=\frac{d_{z}}{d t}=\frac{\omega}{\beta} \mathrm{m} / \mathrm{sec}
\end{aligned}
$$

(0)

$$
v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu \epsilon}} \mathrm{~m} / \mathrm{sec}
$$

4. Wave Length (λ) :-

$$
\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{w \sqrt{\mu_{t}}} \quad m
$$

Summery:-

1. attenuation Eonstant (α):-

$$
\begin{aligned}
& \text { 1. attenuation, Eonstant }(\alpha):- \\
& \left.\left.x^{x}\left[\begin{array}{l}
\alpha=w \sqrt{\mu \epsilon}\left\{\frac { 1 } { 2 } \left[\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}\right.\right.
\end{array}-1\right]\right\}^{1 / 2}\right] \mathrm{Np} / \mathrm{m} .
\end{aligned}
$$

2. phare constant $(\beta$):-
$\dot{x}^{x} \cdot \beta=\omega \sqrt{\mu \epsilon}\left\{\frac{1}{2}\left[\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}+1\right]^{1 / 2}\right\}^{1} \mathrm{rad} / \mathrm{m}$.
3. propogation [onstant (γ):-
\dot{x}^{x}

$$
\begin{aligned}
& \gamma=(\alpha+\jmath \beta) m^{-1} \\
&=\sqrt{j \omega \mu(\sigma+\jmath \omega E)} ; m^{-1} \\
&
\end{aligned}
$$

4. Intrinsic Impedance th'?

$$
\dot{x \times} \sqrt{\frac{1}{x} \sqrt{\frac{(\sigma \omega \mu}{(\sigma+j \omega t)}}} \Omega
$$

5. phase velocity (vp) i-

$$
\begin{aligned}
& \text { phase velocity (vp)ir } \\
& \times V_{p}^{\times}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu \epsilon}} \\
& m / \mathrm{sec}
\end{aligned}
$$

6. Wave Length (λ) i-

$$
\log _{x} \times \lambda=\frac{2 \pi}{\beta}=\frac{U_{p}}{f} \mathrm{~m}
$$

a, $\alpha, \beta,-,-4, u_{p}$ and λ in frae space:-
Note in frce Space $\sigma=0 \mathrm{~V} / \mathrm{m} ; \epsilon=G_{0} \mathrm{fm}$
$\mu=\mu_{0} H / m$. Note'.- Une the above condrio
i attenuation [onstant (α):in gencal exprusioris. and simpluaty.

$$
\alpha=0 \quad \mathrm{sp} / \mathrm{m}
$$

ii) phase contant (β) :-

$$
\dot{\dot{x}^{x}}, \beta=\omega \sqrt{\mu E} \text { rad/n. }
$$

iii) propogation [orstant (7) :

$$
\begin{aligned}
& \text { ropogation Constant } \\
& \gamma=\alpha+j \beta=0+j \omega \sqrt{\mu E} ; m^{-1} \\
& x^{x}=\gamma=j \omega \sqrt{\mu \epsilon}=\omega \sqrt{\mu \epsilon} 190^{\circ}
\end{aligned} m^{-1} .
$$

iv) Intrinsic Empedance (4)

$$
y=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=377 \Omega \text { (or) } 120 \pi / \Omega
$$

v) Wave velocity (on phase velocity (up) ir

$$
v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{v_{0} 60}}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}
$$

$\left.x_{i}\right)$ Wave hength $(\lambda) \quad x, \lambda=\frac{2 \pi}{\beta}=\frac{V_{p}}{f} m$
 diclutric Medium:- $\frac{\sigma}{\omega t} \rightarrow 0: \sigma \cong 0$
i) atfenuation Lonstant (α) - and $\mu=\mu_{0} \mu_{r}+/ m$ and $\epsilon=$ to Grflm, Note:-ure N.k.t the general exprosion of ' α '. The above condninir k.t the general exprosion of α
$\alpha=\omega \sqrt{\mu E}\left[\frac{1}{2}\left[\sqrt{1+\left(\frac{\sigma}{\omega t}\right)^{2}}-1\right]\right]^{1 / 2}$-Np/m, inderaterninion
and Simplify using condu $\frac{\sigma}{\omega \epsilon} \rightarrow 0$

$$
\begin{aligned}
& \therefore \quad \dot{x} x^{\prime} \alpha=0 / \mathrm{m}
\end{aligned}
$$

ii) phase [onstant (β) using und $\frac{\sigma}{\omega \epsilon} \rightarrow 0$

$$
\begin{aligned}
& \beta=\omega \sqrt{\mu \epsilon}\left\{\frac{1}{2}[1+1]\right\}^{Y_{2}}=\omega \sqrt{\mu \epsilon} \mathrm{rad} / \mathrm{m} \\
& \mathrm{rad} / \mathrm{m} .
\end{aligned}
$$

iii) propogation. Constant (γ):

$$
\begin{aligned}
& \frac{\gamma=\alpha+j \beta=0+j \beta=0+j \omega \sqrt{\mu \epsilon}}{\gamma=j \omega \sqrt{\mu \epsilon}=\omega \sqrt{\mu \epsilon} \angle 90^{\circ}} \mathrm{m}^{-1}
\end{aligned}
$$

Dept. of E\&CE, SVCE

$$
\begin{aligned}
& z=a+9 b=|z| L z \\
& \quad|z|=\sqrt{a^{2}+b^{2}} ; L z=\tan ^{-1}(4 a)
\end{aligned}
$$

iv) Intrinsic Impedance (Y):Dept. of ECE; B.M.S.I. $\&$ M w.k.t the general exprosion of $y=\sqrt{\frac{j \omega \mu}{(\sigma+j \omega \epsilon)}} \Omega$ using $\frac{\sigma}{\omega \epsilon} \rightarrow 0$

$$
\begin{aligned}
& y=\sqrt{\frac{j \omega \mu}{\omega \epsilon\left[\frac{\sigma}{\psi \epsilon}+j\right]}}=\sqrt{\frac{\delta \omega \mu}{J \omega \epsilon}}=\sqrt{\frac{\mu}{\epsilon}} \\
& y=\sqrt{\frac{\mu}{\epsilon}}=\sqrt{\frac{\mu_{0} \mu_{r}}{\epsilon_{0} \epsilon_{r}}}=\sqrt{\frac{\mu_{0}}{\epsilon_{r}} \sqrt{\frac{\mu_{r}}{G_{0}} \omega_{0}} 377 \sqrt{\frac{u_{r}}{\epsilon_{r}}}}
\end{aligned}
$$

$$
\therefore \quad \dot{x}^{A} \quad y=\sqrt{\frac{\mu}{\epsilon}}=377 \sqrt{\frac{\mu_{r}}{\epsilon^{\prime}}}
$$

v) phane velocity (or) Wave velocity (vp):-

$$
V_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu E}} 1 \mathrm{~m} / \mathrm{sec}
$$

(6) $v_{p_{0}}=\frac{v_{0}}{\sqrt{\mu \epsilon}}=\frac{1}{\sqrt{\mu_{0} \mu r G_{0} G_{r}}}=\frac{3 \times 10^{8}}{\sqrt{\mu_{r} G_{\gamma}}} \mathrm{n} / \mathrm{sec}$

$$
\operatorname{mix}^{m}=\frac{1}{\sqrt{u \epsilon}}=\frac{3 \times 10^{8}}{\sqrt{u_{r} b_{r}}} \mathrm{~m} / \mathrm{sec}
$$

vi) Wlave Length (x) i-

$$
\lambda=\frac{2 \pi}{\beta}=\frac{r_{p}}{f} \mathrm{~m}
$$

11. Expressions for $\alpha, \beta_{i} \gamma, \lambda_{i} \psi_{r}-$ and $\eta-\mathrm{in}$ -
$>$ Perfect Dielectrics (loss less dielectrics)
Summay! - for Pifect diclutrios (o) Lonhendiclutrics

$$
\frac{0}{\omega \epsilon} \rightarrow 0 ; \overline{0 \simeq 0} \mathrm{v} / \mathrm{m}
$$

and $\mu=\mu_{0} \mu_{r} H / m ; \epsilon=\operatorname{Gotr} R / m$.
$i)$ attenuation Eonstant (α) :-
∞^{∞}

$$
\alpha=0 \mathrm{np} / \mathrm{m}
$$

ii) phase constant (β):-

$$
\beta=\omega \sqrt{\mu \epsilon} \text { rad } \mathrm{m} \text {. }
$$

ii) propogation Eonstant (γ) $\rho-$

$$
\begin{aligned}
& \gamma=\alpha+j \beta=0+j \omega \sqrt{\mu \epsilon} \\
& \gamma=j \omega \sqrt{\mu \epsilon}=\omega \sqrt{\mu \epsilon} 190^{\circ}
\end{aligned} \mathrm{m}^{-1} .
$$

iv) Intrisic impedance (4);

$$
y=\sqrt{\frac{\mu}{\epsilon}}=377 \sqrt{\frac{\mu_{\gamma}}{G_{r}}} \quad \Omega .
$$

v) wave velocity (on phane velocity (up) ρ_{-}

$$
U_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu_{\epsilon}}}=\frac{3 \times 10^{8}}{\sqrt{\mu_{r} G r}} \mathrm{~m} / \mathrm{sec} \text {. }
$$

vi) Wavedingth $(\lambda) P-\lambda=\frac{2 \pi}{\beta}=\frac{y_{p}}{f} \mathrm{~m}$.
12. Expressions for $\alpha, \beta, \gamma, \lambda, v$, and η in
\Rightarrow Good Dielectrics (Low Loss dielectrics/medium) (o) Lomy díluturico.

Derive the expression for α, β, y and V for low loss dielectric.

$$
\frac{\bar{d}}{\omega \epsilon} \ll 1 \Rightarrow \sigma_{0} \quad \Leftrightarrow=\sigma_{0} \mathrm{~F} / \mathrm{m} .
$$

F. $\alpha_{1} \beta$ and $85-$
D.k.t the propogation Eonstant if geninal medium

$$
(1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\cdots
$$

$$
\text { for }|x|<1
$$

if $n=1 / 2$

$$
(1+x)^{1 / 2}=1+\frac{x}{2}-\frac{x^{2}}{8}
$$

$$
x=-\frac{3 \sigma}{\omega \epsilon}
$$

DANKAN V GONDA, Mech, (Ph.D)., Assistant Professor sic Depl.

$$
\begin{aligned}
& \text { Bept. Olore }-504940 \\
& \text { Bangal } 984455494
\end{aligned}
$$

Dept. of E\&CE., SVCE

$$
\begin{aligned}
& \gamma=\sqrt{j \omega \mu(\sigma+j \omega t)} \quad m^{-1}=(\alpha+j \beta) \mathrm{m}^{-1} \\
& \left.\gamma=\sqrt{j \omega \mu(j \omega \epsilon)\left[\frac{\sigma}{j \omega t}+1\right]}=\sqrt{\rho^{2} \omega^{2} \mu \epsilon\left(\frac{\sigma}{j \omega \epsilon}\right.}+1\right) \\
& \gamma=j \omega \sqrt{\mu \epsilon}\left[-j \frac{\theta}{\omega \epsilon}\right]^{1 / 2} m^{-1} \\
& \text { note:- } \\
& \frac{1}{j}=-3 \\
& \text { lesing Bionorial therem }
\end{aligned}
$$

$$
\begin{aligned}
\therefore \gamma & =j \omega \sqrt{\mu \epsilon}\left\{1+\frac{1}{2}\left(-j \frac{\sigma}{\omega \epsilon}\right)-\frac{1}{8}\left(-j \frac{\sigma}{\omega t}\right)^{2}\right\} \\
\gamma & =j \omega \sqrt{\mu \epsilon}\left\{1-j \frac{\sigma}{2 \omega \epsilon}+\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right\} \\
& =j \omega \sqrt{\mu \epsilon}+\psi \sqrt{\mu \epsilon} \frac{\sigma}{2 \omega \epsilon}+j \omega \sqrt{\mu \epsilon} \times \frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}
\end{aligned}
$$

$x^{1} \times$

$$
\lambda=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}+\exists \omega \sqrt{\mu \epsilon}\left\{1+\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right\} m^{-1}
$$

Eomparing ral and Imagiany parto

$$
\alpha=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \times p / m \text { and }
$$

$$
L=\frac{2 \sqrt{\epsilon}}{\beta=\omega \sqrt{\alpha \epsilon}\left\{1+\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right\} \mathrm{rad} / \mathrm{m} .}
$$

iv) Intrinsic impedanu(4) D.k.t the genalal expromion of $q=\sqrt{\frac{\rho \omega \mu}{(\sigma+j \omega t)}} \Omega$

$$
y=\sqrt{\frac{j \omega \mu}{j \omega t\left[\frac{\sigma}{j \omega t}+1\right]}}=\sqrt{\frac{\mu}{\epsilon}\left[\frac{\sigma}{j \omega t}+1\right]^{-1}}
$$

$$
y=\sqrt{\frac{\mu}{\epsilon}\left[1-j \frac{\sigma}{\omega \epsilon}\right]^{-1}}
$$

$$
\frac{1}{j}=-j
$$

(ब) $j^{2}=-1$.
if $\left|\frac{\sigma}{w \epsilon}\right| \ll 1$; using bionomial theorem

$$
\begin{aligned}
y & \left.=\sqrt{\frac{\mu}{\epsilon}\left[1-j \frac{\sigma}{\omega \epsilon}\right.}\right]^{-1 / 2} \quad \begin{array}{r}
\frac{\text { Note: }^{1}}{(1-x)^{-1 / 2}}=1+x / 2 \\
1+|x| \ll 1 .
\end{array} \\
y & =\sqrt{\frac{\mu}{\epsilon}\left[1+j \frac{\sigma}{2 \omega \epsilon}\right]} \Omega
\end{aligned}
$$

V. Phase velocity (or) Wlavevalocity (vp) m/sec

$$
\begin{aligned}
& v_{p}=\frac{\omega}{\beta}=\frac{u}{\omega \sqrt{\mu \epsilon}\left[1+\frac{\sigma^{2}}{8 \omega^{2} \epsilon^{2}}\right]} \mathrm{m} / \mathrm{sec} . \\
& v_{p}=\frac{1}{\sqrt{\mu \epsilon}}\left[1+\frac{\sigma^{2}}{8 \omega^{2} \epsilon^{2}}\right]^{-1} \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

using Bionomial fleiorem

$$
\begin{aligned}
& \text { Bionomial flewrem } \\
& (1+x)^{-1}=(1-x) ; \quad|x|<1
\end{aligned}
$$

$\therefore v_{p}=\frac{1}{\sqrt{\mu \epsilon}}\left[1-\frac{\sigma^{2}}{8 \omega^{2} \epsilon^{2}}\right] \mathrm{m} / \mathrm{sec}$.
Vi. $\overline{\text { Dept. of ExCle svce }}$
(5

Summany $1-\alpha, \beta, 8,4,{ }^{v}$ and λ in-Good diclutric.
(06) Lany diclutric Medium.

Lond 4: $\frac{0}{\omega E} \ll 1$

$$
\begin{aligned}
& 0 \neq 0 \mathrm{vm} \\
& \mu=\mu_{0} \text { vr } \mathrm{Hm}: E=G_{0} \sigma_{\mathrm{or}}^{\mathrm{Flm}}
\end{aligned}
$$

$i)$ attenuation Eonstant (α) i-

$$
\alpha=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \mathrm{~Np} / \mathrm{m}
$$

ii) phase conotant (β) ?-

$$
\left.\beta=\omega \sqrt{\mu \epsilon}\left[1+\frac{\frac{\varepsilon}{2}}{8 \omega^{2} \epsilon^{2}}\right]\right] \mathrm{rad} / \mathrm{m}
$$

iii) propogation [orntant $(\sigma) \rho$ -

$$
\begin{aligned}
& \gamma \text { propogation [onotant }(\sigma) \| \\
& \left.\nabla=\alpha+j \beta=\frac{\theta}{2} \sqrt{\frac{\mu}{\epsilon}+j \omega \sqrt{\mu \epsilon}\left[1+\frac{\sigma^{2}}{8 \omega^{2} \epsilon^{2}}\right]}\right] m^{-1} \\
& T \text { impodance }(u)
\end{aligned}
$$

iv> Intrinsic impedance (u)

$$
\left.y=\sqrt{\frac{\mu}{\epsilon}}\left[1+\dot{\rho} \frac{\sigma}{2 \omega \epsilon}\right]\right] \Omega .
$$

v) Wave (o) phase velocity:-

$$
\begin{aligned}
& \text { have (d) phare } \\
& v_{p}=\frac{1}{\sqrt{\mu t}}\left[1-\frac{\sigma^{2}}{8 \omega^{2} \epsilon^{2}}\right]
\end{aligned} \mathrm{m} / \mathrm{sec}
$$

vi) Wave harght $(\lambda)!-\lambda=\frac{2 \pi}{\beta}=\frac{V_{p}}{f} m$

52
\qquad
Expressions for $\alpha, \beta, \gamma, \lambda, \nu$, and η in
13. \geqslant Good Conductors(Lossy
medium) /Lossymedium.
10-DEC 2013/ Tan 2014
Derive an expression for propagation constant, intrinsic impedance and phase velocity in good conducting media if the uniform plane wave is propagating.

With usual notations, derive the expression for intrinsic impendence for flossy media. (06 Marks)
N.K.t from phasorform of wave representation

$$
\begin{aligned}
& \nabla^{2} E=\gamma^{2} E \\
& \text { where } \gamma^{2}=[j \omega \mu(\sigma+j \omega \epsilon)]
\end{aligned}
$$

where

$$
\gamma=\sqrt{j \omega \mu[\sigma+j \omega \epsilon]}=\alpha+j \beta
$$

$$
\gamma=\sqrt{j \text { jus } \sigma\left(1+j \frac{\omega t}{\sigma}\right)}
$$

w.k.t for a good Eondu torn $\left(\frac{\sigma}{\omega \epsilon}\right) \gg 1$
($\left(\frac{\omega \in}{\sigma}\right) \ll 1$
Dept. of E\&CE., SVCE
\therefore neglect the term $\left(\frac{\omega t}{\sigma}\right)$. (5) ie $\frac{\omega t}{\sigma} \rightarrow 0$

$$
\begin{aligned}
& \text { In Good Conducting Medium } \frac{V}{\omega E} \geqslant>1 \\
& \therefore \sigma \neq 0 \quad \epsilon=\epsilon_{0} \text { or } \mathrm{ffm}, \quad \mu=\mu_{0} \mu_{r} H / m \text {. } \\
& \sigma \simeq \infty
\end{aligned}
$$

$$
\begin{aligned}
& \text { ENGINEERING ELECTROMAGNETICS (15EC36) MODULE-5B } \\
& \text { DANKAN V GOWDA MTech., (Ph.D) } \\
& \gamma=\sqrt{j \omega \mu \sigma(1)} \\
& \gamma \equiv \sqrt{\omega \mu \sigma} \times \sqrt{\jmath} \\
& x^{x} \\
& \gamma=\sqrt{\omega \mu \sigma} \angle 45^{\circ} m^{-1} \\
& \gamma=\sqrt{\omega \mu \sigma} \times 1445^{\circ} \\
& \gamma=\sqrt{\omega_{\mu} \sigma}\left[1 e^{3 \pi \varphi}\right] \\
& \lambda=\sqrt{\omega \mu \sigma}\left[\cos \left(45^{\circ}\right)+\xi \sin \left(45^{\circ}\right)\right] \\
& \gamma=\sqrt{\omega \mu \sigma}\left[\frac{1}{\sqrt{2}}+\int \frac{1}{\sqrt{2}}\right] \\
& \gamma=\sqrt{\frac{\omega \mu \sigma}{2}+j \sqrt{\frac{\omega \mu \sigma}{2}}} ; m^{-1} \\
& \gamma=(\alpha+j \beta) ; m^{-1}
\end{aligned}
$$

By Comparing real and imaginany part's

$$
\alpha=\sqrt{\frac{\omega \mu \sigma}{2}} \quad N p / m \text { and } / \beta=\sqrt{\frac{w \mu \sigma}{2}} \mathrm{rad} / \mathrm{m}
$$

Note: $\quad \sqrt{\alpha}=\beta=\sqrt{\frac{w \mu \sigma}{2}}$
Note:- for a Lony midium (o) Good condertor's
iv) Intrinsic Impidance (Y)
N.K.t the gencral expronion of ' y ' in given by

$$
\eta=\sqrt{\frac{j \omega \mu}{(\sigma+j \omega \epsilon)}} \Omega
$$

and for a good condutorn $\left(\frac{\bar{\omega}}{\omega \epsilon}\right) \gg 1$.

$$
\begin{aligned}
& \text { i.e } \sigma \gg \omega \\
& \therefore \sigma+j \omega \epsilon \simeq \sigma \\
& \Rightarrow y=\sqrt{\frac{\int \omega \mu}{\sigma}}=\sqrt{\frac{\omega \mu}{\sigma}} \times \sqrt{j} \\
& \text { Noter } \sqrt{3}=e^{3 \pi / 4}=145^{\circ} \\
& \therefore \quad 4=\sqrt{\frac{0 \mu}{0}} \angle 45^{\circ} \Omega
\end{aligned}
$$

v) Phase velocity (or) Wave velocity (vp),

$$
\begin{aligned}
& v_{p}=\frac{\omega}{\beta}=\frac{\omega}{\sqrt{\frac{\omega \mu}{2}}}=\sqrt{\frac{2 \omega}{\mu \sigma}} \mathrm{~m} / \mathrm{sec} . \\
& \therefore V_{p}=\frac{\omega}{\beta}=\sqrt{\frac{2 \omega}{\mu \sigma}} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

vi) Wavciengtt $(\lambda): \bar{\lambda}=\frac{2 \pi}{\beta}=\frac{r_{p}}{f}$ m

Summany $-\alpha, \beta, 8, Y, Y_{p}$ and λ in urod Conduting (6) $\frac{1}{\operatorname{\alpha on} g \text { Medium }}$ -
i) aftenuation [onstant (α) s-

$$
x^{x} . \sqrt{\alpha=\sqrt{\frac{\omega \mu \sigma}{2}}} \mathrm{~N} / \mathrm{m} .
$$

ii) phase constant $(\beta)^{n}-$

$$
\dot{\infty} \quad \beta=\sqrt{\frac{\omega u_{0}}{2}} \mathrm{rad} / \mathrm{m}
$$

Wate: $\alpha=\beta$ in Guod conduting Lony medium.
iii) propagation constant (γ)

$$
\left.\gamma=\alpha+3 \beta=\sqrt{\omega \mu \sigma} L 45^{\circ}\right] \mathrm{m}^{-1}
$$

iv) Intrinsic Impedance (4) $\rho^{\prime}-$

$$
y=\sqrt{\frac{\omega E}{\sigma}} \angle 45^{\circ}
$$

phase vilocity (60) Wave velocity (Up)

$$
v_{p}=\frac{\omega}{\beta}=\sqrt{\frac{2 \omega}{\mu \sigma}} \quad \mathrm{~m} / \mathrm{sec}
$$

13. Concept of Skin effect and Skin depth for Good Conductors.
14. 02-DEC2008/Jan 2009

What do yod mean by depth of penetration?

* Define':
ii) Skin effect.

06-DEC2011/Jan 2012

Derive at expression for depth of penetration.
10-June/suly 2013

Describe and derive an expression for the depth of penetration.

Skin effects: When an Electromagnetic pave enters into a [onduting medium, its amplitude decreases exponentially and become practically zero after penetrating a Small distance. as a result, the Current induced by the wave Exists only near the Sustace of the conductor. This eftut is called "Skineffut".
The "skindepth" (or) "depths of penetration" is defined as the depth of a conductor at which the amplitude of an incident ware drops down to $1 / e$ (or) 37% of its original value.
if ' x ' is the distance travelled in the medium and E_{0} is the amplitude then the field E is given by

$$
E=E_{0} e^{-\alpha x}
$$

fig. decaying of amplitude
where E_{0} is the amplitude either at the time of incidence (or) at Some point in the medium where ' X ' is taken as Zero.
α-attenuation Content (Np/m). in Conducting medium and w.k.t $\alpha=\sqrt{\frac{\omega \mu \sigma}{2}}$ Nplm for good Conducting Medium. at the depth of penetration of $x=S^{\prime} \mathrm{m}$. lent the value of $x=\frac{1}{\alpha}$ (ie $x=\delta=1 / \alpha$) at which time

$$
\begin{align*}
& \Rightarrow E \\
&=E_{0} e^{-\alpha x} e^{-\alpha x}=1 / e=0.3678 \simeq 0.37 \tag{2}\\
& \therefore E=\frac{E_{0}}{e}=0.3678 E_{0} \simeq 0.37 E_{0}
\end{align*}
$$

Where ' δ ' is called the depth of penetration (or) skindepth Measured in meters (m).
N.k.t In Conduting medium

$$
\alpha=\sqrt{\frac{\omega \mu \sigma}{2}}=\beta
$$

\therefore Skindepth $\delta=\frac{1}{\alpha}=\sqrt{\frac{2}{\omega \mu \sigma}}=\frac{1}{\beta}$

Easestudy i: For Copper $\sigma_{\text {coppr }}=5.8 \times 10^{7} \mathrm{v} / \mathrm{m}$ and $\bar{\omega}=2 \pi \mathrm{rad} / \mathrm{s}$ by considering frue space

$$
\delta=\frac{0.066}{\sqrt{f}} \mathrm{~m}
$$

@ $f=50 \mathrm{H}_{2} \Longrightarrow \delta=1 \mathrm{~cm}$;
@ $f=1 \mathrm{KH}_{2} \Rightarrow \delta=2 \mathrm{~mm}$;
obs:-as $t \uparrow \Rightarrow \delta t$
@ $f=1 \mathrm{MH}_{2} \Rightarrow \delta=0.066 \mathrm{~mm}$; as frequency of opuration increasos the dypth of pinctration ducaasis.

Easestudy $2:$ - for Silver $\sigma_{\text {silver }}=6.17 \times 10^{7} \mathrm{~s} / \mathrm{m}$:

$$
\begin{array}{r}
\left.\delta=\frac{1}{\alpha}=\sqrt{\frac{1}{\pi f \mu \sigma}}=\frac{0.064}{\sqrt{f}}\right] \\
E=E_{0} e^{-\alpha x}
\end{array}
$$

treespace $E_{0} E$ Eonduting medium

boundany in Eondurting medium boundany

$$
\alpha=\left.\sqrt{\frac{\omega \mu \sigma}{2}} \sim \sim\right|_{m}
$$

Note1:-Skin dipth io a Mcasure of the depth to which an $\mathcal{L} M$ wave Can penctrate the Medium.

Exprun $\alpha, \beta, \gamma, \mu, u_{p}$ and λ interm ' 0 . Skindepth δ^{\prime} :
-1. In a Conduting Medium $\alpha=\beta=\sqrt{\frac{\omega \mu \sigma}{2}}$

$$
\begin{aligned}
& \therefore \delta=\frac{1}{\alpha}=\frac{1}{\beta}=\sqrt{\frac{2}{\omega \mu \sigma}}=\sqrt{\frac{1}{\pi f \mu \sigma}} ; \text { nateic } \\
& \Rightarrow \delta=\alpha^{-1}=\beta^{-1} ; m .
\end{aligned}
$$

2. phase (o) Wave velocity $v_{p}=\frac{\omega}{\beta}=\omega(\delta)$
$\therefore v_{p}=\omega \delta \mathrm{m} / \mathrm{sec} \quad\left(\sigma \Rightarrow \delta=\frac{v_{p}}{\omega}\right.$; mation
3. $\gamma=\alpha+j \beta \cdot m^{-1}$
$\sin \alpha=\beta \Rightarrow \gamma=\alpha(1+j 1)=\alpha \sqrt{2} \angle 45^{\circ}$

$$
\therefore \quad \lambda=\sqrt{2} \delta^{-1} \angle 45^{\circ} m^{-1}
$$

4) $y=\sqrt{\frac{\omega \mu}{\sigma}} \angle 45$
using $\delta=\frac{1}{\alpha}=\sqrt{\frac{2}{w \mu \sigma}}$; mutcis

$$
\begin{aligned}
& \quad \frac{1}{\delta}=\sqrt{\frac{\omega \mu \sigma}{2}}=\sqrt{\frac{\omega \mu}{\sigma}} \sqrt{\frac{\sigma^{2}}{2}}=\sqrt{\frac{\omega \mu}{\sigma}} \cdot \frac{\sigma}{\sqrt{2}} \\
& \therefore \Rightarrow \sqrt{\frac{\omega \mu}{\sigma}}=\frac{\sqrt{2}}{\sigma}\left(\frac{1}{\delta}\right) \quad \begin{array}{c}
\text { 5. the wavelength } \lambda=2 \pi / \beta \\
\delta=y_{\beta} ; m
\end{array} \\
& \therefore y=\frac{\sqrt{2}}{\sigma} 45^{\circ}
\end{aligned}
$$

c. The depth of penetration in a conductigg medim is 0.1 m and the frequency of the electromagnetic wave is 1 MHz . Find the conductivity of the conducting medium. (03 Marks)

Sdu:- Given

$$
\begin{aligned}
\delta & =0.1 \mathrm{~m} . \\
f & =1 \mathrm{mH}_{3} .
\end{aligned}
$$

Dankan V Gowda MTech.(Ph.D) Assistant Professor, Dept. of E\&CE Email:dankan.ece@svcengg.com +919844554940 15DeclJan 2017 [cBCS-scheme]

Skindupth.

$$
\begin{aligned}
& \delta=\sqrt{\frac{2}{\omega \mu \sigma}}=\sqrt{\frac{2}{2 \pi f \mu \sigma}} \\
& \delta=\sqrt{\frac{1}{\pi \mu \mu \sigma}} \\
& \delta^{2}=\frac{1}{\pi f \mu \sigma} \\
& \sigma=\frac{1}{\pi f \mu \delta^{2}} \quad v / m \\
& \sigma=\frac{1}{\pi \times 1 \times 10^{6} \times 4 \pi \times 10^{-7} \times(0.1)^{2}}
\end{aligned}
$$

(62) $\sigma=25.3302 \sim \mathrm{v}$ (6) S / m.
$=25.3302 \mathrm{~V} / \mathrm{m}$. (an mho/meteinito
15._. Find the depth of penetration at a frequency of 16 MUZ in andune/July 2013 $\sigma=38.2 \mathrm{Mz}$ mand $\mu_{r}=1$. Also find γ, λ and V_{P}.

 (A6 Marks)
Solu:- given $f=1.6 \mathrm{MHz}$ and $\sigma=38.2 \times 10^{6} \mathrm{v} / \mathrm{m}$.

$$
\mu_{r}=1 . \quad \Rightarrow \mu=\mu_{0}=4 \pi \times 1-7 \mathrm{H} / \mathrm{m} .
$$

\rightarrow the depth of penctration
\rightarrow the propogation conttant ' γ ' in conduting Medium is given by

$$
\begin{aligned}
& \gamma=\sqrt{2} \delta^{-1} \angle 45^{\circ} ; m^{-1} \\
& \gamma=\sqrt{2}(64 \cdot 4 \mu)^{-1} \angle 45^{\circ} ; m^{-1} \\
& \gamma=2 \cdot 20 \times 10^{4} \angle 45^{\circ} ; \mathrm{m}^{-1}
\end{aligned}
$$

$$
\rightarrow \text { Ware hength }(\lambda)=\frac{2 \pi}{\beta}=2 \pi \delta ; \mathrm{m}
$$

\rightarrow wave velocity (0) phase viocity (Mp) iDept. of E\&CE., SVCE

63

$$
\begin{aligned}
V_{p}=\frac{\omega}{\beta} & =\omega \cdot \delta=2 \pi \times 1.6 \times 10^{6} \times 64.4 \mu \\
& \Rightarrow V_{p}=647.419 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=2 \pi(64.4 \mu) \underset{\text { (or) }}{\Rightarrow} \begin{array}{l}
\lambda=405.3 \mu \text {; matein }
\end{array} \begin{array}{l}
\lambda=0.4053 \times 10^{-3} \text { metern }
\end{array} \\
& \text { (or) } \lambda=405.3 \mu \text {; matein }
\end{aligned}
$$

$$
\begin{aligned}
& \delta=\frac{1}{\alpha}=\sqrt{\frac{2}{\omega \mu \sigma}}=\sqrt{\frac{1}{\sqrt{f} \mu \pi}} ; m \\
& \delta=\sqrt{\frac{1}{\pi \times 1.6 \times 10^{6} \times 4 \pi \times 10^{7} \times 38.2 \times 10^{6}}}=6.44 \times 10^{-5} \mathrm{~m} \\
& \text { x } \delta=64.4 \mu \mathrm{~m}=64.4 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

16.

Determine the depth of penetration for copper at 3 MHz frequency. The conductivity for copper is $58 * 10^{2} \mathrm{~s} / \mathrm{m}$ and permeability (μ) is $1.26 * 10^{-6} \mathrm{H} / \mathrm{m}(1.26 \mu \mathrm{H} / \mathrm{m})$.
Soph': given $f=\overline{3} \mathrm{MH}_{3}$. $\quad \bar{\sigma}=58 \times 10^{7} \mathrm{v} / \mathrm{m}$.

$$
\mu=1.26 \mu \mathrm{H} / \mathrm{m} .
$$

the depth of penctration (or) skin depth

$$
\begin{aligned}
& \delta=\sqrt{\frac{2}{w \mu \sigma}}=\sqrt{\frac{1}{\pi f \mu \sigma}} \text {; miter } \\
& \delta=\sqrt{\frac{1}{\pi \times 3 \times 10^{6} \times 1.26 \times 10^{-6} \times 58 \times 10^{7}}}=1.204939 \times 10^{-5} \text { metic } \\
& \delta=12.0493 \mu \mathrm{~m} \Rightarrow 12.0493 \times 10^{-6} \text { mater }
\end{aligned}
$$

Note:-

Material

1. Silver
2. Copper
3. Gold
4. Aluminium

Eondutivity (σ)

$$
\begin{aligned}
& \sigma=6.17 \times 10^{7} \mathrm{~s} / \mathrm{m} \\
& \sigma=5.8 \times 10^{7} \mathrm{~s} / \mathrm{m} \\
& \sigma=4.10 \times 10^{7} \mathrm{~s} / \mathrm{m} \\
& \sigma=3.82 \times 10^{7} \mathrm{~s} / \mathrm{m}
\end{aligned}
$$

Note 2: In the above problem if we consider $\sigma_{\text {copped }}=5.8 \times 10^{7} \mathrm{~s} / \mathrm{m}$ then $\delta=38.1035 \mu \mathrm{~m}$

$$
\Rightarrow \delta=38.1035 \times 10^{-6} \text { retain }
$$

17. Find the depth of penetration, when a 20 MHz signal is propagating the free space w penetrating into a conductor of conductivity $\sigma=5 \times 10^{3} \mathrm{U} / \mathrm{mn}$. (02 Maty
Sota:-

$$
-f=20 \mathrm{MH} H_{z}=20 \times 10^{-6} \mathrm{H}_{3} .
$$

In fres space $\mu=\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.

$$
\begin{aligned}
& \sigma=5 \times 10^{7} v / \mathrm{m} \\
& \delta=\sqrt{\frac{2}{\mu \omega \sigma}}=\sqrt{\frac{1}{\pi f \mu \sigma}} \text {, matein } \\
& \delta=\sqrt{\frac{1}{\pi \times 20 \times 10^{6} \times 411 \times 10^{-7} \times 5 \times 10^{7}}} \\
& \delta=1.59154 \times 10^{5} \text { matein } \\
& 0 \quad \delta=15.9154 \mu \text { matein } \\
& =15.9154 \times 10^{-6, \text { matern }}
\end{aligned}
$$

3. For silver the conductivity is $\sigma=3.0 \times 10^{\circ} \mathrm{s} / \mathrm{m}$. At what frequency will the depth of penetration be 1 mint. (04 Marks)
18
b.

Solus)-

$$
\begin{array}{ll}
\text { given } & \sigma_{\operatorname{sindt}}=3.0 \times 10^{4} \mathrm{~s} / \mathrm{m} \\
& \delta=1 \mathrm{~mm} . \\
f=?
\end{array}
$$

$$
\delta=\sqrt{\frac{1}{\pi f \mu \sigma}} \Rightarrow \delta^{2}=\frac{1}{\pi+\mu \sigma}
$$

$$
\begin{aligned}
& f=\frac{1}{(1 \mathrm{~m})^{2} \times \pi \times 4 \pi \times 10^{-7} \times 3.0 \times 10^{4}} \\
& f=8.4434 \mathrm{M}+\mathrm{H}_{2}=8.4434 \times 10^{6} \mathrm{~Hz} \\
& \text { Note': if } \sigma=3.0 \times 10^{6} \mathrm{~s} / \mathrm{m} \text { then } \\
& f=84.4343 \mathrm{k} \mathrm{H}_{2}=84.4343 \times 10^{+3} \mathrm{H}_{2}
\end{aligned}
$$

19. Wet marshy soil is characterized by $\sigma=10^{-2} \operatorname{sim}, \epsilon_{\mathrm{I}}=15$ and $\mu_{5}=1$. At frequencies 60 Hz and 10 GHz indicate whether soil be considered a conductor or a dietectric.
(04 Marks)
Solu:- given $\sigma=10^{-2}$ v/m. $\epsilon_{r}=15$ and $\mu_{r}=1$.

$$
i>f=60 \mathrm{H}_{3}
$$

$$
i i) f=10 \mathrm{GHz}_{3} \text {. }
$$

N.k.t
\rightarrow for a good Condutorn $\left(\frac{\sigma}{\omega \epsilon}\right) \gg 1$.
\rightarrow for a pertat dieletrice $\left(\frac{\sigma}{\omega E}\right) \rightarrow 0$
\rightarrow for a good diclutric $\left(\frac{\sigma}{\omega \in}\right) \ll 1$.
case:. $f=60 \mathrm{H}_{3}$.

$$
\begin{aligned}
f= & 60 H_{3} \\
\frac{\sigma}{\omega \epsilon}= & \frac{\sigma}{2 \pi f G_{0} G r}=\frac{10^{-2}}{2 \pi(60)\left(8.854 \times 10^{-12}\right)(15)} \\
& \frac{\sigma}{\omega t}=\left(2 \times 10^{6}\right)\left(\frac{1}{60}\right) \\
\Rightarrow & \frac{\sigma}{\omega \epsilon}=2 \times 10^{5} \gg 1 .
\end{aligned}
$$

\therefore Marshy soil at $f=60 \mathrm{H}_{2}$ act as a Ciood condurtor.
Caneii $f=10 \mathrm{GHz} ; \quad \frac{\sigma}{\omega \epsilon}=12 \times 10^{6}\left(\frac{1}{10 \times 10^{9}}\right)=1.2 \times 10^{-3}$

$$
\Rightarrow \frac{\sigma}{\omega t}=1.2 \times 10^{-3} \ll 1
$$

\therefore Marsty Soil at $f=10 \mathrm{Gtl} \mathrm{B}_{3}$ act as a "Diclutric".
20. 10 - June / July 2015
A material is characterized by $\varepsilon_{\mathrm{r}}=2.5, \mu_{\mathrm{r}}=1$ and $\sigma=4 \times 10^{-5} \mathrm{~S} / \mathrm{m}$ at $\mathrm{f}=1 \mathrm{MHz}$. - Determine the value of the loss tangent, attenuation constant and phase constant. (09 Marks)

Sulu:- given $t_{r}=2.5, \mu_{r}=1$.

$$
\sigma=4 \times 10^{-5} \mathrm{v} / \mathrm{m} \text { at } f=1 \mathrm{MH}_{3}=1 \times 10^{6} \mathrm{H}_{3} \text {. }
$$

Note:
In the given problem medium in not specified

$$
\begin{aligned}
& \therefore \text { Find, Lontangent }=\frac{\sigma}{\omega \epsilon}=\frac{\sigma}{2 \pi f \epsilon_{0} G_{i}} \\
& =\frac{4 \times 10^{-5}}{2 \pi \times 1 \times 10^{6} \times 8.854 \times 10^{-12} \times 2.5}=0.287 \\
& \Rightarrow \frac{\sigma}{\omega \epsilon}=0.287<1 \quad \frac{\sigma}{\omega \epsilon}=0.287 ; \text { Lantangent }
\end{aligned}
$$

Since $\left(\frac{\sigma}{\omega E}\right)<1 \therefore$ the medium is Considered to be " Good diclutric"

Sine the Medium is Good dilutric.
\rightarrow attenuation constant (α)

$$
\begin{aligned}
& \alpha=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \mathrm{~Np} / m=\frac{\sigma}{2} \sqrt{\frac{\mu_{0} G_{r}}{\sigma_{0} G_{r}}} \\
& \alpha=\frac{4 \times 10^{-5}}{2} \sqrt{\frac{4 \pi \times 10^{-7} \times 1}{8.854 \times 10^{-12} \times 2.5}}=\frac{0.00476}{=} \mathrm{Np} / \mathrm{m}
\end{aligned}
$$

$\overline{\text { Dept. of ER CE. SVCE }}$
©

$$
\begin{aligned}
& \alpha=4.7653 \times 10^{-3} \mathrm{~Np} / \mathrm{m} \\
& \alpha=4.7653 \mathrm{~m} \mathrm{~Np} / \mathrm{m}
\end{aligned}
$$

\rightarrow phase constant (β)

$$
\begin{aligned}
& \beta=\omega \sqrt{\mu \epsilon}\left[1+\frac{\sigma^{2}}{8 \omega^{2} \epsilon^{2}}\right] \mathrm{rad} / \mathrm{m} \\
& \beta= 2 \pi f \sqrt{\mu_{0} \mu r \epsilon_{0} G r}\left[1+\frac{\sigma^{2}}{8(2 \pi)^{2}\left(\epsilon_{0 \sigma r}\right)^{2}}\right] \\
& \beta= 2 \pi \times 1 \times 10^{6} \times \sqrt{4 \pi \times 10^{-7} \times 1 \times 8.854 \times 10^{-12} \times 2.5} \\
& \times\left[1+\frac{\left(4 \times 10^{-5}\right)^{2}}{8 \times\left(2 \pi \times 10^{26}\right)^{2}\left(2.5 \times 8.854 \times 10^{-12}\right)^{2}}\right] \\
& \beta= 0.033137[1+0.010339] \\
& \times!\mathrm{rad} / \mathrm{m}
\end{aligned}
$$

Summary: Lontangent $\frac{\sigma}{\omega \epsilon}=0.287$
Coffenuation Constant $\alpha=0.00476 \mathrm{rp} / \mathrm{m}$ phase constant $\beta=0.033479 \mathrm{radm}$.
 and $\mu_{r}=3.5$. Find, i) Velocity ii) Phase constant iii) Wavolength iv) Intrinsic impedanet and v) Hz .
Solu:- given $f=10 \mathrm{MHz}$. $E_{x}=100 \mathrm{mv} / \mathrm{m}$.\} Since σ value

$$
G_{r}=1.5 \mathrm{flm} \cdot \mu_{r}=3.5 \mathrm{H} / \mathrm{m} \text {. }
$$

i) Wave (O) phase velocity $\left(v_{p}\right)$ snot given.:. accoiding to the givn dala Medium parfat to be

$$
\begin{aligned}
& v_{p}=\frac{1}{\sqrt{\mu \epsilon}} \mathrm{~m} / \mathrm{sec} \\
& v_{p}=\frac{1}{\sqrt{\mu_{0} \mu_{r} \sigma_{0} G_{r}}}=\frac{3 \times 10^{8}}{\sqrt{\mu_{r} G_{r}}}=\frac{3 \times 10^{8}}{\sqrt{3.5 \times 1.5}} \\
& v_{p}=1.3093 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

ii) phase contant $(\beta): \quad \beta=\frac{\omega}{v_{p}} \quad$ 'rad/m

$$
\begin{aligned}
& \beta=\frac{2 \pi f}{u_{p}}=\frac{2 \pi \times 10 \times 10^{6}}{\left(1.3093 \times 10^{8}\right)}=0.47988 \mathrm{rad} / \mathrm{m} \\
& \beta=0.47988 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

iii) Wave Lingth (λ) :-

$$
\begin{aligned}
& \lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{0.47988} \text {; moter } \\
& \lambda=13.093 \mathrm{~m}
\end{aligned}
$$

iv> Intrinsic impedance (4)

$$
\begin{aligned}
& y=\sqrt{\frac{\mu}{\epsilon}}=377 \sqrt{\frac{\mu_{r}}{G_{r}}}=377 \sqrt{\frac{3.5}{1.5}} \\
& x^{x} \\
& y=575.877
\end{aligned}
$$

v) the Value of H_{3} - given $E_{x}=100 \mathrm{mV} / \mathrm{m}$.

$$
\begin{aligned}
& \text { wh.t } \frac{\left|E_{x}\right|}{\left|H_{3}\right|}=4 \\
& H_{3}=\frac{E_{x}}{4}=\frac{100 \times 10^{-3}}{575.877} \\
& H_{3}=0.17364 \times 10^{-3} \text { Alm } \\
& \text { (O) } H_{3}=0.17364 \mathrm{mAlm}
\end{aligned}
$$

22. The magnetic field intensity of uniform plane wave in air is $20(\mathrm{~A} / \mathrm{m})$ in \vec{a}_{y} direction. The wave is propagating in the $\overrightarrow{a_{z}}$ direction at an angular frequency of $2 \times 10^{\prime}(\mathrm{rad} / \mathrm{sec})$ Find: i) Phase shift constant; ii) Wavelength;
iii) Frequency and
iv) Amplitude of electric field intensity.
(OGG Marks
Sole:- $H_{y}=20 \overline{a_{y}} \quad \mathrm{Alm}$
I-M wave propogation $\Rightarrow \bar{a}_{2}\left(z^{2} \operatorname{direc}^{4}\right)$.

$$
\omega=2 \times 10^{9} \mathrm{rad} / \mathrm{sec} \text {. }
$$

i phase shift constant (β) :-

$$
\beta=\frac{2 \pi}{\lambda}=\frac{\omega}{v_{p}} \mathrm{rad} / \mathrm{m}
$$

anume given medium to be frespaie

$$
\begin{aligned}
& \therefore p=3 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
\Rightarrow & \beta=\frac{2 \times 10^{9}}{3 \times 10^{8}}=6.667 \mathrm{rad} / \mathrm{m} \\
& \therefore \beta=6.667 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

ii) WaveLength (λ) :- $\beta=\frac{2 \pi}{\lambda} \operatorname{radm}$

$$
\begin{aligned}
\lambda= & \frac{2 \pi}{\beta}=\frac{2 \pi}{6.667}=0.942 \mathrm{~m} \\
& \Rightarrow \lambda=0.942 \mathrm{~m}
\end{aligned}
$$

iii) frequancy $(f)^{p}$ -

$$
\begin{aligned}
& \text { givin } \quad \omega=2 \pi=2 \times 10^{9} \\
& f=\frac{2 \times 10^{9}}{2 \pi}=0.318 \times 10^{9} \mathrm{H}_{2} \\
& \therefore \quad \Rightarrow \quad f=0.318 \mathrm{G} H_{3}
\end{aligned}
$$

iv) Amplitude of Elatric firld Gotensity $\left(E_{x}\right)$

$$
H_{y}=20.41_{m} ; \overline{a_{y}}
$$

N.kt $y=\frac{E_{x}}{H_{y}} \Omega$
; anume Medium tobe trespae

$$
\begin{gathered}
E_{x}=H_{y}=377(20) \\
\bar{F}_{x}=7540 a_{x}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (0) }\left.\overline{E_{x}=7.54} \overline{a_{x}} k v\right|_{m} \\
& \left|\mathcal{F}_{x}\right|=\left.7.54 \mathrm{kv}\right|_{m}
\end{aligned}
$$

23.

For damp soil at a frequency of 1 MHz given that $\varepsilon_{r}=12, \mu_{r}=1$ and conductivity $-(3)=20 \mathrm{~m} 0 / \mathrm{m}$. Determine i) Attenuation constant ii) Phase constant constant iv) Wavelength v) Phase velocity vas) Intrinsic impedance.
sole:-
given $f=1 \mathrm{MHz}_{z}$. $E_{r}=12 \mathrm{~F} / \mathrm{m}, \mu_{r}=1 \mathrm{H} / \mathrm{m}$.

$$
\sigma=20 \mathrm{mv} / \mathrm{m} .
$$

the Lentangent value $\frac{\sigma}{\omega \epsilon}=\frac{20 \times 10^{-3}}{2 \pi\left(10^{6}\right) \times 12 \times 8.854 \times 10^{-12}}$

$$
\frac{\sigma}{\omega \epsilon}=29.959 \gg 1
$$

$\Rightarrow \operatorname{since}\left(\frac{\sigma}{\omega t}\right) \gg 1$.
\therefore the given medium in consider to be Good conductor (v) Conducting medium.

In a Good Conducting Medium
i attenuation constant (α) ir

$$
\begin{aligned}
& \alpha=\sqrt{\frac{w \mu \sigma}{2}}=\sqrt{\frac{2 \pi f \mu_{0} \mu_{r} \sigma}{2}} \\
& \alpha=\sqrt{\pi f \mu_{0} \mu_{r} \sigma} \\
& \alpha=\sqrt{\pi \times 10^{6} \times 4 \pi \times 10^{-7} \times 1 \times 20 \times 10^{-3}} \\
& \alpha=0.28099 \mathrm{~Np} / \mathrm{m} .
\end{aligned}
$$

ii) phase constant (β) i-

$$
\beta=\alpha=\sqrt{\frac{\omega \mu_{0}}{2}}=0.28099 \mathrm{rad} / \mathrm{m}
$$

iii) propagation Constant (8)
${\operatorname{Sin} u^{(\alpha=\beta)}}=\alpha=\alpha+j \beta=\alpha \sqrt{2} \angle 45^{\circ}$

$$
\begin{gathered}
\gamma=\sqrt{2} \times 0.28099145^{\circ} \\
\gamma=0.3897445^{\circ} \mathrm{m}^{-1}
\end{gathered}
$$

(大) $\gamma=(0.2809+j 0.2809) \mathrm{m}^{-1}$.
iv> Wave vlocity (or) phane vlocity $\left(v_{p}\right)$:-

$$
\begin{aligned}
& \text { Wave velocity (ov) phane } \\
& V_{p}=\frac{\omega}{\beta}=\frac{2 \pi f}{\beta}=\frac{2 \pi \times 10^{6}}{0.28099}=22.368 \times 10^{6} \mathrm{~m} / \mathrm{sec} \\
& V_{p}=22.368 \times 10^{6} \mathrm{~m} / \mathrm{sec} \\
& V_{p}
\end{aligned}
$$

v) Intrinsic impedance (4) ir

$$
\begin{aligned}
& y=\sqrt{\frac{w \mu}{\sigma}} \angle 45^{\circ}=\sqrt{\frac{2 \pi+\mu_{0} \mu_{r}}{\sigma}} \angle 45^{\circ} \\
& y=\sqrt{\frac{2 \pi \times 106 \times 4 \pi \times 10^{-7} \times 1}{20 \times 10^{-3}}} 145^{\circ} \\
& \sqrt{y=19.869 L 45^{\circ}}
\end{aligned}
$$

Mi) Wlavehength $(\lambda)^{\circ}-\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{0.2809}=22.36 \mathrm{~m}$
(15) $\Rightarrow \lambda=22.3680 \mathrm{~m}$

No al 24.
The electric field intensity of 300 MHz uniform plane wave in free space is given by $E=(20+j 50)\left(a_{x}+2 a_{y}\right) e^{-j p z} V /$ mi Find
i) $0, \lambda, u$ and $\beta \quad$ ii) E at $t=1 \mathrm{~ns} z=10 \mathrm{~cm} \quad$ iii) What is $\left.\left.\right|_{1} \mathrm{H}\right|_{\mathrm{max}}$? (1 0Marks)

Sols:- given $\bar{E}=(20+j 50)\left(\overline{a_{x}}+2 \overline{a_{y}}\right) e^{-j \beta z}$ v/m
$f=300 \mathrm{MH}_{3}$ and medium-frespace".

$$
\begin{aligned}
& \text { i) pa. } w=2 \pi f=2 \pi \times 300 \times 10^{6}=6 \pi \times 0^{8} \mathrm{rad} \mathrm{rec} \\
& \text { b) } \lambda=\frac{v_{p}}{f}=\frac{3 \times 10^{8}}{300 \times 10^{6}}=1 \mathrm{~m} \Rightarrow \lambda=1 \mathrm{~m}
\end{aligned}
$$

$$
\text { c.) } \beta=\frac{2 \pi}{\lambda}=\frac{2 \pi}{1} \Rightarrow \beta=2 \pi \mathrm{rad} / \mathrm{m}
$$

$$
\text { d) } v_{p}=\frac{1}{\sqrt{\mu_{0} G_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec} \Rightarrow \overline{v_{p}=3 \times 10^{8}} / \mathrm{m} / \mathrm{sec}
$$

($x 0$.

$$
\omega t-\beta z=6 \pi \times 10^{8} \times 1 \times 10^{-9}-2 \pi \times 10 \times 10^{-2}=0.4 \pi \text { rad } 1118
$$

$$
\begin{aligned}
& \text { ii) } E(2, t)=P^{2}\left\{E e^{j \omega t}\right\} ; \text { given } t=1 \text { nsc } \text { and } z=10 \mathrm{~cm} \text {. } \\
& =\operatorname{Re}\left\{\left(\frac{20}{\vec{a}}+\frac{350}{\bar{b}}\left(\overline{a_{x}}+2 \bar{a}_{y}\right)\left[\cos (\omega t-\beta z)+j \frac{\sin (\omega t}{c} \beta 3\right)\right]\right\} \\
& \text { Note:- } \\
& =R e\{-11-\}=\left(\vec{a}_{x}+2 \bar{a}_{y}\right)[20 \cos (\omega t-\beta z)-50 \sin (\omega t-\beta z)] \\
& =[20 \operatorname{con}(\omega t-\beta z)-50 \sin (\omega t-\beta z)] \overline{a_{x}} \\
& +[40 \cos (\omega t-\beta 3)-100 \sin (\omega t-\beta 3)] \overline{a_{y}}
\end{aligned}
$$

$$
|E|_{\text {max }}=\sqrt{E E^{*}} \varepsilon_{m_{m}}
$$

and use $y=377 \Omega$ (bcs given medium
given $L=(20+950) \cdot\left(\overline{a_{x}}+2 \overline{a_{y}}\right) e^{-j \beta z} v / m$.

$$
\begin{gathered}
E^{*}=\left.(20-j 50)\left(\overline{a_{x}}+2 \overline{a_{y}}\right) e^{+j \beta 3} v\right|_{m} \\
E E^{*}=(20+j 50)(20-j 50)\left(\overline{a_{x}}+2 \overline{a_{y}}\right)\left(\overline{a_{x}}+2 \overline{a_{y}}\right) \\
e^{-j \beta 3} e^{+j \beta 3}
\end{gathered}
$$

Note: $(a+j b)(a-j b)=a^{2}+b^{2}$.

$$
\begin{aligned}
& E(z, t)=[20 \cos (0.4 \pi)-50 \sin (0.4 \pi)] \bar{a}_{x} \\
& +[40 \cos (0.4 \pi)-100 \sin (0.4 \pi)] \overline{a_{y}} \mathrm{~V} / \mathrm{m} . \\
& \therefore \quad \cos (0.4 \pi)=0.309 \\
& \sin (0.4 \pi)=0.951 \\
& F(2, t)=-41.372 \bar{a}_{x}-82.74 \bar{a}_{y} \quad v m_{m} . \\
& \Rightarrow \quad\left[-(2, t)=-41.372 \bar{a}_{x}-82.74 \bar{a}_{y} \quad v / m\right.
\end{aligned}
$$

$$
\begin{aligned}
& E E^{*}=\left[20^{2}+50^{2}\right] \times \sqrt{1+4} \times \sqrt{1+4} \\
& E E^{*}=14500 \\
& \therefore|\mathcal{E} \max |=\sqrt{E E^{*}}=\sqrt{14500}=\underline{\underline{120.415} \mathrm{~V} / \mathrm{m}} \\
& \Rightarrow\left|H_{\text {max }}\right|=\frac{\left|E_{\text {max }}\right|}{y}=\frac{120.415}{377}=0.319405 \mathrm{Alm} \\
& x^{\left|H_{\max }\right|=0.319405 \mid}+H_{m}
\end{aligned}
$$

Sumnary
\therefore a. $\omega=6 \pi \times 10^{8} \mathrm{rad} / \mathrm{sec}$ b. $\lambda=1 m$
c. $V_{p}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
d. $\beta=2 \pi \mathrm{rad} / \mathrm{m}$.
ii)

$$
E(3, t)=-41.372 \overline{a_{x}}-82.74 \overline{a_{y}} \mathrm{v} / \mathrm{m}
$$

$$
\text { iii) }\left|H_{\max }\right|=0.319405 \mathrm{~A} / \mathrm{m}
$$

25.

A 300 MHz uniform plane wave propagates through (lossless med.) fresh water for which $\sigma=0, \mu r=1$ and $\varepsilon r=78$. Calculate: i) α, ii) β, iii) $\lambda_{,}$iv) η. 10-Jan 2013
A 300 MHz uniform plane wave propagates through fresh water for which $\sigma=0, \mu_{\mathrm{r}}=1$, $\epsilon_{\mathrm{r}}=78$, calculate :
i) Attenuation constant
ii) Phase constant
iii) Wave length
iv) Intrinsic impedance.

Sole:- given $f=300 \times 10^{6} \mathrm{~Hz}$. $\sigma=0, u_{r}=1$ and $\epsilon_{r}=78$.

$$
\left(\frac{\sigma}{w E}\right) \rightarrow 0 \quad \therefore \text { the given medium } n \text { considered to be }
$$ a "putout dilutric" (or) "Lenten Medium"

i) attenuation constant (α):

Since given $\alpha=0$
$\therefore \alpha=0 \quad \mathrm{~Np})_{m}$; for Lenten medium. $\beta=\omega \sqrt{\mu E}=\omega \sqrt{\mu_{0} \text { er Go or } \mathrm{radm}}$

$$
\begin{aligned}
& \beta=\omega v \mu \\
& \beta=2 \pi \times 300 \times 10^{6} \sqrt{4 \pi \times 10^{-7} \times 1 \times 8.894 \times 10^{-12} \times 78}
\end{aligned}
$$

蚛

iii) Wove Length (\boldsymbol{A}) :-

$$
\begin{aligned}
& \lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{55.5294}=0.11315 \text { matern } \\
& \Rightarrow \lambda=0.11315 \mathrm{~m}
\end{aligned}
$$

iv) Intrinsic impedance (Y)i-

$$
\begin{aligned}
& \text { Intrinsic impectan } \\
& y=\sqrt{\frac{\mu}{\epsilon}}=377 \sqrt{\frac{\mu_{r}}{\sigma_{r}}}=377 \sqrt{\frac{1}{78}} \\
& y=42.686
\end{aligned}
$$

v) phane valocity (r) Wave vlocity (Up)

$$
\begin{aligned}
& V_{p}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{3 \times 10^{8}}{\sqrt{\mu r 6 r}}=\frac{3 \times 10^{8}}{\sqrt{78}} \\
& \times V_{p}=0.33968 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

26.

Calculate intrinsic impedance η, propagation constant γ and wave velocity v for a conducting medium in which $\sigma=58 \mathrm{MS} / \mathrm{m}, \mu_{\mathrm{r}}=1, \epsilon_{\mathrm{r}}=1$ at frequency of 100 MHz .

Calculate intrinsic impedance $\eta . \sigma=58 \mathrm{Ms} / \mathrm{m}, \mu_{\mathrm{f}}=1, \epsilon_{\mathrm{r}}=1$ at frequency of 100 MHz . (06 Marks)
\qquad
Solu': given $\sigma=58 \times 10^{6} \mathrm{v} / \mathrm{m}$.
$\mu_{r}=1$ and $\epsilon_{r}=1$ at $f=100 \times 6 \mu^{6}$.
Lontangent $\frac{V}{\omega t}=\frac{58 \times 10^{6}}{2 \pi \times 100 \times 10^{6} \times 8.854 \times 10^{-12}}$

$$
\frac{\sigma}{w t}=1.0425 \times 10^{10} \gg 1
$$ to be Good [onductor.

i) Intrinsic impedance (4)

$$
\begin{aligned}
& y=\sqrt{\frac{\omega \mu}{\sigma}} \angle 45^{\circ}=\sqrt{\frac{2 \pi 7 \mu_{0} \mu_{r}}{\sigma}} \angle 45^{\circ} \\
& y=\sqrt{\frac{2 \pi \times 100 \times 10^{6} \times 4 \pi \times 10^{-7} \times 1}{58 \times 10^{6}}} \angle 45^{\circ} \\
& y=3.6896 \times 10^{-3} \angle 45^{\circ}
\end{aligned}
$$

$\overline{\text { Dept. of ELCEF, SVCE }}$
81

$$
y=0.00 .36896145^{\circ} \Omega^{\text {Page 589 }}
$$

ii) propagation Constant (8):-

$$
\begin{aligned}
\gamma & =\sqrt{\omega \mu \sigma} \angle 45^{\circ} \mathrm{m}^{-1} \\
& =\sqrt{2 \pi f \mu_{0} \mu r \sigma} \angle 45^{\circ} \\
\gamma & =\sqrt{2 \pi \times 100 \times 10^{6} \times 4 \pi \times 10^{-7} \times 58 \times 10^{6}} \angle 45^{\circ} \\
\gamma & =213.997 \times 10^{3} \angle 45^{\circ} \mathrm{m}^{-1}
\end{aligned}
$$

iii) klave vlocity (vp)i-

$$
\begin{aligned}
& >\frac{\text { klave viocity }}{V_{p}=\frac{\omega}{\beta}=\frac{\omega}{\sqrt{\frac{\omega \mu \sigma}{2}}}=\sqrt{\frac{2 \omega \kappa}{3 \mu \sigma}}=\sqrt{\frac{2 \omega}{\mu \sigma}}} \\
& V_{p}=\sqrt{\frac{2 \times 2 \pi \times 100 \times 10^{6}}{4 \pi \times 10^{7} \times 58 \times 10^{6}}}=\frac{4.15227 \mathrm{~km} / \mathrm{sec}}{V_{p}=4.1522 \times 10^{3} \mathrm{~m} / \mathrm{sec}} \\
& v_{p}=4.1522 \mathrm{~km} / \mathrm{sec}
\end{aligned}
$$

iv> attenuation Comtant (α) and phare Corstant (β)

$$
\alpha=\sqrt{\frac{w_{\mu} \sigma}{2}}=\sqrt{\frac{2 \pi f \mu_{\text {our } \sigma}}{2}}
$$

(82) $\quad \alpha=\sqrt{\pi f \mu_{0} \mu_{r} \sigma}: N p / m$

$$
\begin{aligned}
& \alpha=\sqrt{\pi \times 100 \times 10^{6} \times 6 \pi \times 10^{-7} \times 58 \times 10^{6}} \\
& \alpha=151.319 \times 10^{-3} \mathrm{~Np} / \mathrm{m}
\end{aligned}
$$

Since the Medivem is Good conderfor

$$
\Rightarrow \quad \alpha=\beta=151.319 \times 10^{3}
$$

\therefore phax constant (β)

$$
\beta=151.319 \times 10^{3} \mathrm{rad} / \mathrm{m}
$$

the value of skindepth (O) depth of pentration

$$
\begin{aligned}
& \delta=\frac{1}{\alpha}=\alpha^{-1}=\left(151.319 \times 10^{3}\right)^{-1} \\
& \\
& \delta=6.608 \times 10^{-6} \text { matein }
\end{aligned}
$$

∞ $\delta=6.608 \mathrm{~m}$

The \vec{H} field in free space is given by $\vec{H}(x, t)=10 \cos \left(10^{8} t-\beta x\right) \hat{a} y A / m t$. Find β, λ and ${ }^{-} E(\overline{x, t)}$ at $P(0,1,0.2,0.3)$ and $t=1 \mathrm{~ns}$. (06 Marks)
soli: given

$$
\bar{H}(x, t)=10 \cos \left(10^{8} t-\beta x\right) \bar{a}_{y} A / m .
$$

a). By comparing with std ficld.

$$
\begin{aligned}
& F(x, t)=H_{m}^{+} \operatorname{con}(\omega t-\beta x) d y \mathrm{~A} / \mathrm{m} \\
\Rightarrow & H_{m}^{+}=10 \mathrm{~A} / \mathrm{m}, \quad \omega=10^{8} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

$$
i \quad \beta=\frac{2 \pi}{\lambda} \mathrm{rad} / \mathrm{m}
$$

given nedium ${ }^{n}$ frespace $\dot{l}_{p}=\frac{\omega}{\beta} \mathrm{m} / \mathrm{sec}$

$$
\begin{aligned}
& \beta=\frac{w}{v_{p}}=\frac{10^{8}}{3 \times 10^{8}}=1 / 3 \\
& \beta=0.3333 \mathrm{rad} / \mathrm{n}
\end{aligned}
$$

ii) $\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{(1 / 3)}=6 \pi$; metain

$$
\lambda=6 \pi / \text { materin }=\frac{18.8495 \text {-matein }}{}
$$

ii) $\mathcal{E}(x, t)=E_{m}^{+} \operatorname{con}(\omega t-\beta x) \overline{a_{2}} \cdot v / m$.

$i \cdot e \bar{E} \rightarrow \dot{a}_{z} \quad v / m$.

$$
\begin{aligned}
& y=\frac{|E|}{|H|} \Omega \\
& \Rightarrow \mathcal{F}_{m}^{+}=4 H_{m}^{+}=37((10)=3770 \mathrm{l} / \mathrm{m} \\
& \mathcal{F}_{m}^{+}=3.77 \mathrm{kv} / \mathrm{m}
\end{aligned}
$$

$$
\therefore F(x, t)=\mathcal{E}_{m}^{+} \cos (\omega t-\beta x) \bar{a}_{z} v / m
$$

and $\omega=10^{8} \mathrm{rad} / \mathrm{sec}$

$$
\begin{gathered}
\beta=1 / 3 \mathrm{rad} / \mathrm{m} \\
F(x, t)=3770 \operatorname{con}\left(10^{8} t-1 / 3^{x}\right) \overline{a_{3}} \mathrm{v} / \mathrm{m} \\
D(0.10 .2,0.3) \text { and } t=\operatorname{lns}
\end{gathered}
$$

$E(x, t)$ at $P(0.1,0.2,0.3)$ and $t=\operatorname{lnsec}$.

$$
\begin{align*}
& E(x, t) \quad x=0.1 \mathrm{~m} ; \quad t=1 \times 10^{-9} \mathrm{sec} \\
& E(x, t)=3770 \operatorname{con}\left[10^{8} \times 10^{-9}-\frac{0.1}{3}\right] a_{3} \mathrm{u} / \mathrm{m} \\
& E(x, t)=3769.99 a_{3} \mathrm{k} / \mathrm{m}
\end{align*}
$$

(85) $\Rightarrow|E(r, t)|=3769.99 \mathrm{~V} / \mathrm{m}$

A uniform plane wave with 10 MHz frequency has average pointing vector $1 \mathrm{w} / \mathrm{m}^{2}$.
28. If the medium is perfect dielectric with

$$
\epsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}
$$

Find:
i) Velocity
ii) Wavelength
iii) Intrinsic impedance
iv) rms value of electric field.

$$
\begin{aligned}
& \begin{aligned}
\text { Soul- given } f & =10 \mathrm{MHz}_{z} \\
\sigma \simeq 0 ; \quad & \frac{\sigma}{\omega \epsilon} \rightarrow 0 ; \quad \epsilon_{r}=3 \mathrm{fm} \text { and }
\end{aligned} \\
& \mu_{r}=2+1 m \text {. }
\end{aligned}
$$

\therefore Medium is Considered to be portent diclutrics.

$$
\begin{aligned}
& \therefore \text { Medium is Lonsice } \quad E_{0} \mathrm{Gr} \mathrm{flm} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \quad \epsilon_{0}=8.854 \times 10^{-12} \mathrm{Flm} .
\end{aligned}
$$

$i>$
Wave velocity (vp):

$$
=\frac{3 \times 10^{8}}{\sqrt{\mu_{r} \text { fr }}}=\frac{3 \times 10^{8}}{\sqrt{2 \times 3}}
$$

$+v_{p}=122.474 \times 10^{6} \mathrm{~m} / \mathrm{sec}$

$$
v_{p}=1.22474 \times 10^{8} \mathrm{~m} / \mathrm{sec}
$$

ii) WaveLength (λ)

$$
\begin{aligned}
& v_{p}=f \lambda \mathrm{~m} / \mathrm{sec} \\
& \lambda=\frac{v_{p}}{f}=\frac{122.474 \times 10^{6}}{10 \times 10^{6}}=12.2474 \mathrm{~m} \\
& \lambda=12.2474 \text { meterin }
\end{aligned}
$$

iii) Intrinsic impedance (4)

$$
\begin{gathered}
y=\sqrt{\frac{\mu}{\epsilon}}=377 \sqrt{\frac{\mu \gamma}{\epsilon_{\gamma}}}=377 \sqrt{\frac{2}{3}} \\
y=307.8192 \mathrm{l}
\end{gathered}
$$

iv'> using poynting theorem:-

$$
P_{\text {avg }}=\frac{1}{2} \frac{E_{m}^{2}}{4}=\frac{E_{m}^{2}}{2 y} \omega / m^{2}
$$

give \quad arg $=1 \mathrm{~m} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \mathcal{F}_{m}=\sqrt{24(\text { Pavg })}=\sqrt{2 \times 307.8192 \times 1} \\
& I_{m}=24.812 \mathrm{Vm}
\end{aligned}
$$

r.m.s value of E

$$
\begin{aligned}
{ }_{-} \mathcal{E}_{\mathrm{rms}} & =\frac{E_{m}}{\sqrt{2}}=\frac{24.812}{\sqrt{2}}=17.544 \mathrm{~V} / \mathrm{m} \\
E_{\mathrm{rms}} & =17.544 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

My

$$
\begin{aligned}
\mathcal{E}_{m} & =24.812 v / \mathrm{m} \\
\left|\frac{\mathcal{L}_{m}}{H_{m}}\right| & =Y \\
\Rightarrow H_{m} & =\frac{E_{m}}{Y}=\frac{24.812}{307.8192} \\
H_{m} & =0.080605 \mathrm{Alm} \\
& =80.6057 \mathrm{~mA} / \mathrm{m} \\
H_{m s} & =\frac{H_{m}}{\sqrt{2}}=56.9968 \mathrm{~mA} / \mathrm{m}
\end{aligned}
$$

A uniform plane wave propagating in a perfect dielectric medium has
$E=500 \cos \left[10^{7} t-\beta z\right] a_{x}$ dr -and
$H=1.1 \cos \left[10^{5} t-\beta z\right] a_{y} A / m$. If the wave is travelling with a velocity $u=0.5 \mathrm{C}(\mathrm{m} / \mathrm{s})$, , $\mathrm{H} / \mathrm{H} / \mathrm{H}$ ϵ_{r} and μ_{r}, where $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
and abr find iii β iv> $\lambda \quad v\rangle$.
Solu:- given $E=500 \operatorname{con}\left[10^{7} t-\beta z\right] \bar{a}_{x} v / r_{2} \leqslant(1)$

$$
\begin{aligned}
& \bar{H}=1.1 \operatorname{con}\left[10^{5} t-\beta z\right] \bar{a}_{y} A d m \\
& v_{p}=0.5 \quad c=0.5 \times 3 \times 10^{8}=15 \times 10^{8} \mathrm{~m} / \mathrm{sec} . \\
& G_{r}=\text { ? } \quad u_{r}=?
\end{aligned}
$$

$$
y=\frac{|E|}{|H|}=\frac{E_{m}}{H_{m}}=377 \sqrt{\frac{\mu_{r}}{\epsilon_{r}}}=\frac{500}{1.1}
$$

$$
\begin{equation*}
\Rightarrow \sqrt{\frac{\mu_{r}}{G_{r}}}=1.20569 \tag{a}
\end{equation*}
$$

$$
\text { given } v_{p}=1.5 \times 10^{8}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{1}{\sqrt{\mu_{0} \epsilon_{0} \mu_{r} \epsilon \circlearrowleft}}
$$

$$
\begin{aligned}
& \text { Copt. of ERCE. SVCE } V_{p}=\frac{3 \times 10^{8}}{\sqrt{\mu_{r G}}}-\infty
\end{aligned}
$$

Contd in
Note! refer page No. $593($ a)

$$
\begin{aligned}
& \epsilon_{r}=\text { ? } \quad u_{r}=\text { ? }
\end{aligned}
$$

$\begin{aligned} & \text { frequent. given } E \text { and } \frac{\omega_{E}=\omega_{H} \text { radsec. }}{7} \text { radrec. }\end{aligned}$

$$
\begin{aligned}
& \begin{array}{l}
\omega=10^{7 r o d s e c}, \quad E_{m}=500 \mathrm{~V} / \mathrm{m}
\end{array}
\end{aligned}
$$

Note:- Solu contd Problem no. 29 .
ENGINEERING ELECTROMAGNETICS (15EC36) MODULE-5B
DANKAN V GOWDA MTech., (Ph.D)
from cq4@ $\frac{\mu_{r}}{\epsilon_{r}}=1.453688$

$$
\begin{equation*}
\Rightarrow \mu_{r}=1.453688 \mathrm{Er} \tag{C}
\end{equation*}
$$

from $q^{4}(5) \quad \mu r E r=4$.
using oq (C) $\quad(1.453688)(E r)(E r)=4$

$$
E r^{2}=\frac{4}{1.45368} \Rightarrow G_{r}= \pm 1.6588 \mathrm{fm}
$$

Er to be twe $\therefore E_{r}=1.6588 \mathrm{fm}$
and using cqu(c) $\mu_{r}=1.453688(1.6588)$

$$
u_{r}=2.41137, \quad H / m
$$

iii) phase comstant $\beta-\frac{\omega}{v_{p}}=\frac{107}{1.5 \times 10^{8}} \mathrm{rad} \rho_{\mathrm{m}}$

$$
\beta=0.0667 \mathrm{rad} / m \Rightarrow \beta=0.0667 \mathrm{rad} / \mathrm{m}
$$

iv) Wavelingth $(\lambda), \lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{0.0667}{ }^{m}$

$$
\begin{aligned}
& \lambda=94.2477 \mathrm{~m} \\
& \sqrt{\frac{\mu}{\epsilon}}=377 \sqrt{\frac{\mu_{r}}{\sigma r}}= \\
& y=454.02 \sim
\end{aligned}
$$

(大)

$$
y=\frac{E_{m}^{+}}{H_{m}^{+}}=\frac{500}{1.1}=454.02 u
$$

30.

06 - June /July 2012

- AtoGHz plane wave travelling in free space has an amplitude of $15 \mathrm{~V} / \mathrm{m}$. Find:
i) Velocity of propogation.
ii) Wave length.
iii) Characteristic impedance.
iv) Amplitude of $\overline{\mathrm{H}}$.
v) Propagation constant (β).

A 10 GHz plane wave ingle space has electric field intensity $15 \mathrm{~V} / \mathrm{m}$. Find:
i) Velocity of propagation
ii) Wavelength
iii) Characteristi\&impedance of the medium
iv) Amplitude of magnetic field intensity
v) Propagation constant β.
(10 Marks)
sole:- given $f=10 \mathrm{GH}=10 \times 10^{9} \mathrm{~Hz}$.
$|E|=15 \mathrm{~V} / \mathrm{m}$.
Mudivm:-frespace. $E=\epsilon_{0}$ and $\mu=\mu_{0}+1 \mathrm{~m}$
i) $v_{p}=\frac{1}{\sqrt{\mu_{0} G_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$.
$y_{p}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
ii) ware Length (λ)
$\quad \lambda=\frac{v_{p}}{f}=\frac{3 \times 10^{8}}{10 \times 10^{9}}=0.03 \mathrm{~m}$

$$
\begin{aligned}
& y=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=377 \text { O } 120 \pi \Omega \\
& y=377 \text { (ब) } 120 \pi
\end{aligned}
$$

iv) $|\bar{H}|=\frac{|\bar{E}|}{Y}=\frac{15}{377}=0.03978 \mathrm{~A} / \mathrm{m}$

$$
|H|=0.039787 \mathrm{Am}
$$

v propogation constant - $\because(\gamma)$

$$
\gamma=\alpha+j \beta m^{-1}
$$

In frespace $\alpha=0 \mathrm{spm}$
and $\beta=\omega \sqrt{\mu_{0} 6}=\frac{\omega}{v_{p}}=\frac{2 \pi \times 10 \times 10^{9}}{3 \times 10^{8}}$

$$
\begin{aligned}
& \frac{\beta=209 \cdot 439}{} \mathrm{rad} / \mathrm{m} \\
& \lambda=\alpha+j \beta=0+j \beta=j \beta=\beta L 90^{\circ} \\
& \lambda=\gamma=209.439 \angle 90^{\circ} \mathrm{m}^{-1}
\end{aligned}
$$

31.

A 800 MHz plane wave traveling has an average Poynting vector of $8 \mathrm{~mW} / \mathrm{m}^{2}$. If the
medium is losses with $\mu_{r}=1.5$ and $\epsilon_{r}=6$. Find:
i) Velocity $\begin{aligned} & \text { ware } \\ & \text { i tn "Lo nLen" Medium. }\end{aligned}$
ii) Wavelength
iii) Impedance of the medium
iv) r.m.s. electric field E and
v) r.m.s. magnetic field H .

Sols:- given $\mu_{r}=1.5 \mathrm{H} / \mathrm{m} ; \quad G_{r}=6 \mathrm{Flm}$.

$$
\begin{array}{r}
P_{\text {arg }}=8 \mathrm{~m} w / \mathrm{m}^{2} \cdot f=800 \mathrm{~m} H_{2} \\
V_{p}=\frac{1}{1} \cdot \mathrm{n}_{2}
\end{array}
$$

i) Velocity of wave $V_{p}=\frac{1}{\sqrt{\mu \epsilon} \cdot p^{2 c c}}$

$$
\begin{aligned}
& \text { Velocity of wave }=\frac{3 \times 10^{8}}{\sqrt{\mu_{r} \epsilon_{r}}}=\frac{3 \times 10^{8}}{\sqrt{15^{86}}}=1 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
& V_{p}=1 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

ii) Wavelength (λ)

$$
\lambda=\frac{V_{p}}{f}=\frac{1 \times 10^{8}}{800 \times 10^{6}}=0.125 \mathrm{~m}
$$

$x^{\infty} \lambda=0.125$ metcin.
iii) Impedance of the Medium (M)

$$
y=\sqrt{\frac{\mu}{\epsilon}}=377 \sqrt{\frac{\mu_{r}}{G_{r}}}=377 \sqrt{\frac{1.5}{6}}
$$

Dept. of E\&CE., SVCE

$$
y=188.5 \sim 9
$$

iv> r.m.s Walue of Elutric fild \bar{E}. Given using poysting theorcm -

$$
\begin{aligned}
& P_{\text {avg }}=\frac{\mathcal{L}_{m}^{2}}{2 y} w / m^{2} \\
& \delta_{m}=\sqrt{2 P_{\text {arg }} Y}=\sqrt{2 \times 8 \times 10^{-3} \times 188.5} \\
& L_{m}=1.7366 \mathrm{~m} \\
& H_{m}=\frac{E_{m}}{Y}=\frac{1.7366}{188.5}=9.2127 \times 10^{-3} \mathrm{Alm} \\
& I_{r m s}=\frac{I_{m}}{\sqrt{2}}=\frac{1.7366}{\sqrt{2}}=1.228 \mathrm{v} / \mathrm{m} \\
& \Rightarrow \quad \mathcal{F i m s}=1.228 \mathrm{v} / \mathrm{m} \\
& H_{m}=9.2127 \times 10^{-3} \mathrm{~A} I_{m}, \quad H_{r m s}=\frac{H_{m}}{\sqrt{2}}=\frac{9.212 \times 10^{-3}}{\sqrt{2}} \\
& H_{r m s}=6.5143 \times 10^{-3} \mathrm{Alm} \\
& \text { (क) Hrms }=\frac{\text { Erms }}{4}=\frac{1.228}{188.5}=6.514 \times 10^{-3} \mathrm{~A} / \mathrm{m} \\
& \text { Dept. of E\&CE., SVCE } \\
& \Rightarrow \quad \text { Hrms }=6.514 \times 10^{-3} \mathrm{Am}
\end{aligned}
$$

A uniform plane wave traveling in $+z$ direction in air has $\mathrm{H}=20 \hat{a_{y}}$ Alt the frequency of the signal is $\frac{1}{\pi} \times 10^{\circ} \mathrm{Hz}$. Find $\lambda_{2} T$ and E.
(06 Marks)
Sols:- given $H_{y}=20 \bar{a}_{y} \mathrm{Alm}$.

$$
f=\frac{1}{\pi} \times 10^{9} H_{3}
$$

given medium in air \Rightarrow tres space p

$$
\Rightarrow \mu=\mu_{0} \mathrm{H} / \mathrm{m} ; \quad \epsilon=\mathrm{t}_{0} \mathrm{H} / \mathrm{m} \text {. }
$$

$$
\therefore v_{p}=f \lambda \mathrm{~m} / \mathrm{sec} .
$$

$$
\begin{aligned}
& v_{p}=f \lambda \mathrm{~m} / \mathrm{sec} . \\
& v_{p}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec} \ldots \text { infrespace. }
\end{aligned}
$$

$$
\begin{aligned}
& v_{p}=3 \times 10 \\
& \lambda=\frac{v_{p}}{f}=\frac{3 \times 10^{8}}{\left(\frac{1}{\pi} \times 10^{9}\right)}=3 \pi \times 10^{8} \\
& 10^{9}
\end{aligned}=
$$

$$
\lambda=0.94247 \text { meter }
$$

$$
\begin{aligned}
& i i) \quad T=\frac{1}{f}=\frac{1}{\left(\frac{1}{\pi} \times 10^{9}\right)}=\pi \times 10^{-9} \mathrm{sec} \\
& -9 \mathrm{sec}=3.14154
\end{aligned}
$$

$$
T=\pi \eta \mathrm{sec} \text { (o) } T=3.14159 \mathrm{sec}
$$

$$
\text { iii> }|\bar{E}|=4|\bar{H}| \text { of } \mathcal{E}_{x}=4 H y \text { v/m }
$$

and $y=377 \sim$.

$$
\begin{aligned}
& \mathcal{F}_{x}=377(20)=7540 \mathrm{v} / \mathrm{m} \\
& \mathcal{L}_{x}=7.540 \mathrm{kv} / \mathrm{m} \\
& \mid E_{x}=7540 \mathrm{~V} / \mathrm{m} \\
& \overline{E_{x}}=7540 \overline{a_{x}} v / m \\
& \left|\overline{E_{x}}\right|=7.54 \mathrm{kv} / \mathrm{m}
\end{aligned}
$$

33. For a uniform plane wave, $\mathrm{E}_{y}=10.4 \mathrm{e}^{\left(-\mathrm{inlx} \times 22 \times x 0^{\circ} \cdot \mathrm{j}\right.} \mathrm{V} / \mathrm{m}$. Find
i) The direction of propagation. .
ii) Phase constant β
iii) Expression for H .

Solyi- given $E_{y}=10.4 e^{\left(-J \frac{\left.\beta x+2 \pi \times 10^{9} t\right)}{q}\right.}$ vim.
(05 Marks)

Comparing with std form.

$$
\Sigma_{y}=E_{m} e^{j(\omega t-\beta x)} v / n \text {. } E_{4} \text { should be of }
$$

$$
\begin{aligned}
& 10 t+10 \cdot 4 e^{-j \beta x+j 2 \pi \times 10^{9} t} \text { vim. } \\
& =10 .
\end{aligned}
$$

$$
\begin{aligned}
& E_{y}=10.4 e \\
& \omega=2 \pi \times 10^{9} \text { radp/sec; } E_{m}=10.4 v / \mathrm{m} .
\end{aligned}
$$ propugation.

\Rightarrow the Direction of $E M$ wave propagation is

$$
\begin{aligned}
& \left.E M \text { wave prop } \bar{a}_{x}\right) . \\
& \left.+\dot{\theta_{x}}\right)
\end{aligned}
$$

Note $-E_{y}(x, t)=E_{m}^{+} e^{j(\omega t-\beta x)}+E_{m}^{-} e^{j(\omega t+\beta x)} v / m$.

$$
\begin{aligned}
& i \text { given }^{\omega} \\
& E_{y} \Rightarrow f(x, t) \therefore \text { dircu of EMinare }
\end{aligned}
$$

ii) Phase constant (β) assume that given medium to be free space.

$$
\begin{aligned}
& \text { free space } \\
& \beta=\frac{\omega}{v_{p}}=\frac{2 \pi \times 10^{9}}{3 \times 10^{8}}=20.94 \mathrm{rad} / \mathrm{m} \\
& \beta=20.94 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

iii) phase velocity (up):-

$$
\begin{aligned}
& \text { are velocity }\left(v_{p}\right):- \\
& v_{p}=3 \times 10^{8} \mathrm{~m} / \sec \\
& \sqrt{\mu_{O G D}}
\end{aligned}
$$

iv) Exprunion for $(\bar{H})_{i}$ -
w.k.t $y=\frac{|\bar{E}|}{|\bar{H}|}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=371 \Omega$

$$
\begin{aligned}
& |E|=10.41 v / \mathrm{m} \\
\Rightarrow & |\bar{H}|=\frac{|\bar{E}|}{4}=\frac{10.4}{377}=0.027586 \mathrm{~A} / \mathrm{m} \\
\Rightarrow & |\bar{H}|=0.027586 \mathrm{Alm}
\end{aligned}
$$

\therefore Expronion for $\vec{F}(x, t)$

$$
\begin{aligned}
& H_{3}(x, t)=H_{m} e^{j(\omega t-\beta x)} \text { AIm } \\
& H_{3}(x, t)=0.02756 e^{j\left(2 \pi \times 10^{9} t-\beta x\right)} \overline{a_{3}}
\end{aligned}
$$

Note In original problim(0) if $E_{y}=10.4 e^{-j \beta x+j 2 \pi \times 10 \frac{9 t}{a_{y}} \mu \mathrm{~V} / \mathrm{m} .}$ then $\Rightarrow H_{2}(x, t)=0.02756 e^{3\left(2 \pi \times 10^{9 t}-\beta x\right)} \overline{a_{2}} \mu$ Atm.
$34 a$.
A 9375 MHz uniform plane wave is propagating in polystyrene ($\mu_{\mathrm{r}}=1, \epsilon_{\mathrm{r}}=2.56$). If the amplitude of electric field intensity is $20 \mathrm{~V} / \mathrm{mt}$ and the material is assumed to be lossless.
Find i) Phase constant - ii) Wavelength
iii) Velocity of propagation
iv) Intrinsic impedance v) Magnetic field intensity. (10 Marks)
Solve: given $f=9375 \mathrm{MH}_{2}=9375 \times 10^{6} \mathrm{H}_{3}$.

$$
\mu_{r}=1 \mathrm{H} / \mathrm{m}, \quad \epsilon_{r}=2.56 \mathrm{~F} / \mathrm{m} ;|\bar{E}|=20 \mathrm{~V} / \mathrm{m}
$$

given medium is Lenten \Rightarrow ie perfut dielutric Medium.
i phase constant (β)

$$
\beta=\frac{\omega}{v_{p}}=w \sqrt{\mu \epsilon} \text { radio }
$$

$\beta=2 \pi t \sqrt{\mu_{0} \mu r t_{0} G r} \mathrm{rad} / \mathrm{m}$.

$$
\begin{aligned}
& \beta=2 \pi f \sqrt{\mu_{0} u r} \text { to br racy } \\
& \beta=2 \pi \times 9375 \times 10^{6} \sqrt{4 \pi \times 10^{7} \times(1) \times 8.854 \times 10^{-12} \times 2.56}
\end{aligned}
$$

$$
\beta=314.373 \text { rad /m }
$$

iii) velocity of propagation (v_{p})

$$
\begin{aligned}
& v_{p}=\frac{1}{\sqrt{\mu t}}=\frac{3 \times 10^{8}}{\sqrt{\mu r G r}}=\frac{3 \times 10^{8}}{\sqrt{2.56}} \\
& v_{p}=\frac{3 \times 10^{8}}{\sqrt{2.56}}=187.5 \times 10^{6} \mathrm{~m} / \mathrm{sec} \\
& V_{p}=187.5 \times 10^{6} \mathrm{~m} / \mathrm{sec} \\
& \Rightarrow V_{p}=1.875 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

ii) Ware length (x) i-

$$
\begin{gathered}
v_{p}=f \lambda \mathrm{~m} / \mathrm{sec} \\
\lambda=\frac{v_{p}}{f}=\frac{1.87 \times 10^{8}}{9375 \times 10^{6}} \\
\lambda=0.02 \text { matein }
\end{gathered}
$$

iv) Intrinsic impedance(4) p -

$$
\begin{aligned}
& y=\sqrt{\frac{\mu}{\epsilon}}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \cdot \sqrt{\frac{\mu_{r}}{G_{r}}}=377 \sqrt{\frac{\mu_{r}}{G_{r}}} \\
& y=377 \sqrt{\frac{1}{2.5}}=235.625 \Omega \\
& \times \quad y=235625
\end{aligned}
$$

v) given $|E|=20 \mathrm{~V} / \mathrm{m}$.

$$
\begin{aligned}
&|H|=2 \text { using } \quad y=\frac{|E|}{|H|} \\
& \Rightarrow|H|=\frac{|E|}{4}=\frac{20}{235.625}=0.08488 \mathrm{Alm} \\
&|H|=84.88 \mathrm{mAlm}
\end{aligned}
$$

Vi) propogation Eonstant ((8)

$$
\gamma=(\alpha+\delta \beta) n^{-1}
$$

for a Lom Len (or) pestut diclutric Medium

$$
\begin{gathered}
\alpha \alpha=0 \mathrm{~Np} /_{m} \\
\therefore \gamma=0+j \beta=j \beta=\beta 90^{\circ} \\
\\
\\
\gamma=314.37190^{\circ} \mathrm{m}^{-1} .
\end{gathered}
$$

34b.

Solv:- given $f=9.375 \mathrm{GH}_{z}=9.375 \times 10^{6} \mathrm{~Hz}$.
Gr $=2.26 \mathrm{fm} ;|E|=500 \mathrm{v} / \mathrm{m} ;$ anume $\mu_{r}=1 \mathrm{H} / \mathrm{m}$
given medium is Lom Len (o) pertect dilutric.
i phase constant (β) ir

$$
\begin{aligned}
& \beta=\frac{2 \pi}{\lambda}=\omega \sqrt{\mu \epsilon}=\frac{\omega}{\nu^{m}} \mathrm{rad} \mathrm{~m} \\
& \beta=2 \pi f \sqrt{\mu_{0} \mu_{r} G G^{2}} \\
& \beta=2 \pi \times 9.375 \times 10^{9} \sqrt{4 \pi \times 10^{-7 \times 1 \times 8.85 u \times 10^{-12} \times 2.26}} \\
& \beta=295.379 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

-ii) Wavetingth (λ)

$$
\begin{aligned}
& \lambda=\frac{\nu_{p}}{7}=\frac{2 \pi}{\beta} \mathrm{~m} \\
& \lambda=\frac{2 \pi}{295.379}=0.02127 \mathrm{~m} \\
& \infty x=0.02127 \text { metein }
\end{aligned}
$$

iii) Vlocity of propogation $\left(v_{p}\right)$: -

$$
\begin{aligned}
& V_{p}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{3 \times 10^{8}}{\sqrt{\mu_{G r}}}=\frac{3 \times 10^{8}}{\sqrt{1 \times 2.26}} \\
& V_{p}=1.9955 \times 10^{8} \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

iv) Intrinsic Impedance (4)

$$
y=\sqrt{\frac{\mu}{\epsilon}}=377 \sqrt{\frac{\mu_{r}}{G_{r}}}=377 \sqrt{\frac{1}{2.26}}=\frac{377}{\sqrt{2.26}}
$$

$$
y=250.776
$$

v) Magnatic ficl Mntersity $(|\vec{H}|)$

$$
\begin{aligned}
& |H|=\frac{|\bar{L}|}{4}=\frac{500}{250.776} \\
& |\vec{H}|=1.9938 \text { A }
\end{aligned}
$$

Summary $-\beta=295.379 \mathrm{rad} / \mathrm{m}$
$\lambda=0.02127$ matein $U_{p}=1.9955 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& y=250.776 \\
& |H|=1.9938 \mathrm{Alm}
\end{aligned}
$$

A plane Wave traveling in positive x-direction in a lossless unbounded medium havim berneabiliy 45 times that of free space and a permittivity twice that of the wave. IW Find phase velocity of the wave.
ii) TP Lias only y-component with a amplitude $20 \mathrm{~V} / \mathrm{m}$, find the amplitude and direction of d.
Sols:- given wave is travelling in x-direction and

$$
\begin{aligned}
& \mu=4.5 \mu_{0} \mathrm{H} / \mathrm{m} . \\
& \epsilon=2 \epsilon_{0} \mathrm{Fm} .
\end{aligned}
$$

and E has only y-component ie $E y=20 \mathrm{~V} / \mathrm{m}$.
Given medium is LonLen (op perfect dilutric medium.
i phase velocity of the waves.

$$
\begin{aligned}
& \text { are velocity of the la lave } \\
& v_{p}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{1}{\sqrt{\left(4.5 \mu_{0}\right)\left(2 \epsilon_{0}\right)}}=\frac{1}{\sqrt{9 \sqrt{\mu_{060}}}} \\
& v_{p}=\frac{3 \times 10^{8}}{\frac{35}{}}=1 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
& v_{p}=1 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

ii) Direction of (H) :-

A plane wave travelling in x-direction has components only in $y-z$ plane in which its clutric and Magnetic Vectors are normal to Each other.
Since ' E ' is directed along y-direction as per data Dept. of E\&CE., SVCE
H 'must be along ' Z ' diration. Sothe concarned vufor' are E_{y} and H_{z}.

$$
H_{z}=? \text { given } E_{y}=20 \mathrm{v} / \mathrm{m}
$$

using $\frac{|E|}{|H|}=y=\frac{E_{y}}{H_{z}}=\sqrt{\frac{\mu}{\epsilon}}$

$$
\begin{aligned}
& \frac{E_{y}}{H_{2}}=377 \sqrt{\frac{\mu_{r}}{G_{r}}}=377 \sqrt{\frac{4.5}{2}}=565.10 \\
\Rightarrow & \frac{E_{y}}{H_{2}}=565.10 \\
\Rightarrow & H_{3}=\frac{20}{565.10}=0.03539 \mathrm{Am} \\
\Rightarrow & H_{2}=\frac{E_{y}}{565.10} \\
& H_{2}=0.03539
\end{aligned}
$$

36. If the electric field vector in free space is $E=800 \operatorname{Cos}\left(10_{\sigma}^{8} t-\beta y\right) a_{z} v / m$. Find the following i. $\beta i i . \lambda \quad$ iii. H at the point $\mathrm{P}(1,1.5,0.4)$ at $\mathrm{t}=8 \mathrm{nsec}$.
solu:-

$$
\bar{E}=800 \cos \left(10^{\circ} t-\beta y\right) \overline{a_{z}} v / m .
$$

$\omega=10^{8} \mathrm{rad} / \mathrm{sec} ;$ frespace $v_{p}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$.

$$
\begin{array}{r}
\text { i) } \beta=\frac{\omega}{v_{p}}=\frac{10^{8}}{3 \times 10^{8}}=1 / 3=0.333 \mathrm{rad} / \mathrm{m} \\
\beta=0.333 \mathrm{rad} / \mathrm{m}
\end{array}
$$

ii) $\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{(1 / 3)}=6 \pi=18.86$ mateis

$$
\lambda=18.86 \text { motern }
$$

$$
\begin{aligned}
\quad \lambda & =18.86 \\
\text { iii } \quad|\bar{H}| & =H_{t}=\frac{\left|E_{3}\right|}{4}=\frac{800}{377}=2.12 \mathrm{Alm}
\end{aligned}
$$

$$
\therefore \quad \frac{H(y, t)=\bar{H}=2.12 \cos \left(10^{8} t-\beta y\right) \overline{a_{x}}}{B=1 / \mathrm{rad} / \mathrm{m} ; \quad t=8 \mathrm{nsec} .}
$$

$$
\omega=10^{8} \mathrm{rad} / \mathrm{sec} ; \quad \beta=1 / 3 \mathrm{rad} / \mathrm{m} ; \quad t=8 \mathrm{nsec} .
$$

and $y=1.5$

$$
\begin{aligned}
H & =2.12 \cos \left[10^{8} \times 8 \times 10^{-9}-1 / 3 \times 1.5\right] \overline{a_{x}} \\
& \$ 0 H \bar{H}=9.02 \bar{a}_{x} \mathrm{Alm}
\end{aligned}
$$

37. A UPW $E_{y^{\prime}}=10 \operatorname{Sin}\left(2 \pi \times 10^{8} t-\beta x\right)$ is travelling in x-direction in free space. Find the β, v_{p}, H_{z} component. assume $E_{z}=H_{y}=0$.
Solu:- given $E_{y}=10 \sin \left(2 \pi \times 10^{8} t-\beta x\right) \quad v / m$.
and Medium is free space.

$$
\begin{aligned}
& \delta_{m}=10 \mathrm{v} / \mathrm{m} \Rightarrow\left|E_{y}\right|=10 \mathrm{v} / \mathrm{m} \\
& \therefore \beta=\frac{\omega}{v_{p}}=\frac{2 \pi \times 10^{8}}{3 \times 10^{8}}=2.09 \mathrm{rad} / \mathrm{m} \\
& \beta=2.09 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
&i) \\
& v_{p}=\frac{1}{\sqrt{\mu_{0} 6_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
& V_{p}=3 \times 10^{8} \\
& \mathrm{~V} / \mathrm{sec}
\end{aligned}
$$

$$
\text { . iii } H_{3}=\frac{E_{y}}{4}=\frac{10}{377}=\underline{\underline{0.0265}} \mathrm{~A} / \mathrm{m}
$$

$$
\therefore \bar{H}_{3}(x, t)=0.0265 \sin \left[2 \pi \times 10^{8} t-\beta \bar{x}\right] \bar{a}_{2} A / m
$$

(6) $H_{3}=0.0265 \sin \left(2 \pi \times 10^{8} t-\beta x\right)$ Alm
38. The electric field of UPW is given by
$E=40 \operatorname{Sin}\left(30 \pi \times 10^{6} t-2 \pi z\right) a_{x}+40 \operatorname{Cos}\left(30 \pi \times 10^{6} t-2 \pi z\right) a_{y} \cdot v / m$ Find i.f in Hz ii. λ iii. direction of wave propagafioniv. the associated Magnetic Field \mathbf{H}

Solu': given
given enume given medium in frespace. $\therefore u / m$

$$
\begin{gathered}
\text { anume given medium in trespace. } \\
\therefore f=\frac{15}{2 \pi}=\frac{30 \pi \times 10^{6}}{2 \pi}=15 \times 10^{6} \mathrm{H}_{2} \\
f=15 \mathrm{MH}
\end{gathered}
$$

$$
\text { ii } \lambda \quad \frac{v_{p}}{f}=\frac{3 \times 10^{8}}{15 \times 10^{6}}=20 \mathrm{~m}
$$

$$
\lambda=20 \text { metr }
$$

iii) Since given $\overline{\mathcal{L}} \Rightarrow\left(\omega t-\beta \frac{\beta}{4}\right)$ direno $^{\text {in }} \Rightarrow$ Emware propogation.
\therefore Dirction of Wave propagation in +2 dirc" 4
(b) \bar{a}_{3}.

$$
\begin{aligned}
& \text { iv) } H H \left\lvert\,=\frac{|E|}{Y}=\frac{40}{377}=0.106 \mathrm{Alm}\right. \\
& \therefore \overline{H(3, t)}=0.106 \sin \left(30 \pi \times 10^{6} t-2 \pi z\right) \overline{a_{2}} \\
& \left.+0.106 \cos \left(30 \pi \times 10^{6} t-2 \pi z\right) \overline{a_{y}}\right] ; \mathrm{Alm} .
\end{aligned}
$$

39. A 10 G Hz UPW travelling in free space in ' x ' direction has $E_{z}=l v / m$. Find Magnetic field associated and Propagation Constant. \qquad . Fcb. 2004 (6m)
Solv: $f=10 \mathrm{GH}_{3}, \quad E_{3}=102 / \mathrm{m}$.
In freespace $\begin{aligned} V_{p} & =3 \times 10^{8} \mathrm{~m} / \mathrm{sec} . \\ y & =377 \Omega\end{aligned}$

$$
\begin{array}{rl}
y=377 & n \\
i>H_{y} & =\frac{E_{z}}{y}=\frac{1}{377}=2.65 \times 10^{-3} \mathrm{Alm} \\
H_{y} & =2.65 \times 10^{-3} \mathrm{Alm}
\end{array}
$$

ii) In fraspace $\alpha-0 \mathrm{~Np} / \mathrm{m}$ and $\beta=\omega \sqrt{\mu_{0} 6_{0}} \mathrm{rad} i_{m}$

$$
\begin{gathered}
\beta=\frac{\omega_{j}}{v_{p}}=\frac{2 \pi \times 10 \times 10^{9}}{3 \times 10^{8}}=209.4 \mathrm{rad} / \mathrm{m} \\
\beta=2094 \\
\gamma=2+j \beta=0+j \beta=3 \beta=\beta 190^{\circ} \mathrm{m}^{-1} \\
\gamma=209.439 \mathrm{rad} / \mathrm{m} \\
\gamma=209.439190^{\circ} \mathrm{m}^{-1} .
\end{gathered}
$$

40. Determine $\alpha, \lambda, \beta, \gamma, \eta, v_{p}$ for damped soil at frequency of 1 M Hz given that $\varepsilon_{r}=12, \mu_{r}=$ 1 and $\sigma=20 \times 10^{-3} \mathrm{~s} / \mathrm{m}$.
\qquad
Solu:- given $f=1 M H_{z} . \quad \epsilon_{r}=12 \mathrm{Ff}$; $\mu_{r}=1$
\therefore Medium in Good and $\frac{\sigma}{\sigma}=20 \times 10^{-3} \mathrm{~s} / \mathrm{m} \Rightarrow \frac{\sigma}{\omega t}=29.959>1$

$$
\begin{aligned}
& \text { Medium in Good Conduafing. } \\
& \gamma=\sqrt{j \omega \mu(\sigma+3 \omega \epsilon)} \mathrm{m}^{-1}=\sqrt{j \omega \mu \sigma-\omega^{2} \mu \epsilon}: \mathrm{m}^{-1} \\
& \gamma=\sqrt{j 2 \pi \times 10^{6} \times 4 \pi \times 10^{-7} \times 20 \times 10^{-3}-\left(2 \pi \times 10^{6}\right)^{2} \times 4 \pi \times 10^{-7} \times 12 \times 8.854 \times 10^{-10}} \\
& \gamma=\sqrt{j 0.1579-5.27 \times 10^{-3}}
\end{aligned}
$$

the term $\Rightarrow 5.27 \times 10^{-3}$ in vong small \therefore neglut.

$$
\begin{aligned}
& \text { the term } \Rightarrow=\sqrt{j 0.1579}=\frac{0.397 L 45^{\circ}}{c} m^{-1} \\
& \gamma=0.281+j 0.281 \Rightarrow(\alpha+j \beta) \mathrm{m}^{-1}
\end{aligned}
$$

$$
\Rightarrow \alpha=\alpha=0.281 \mathrm{~Np} / \mathrm{m} \text { and } \beta=0.281 \mathrm{rad} / \mathrm{m}
$$

$$
\begin{gathered}
v_{p}=\frac{w}{\beta}=\frac{2 \pi \times 10^{6}}{0.281}=2.236 \times 10^{7} \mathrm{~m} / \mathrm{sec} \\
v_{n}=2.236 \times 10^{7} \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

$$
v_{p}=2.236 \times 10^{7} \mathrm{~m} / \mathrm{sec}
$$

In kuod

$$
\lambda=\frac{v_{p}}{f}=\frac{2.236 \times 10^{7}}{10^{6}}=22.36 \text { metein } \Rightarrow
$$

p Conduto Dept. of ERCE., SVCE

$$
\Rightarrow \lambda=22.36 \text { materi }
$$

$$
y=\sqrt{\frac{\omega \mu}{\sigma}} \angle 45^{\circ}=19.87 \angle 45^{\circ} \Omega
$$

S39a> A Condutor [arrics stady Lurnt of I amparin.
The componento of [urrent density vator J are
$J_{x}=2 a x$ and. $J_{y}=2 a y$. Find the third component J_{z} : Derive any relation employed.
Note': Module-5A Quotion. Jone-2006 (10M).
Solu': using [ontinuity eq"

$$
\nabla \cdot \bar{J}=-\frac{\partial v}{\partial t} A / m^{3}
$$

if Condutor corrics Steady Current then

$$
\begin{aligned}
& \rho_{u}=\text { constant } \Rightarrow \frac{\partial S_{y}}{\partial t}=0 f_{n}{ }^{3}-\mathrm{sec} \text {. } \\
& \Rightarrow \nabla \cdot \bar{J}=0 \\
& \frac{\partial J_{x}}{\partial x}+\frac{\partial J_{y}}{\partial y}+\frac{\partial J_{3}}{\partial z}=0 \\
& \frac{\partial}{\partial x}(2 a x)+\frac{\partial}{\partial y}(2 a y)+\frac{\partial J_{z}}{\partial z}=0 \\
& 2 a+2 a+\frac{\partial J_{3}}{\partial z}=0 \\
& \frac{\partial J_{z}}{\partial z}=-4 a .
\end{aligned}
$$

Integrating wrt ${ }^{2}$.

$$
\left.J_{2}=-4 a_{3}+k\right] A / m^{2}
$$

b. A plane wave of 16 GHz frequency and $E=10$-nimpropates though the body of salt water having constants $\varepsilon=100 . \mu_{t}=1$ and $\sigma=100 \mathrm{Sm}$. Determine attemation constant. phase shift. phase velocity and intrinsic impedance of the medium and depth of penetration.
(08 Marks)
sou:-
Given

$$
\begin{aligned}
& f=16 \text { GHz. } \quad E=10 \mathrm{~V} / \mathrm{m} . \\
& \quad \varepsilon=100, \mu r=1 \text { and } \sigma=100 \mathrm{~S} / \mathrm{m} .
\end{aligned}
$$

Lontangent $\frac{\sigma}{\omega \epsilon}=\frac{100}{2 \pi \times 10^{9} \times 16 \times 8.854 \times 10^{-12} \times 100}$
$2 \pi f E_{0} G r$

$$
\begin{aligned}
& \frac{\sigma}{\omega \theta}=1 \cdot 12346 \gg 1 \\
& \Rightarrow\left(\frac{\sigma}{\omega \theta}\right) \gg 1 \\
& \quad \text { ie } \sigma \gg \omega
\end{aligned}
$$

The given medium in considered to be the Good Conducting Medium.
i. Aftenuation Corntant (α)

$$
\begin{aligned}
& \alpha=\sqrt{\frac{\omega \mu \sigma}{2}} \mathrm{~Np} / \mathrm{m}=\sqrt{\frac{2 \pi \times 16 \times 10^{9} \times 4 \pi \times 10^{-7} \times 100}{2}} \\
& \alpha=2513.27 \mathrm{rep} / \mathrm{m}
\end{aligned}
$$

ii. phare constant (β)

In conduting medium

$$
\alpha=\beta=\sqrt{\frac{\omega \mu \sigma}{2}}=2513.27 \mathrm{rad} / \mathrm{m}
$$

iii. phare velocity (vp)

$$
\begin{aligned}
& \nu_{p}=\sqrt{\frac{2 \omega}{\mu \sigma}}=\frac{\omega}{\beta} \mathrm{m} / \mathrm{sec} . \\
& v_{p}=\sqrt{\frac{2 \times 2 \pi \times 16^{\circ} \times 10^{9}}{u \pi \times 10^{-7} \times 100}}=40 \times 10^{6} \mathrm{~m} / \mathrm{sec} \\
& v_{p}=0.4 \times 10^{8} \mathrm{~m} / \mathrm{sec}=0.4 \times 10^{8} \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

iv. Entrinsic impedance of the medium

$$
\begin{gathered}
y=\sqrt{\frac{\omega \mu}{\sigma}} L^{\frac{\omega 5^{\circ}}{\sigma}} \\
y=\sqrt{\frac{2 \pi f \mu}{100}} \\
y=\sqrt{\frac{2 \pi \times 16 \times 10^{9} \times 4 \pi \times 10^{-7}}{100}} \\
y=45^{\circ} \\
y=35.543 \angle 45^{\circ}
\end{gathered}
$$

N. Skin depth (or) depth of pentration

$$
\begin{array}{r}
\delta=\frac{1}{\alpha}=\sqrt{\frac{2}{\omega \mu \sigma}} \\
\delta=\alpha^{-1}=(2513.27)^{-1}
\end{array}
$$

$$
\delta=397.888 \mu \mathrm{~m}
$$

? a. What is Forward travelling wave and Backward travelling wave in free space? (02 Marks)
Consider a Wave equation for field \bar{E} in freypace in given by

$$
\frac{\partial^{2} E_{x}}{\partial t^{2}}=v^{2} \frac{\partial^{2} E_{x}}{\partial z^{2}}
$$

anume that the field E point e along x-dire and wave propogates along ' z deration. the solution of thin wave is given by

$$
\left.\mathcal{F}_{x}=E_{m}^{+} \cos (\omega t-\beta z)+\mathcal{E}_{m}^{-} \cos (\omega t+\beta z)\right] V_{m}
$$

Solution consinte of one component of field travelling in positive \mathcal{Z}-direction having E_{m}^{+}ie forward travelling wave; while other component having amplitude \mathcal{F}_{m}^{-}travelling in negative \mathcal{Z}-direction called. backward travelling wave.
6.8.) A uniform plane wave in free space is given by $E_{5}=200\left[30^{\circ} \cdot e^{-j 2502} \hat{a}_{\mathrm{x}} \mathrm{V} / \mathrm{m}\right.$. CBCS Find $\beta, w, f, \lambda, \eta,|\vec{H}|$

Sofnir given field $\overline{\mathcal{E}}_{s}=200130^{\circ} e^{-j 250 z} \overline{a_{x}} \mathrm{v} \mathrm{fm}_{\mathrm{m}}$.

Note'- $200130^{\circ}=200 e^{9 \pi / 6}$
Geveral Expronion of ficld E points along ix dire u conum $E-m$ wave in propageting olong z^{\prime} dire" is

$$
\begin{equation*}
F_{s}=E_{m} e^{j(\omega t-\beta 3)} \overline{a_{x}} \quad v f_{m} \tag{5}
\end{equation*}
$$

comparing quation (a) and $q^{4}(6)$

$$
E_{m}=200 \mathrm{v} / \mathrm{m}
$$

$$
\text { i. } \quad \beta=250 \mathrm{rad} / \mathrm{m}
$$

ii. $\quad \beta=\frac{2 \pi}{x} \operatorname{rad} / m$

$$
\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{250}=0.02513 \text { meteri }
$$

Dept. E\&CE., SVCE Bangalore
giren wave in traviling in free space $\mu=\mu_{0} \mathrm{H} / \mathrm{m}$ and $\epsilon=\epsilon_{0} \mathrm{Flm}$.

$$
\begin{gathered}
V=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec} . \\
v=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

ibi. $\quad V=f \lambda \quad m / s e$

$$
f=\frac{u}{\lambda}=\frac{3 \times 10^{8}}{25.132 \times 10^{-3}}
$$

$$
f=11.9366 \mathrm{GH}_{3}
$$

iV. angular frequency (ω)
$\omega=2 \pi f$ radfsee

$$
\begin{aligned}
& \omega=2 \pi\left(1100366 \times 10^{9}\right) \\
& \omega=7.5 \times 10^{10} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

vi. Intrinsic impecance (4)

$$
\begin{equation*}
y=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=377 \Omega \tag{0}
\end{equation*}
$$

(o) $120 \pi \Omega$.
vio $\quad|F|=$?

$$
\begin{aligned}
& y=\frac{\left|E_{m}\right|}{\left|\bar{H}_{m}\right|}=\frac{E_{m}}{H_{m}} \\
& \Rightarrow H_{m}=\frac{E_{m}}{Y}=\frac{200}{120 \pi} \\
& H H_{m}=0.53051 \mathrm{Alm}
\end{aligned}
$$

Topic: 5.15
14. Poynting's theorem and wave power.
41. State and explain the Poynting's theorem.

State and prove the pointing vector theorem.

State and explain Polynting theorem.
Define : i) Poynting's theorem :

State and explain Poynting's theorem.

State and explain Poynting theorem.
Write a short note on Poynting theorem.
Sta $\quad 4^{2}-4$.

State and prove pointing theorem.

Prove and explain the Poynting theorem using Maxwell's equations.

State and explain Poynting theorem.

06-DEC2010 (0.4 Marks)

02-DEC2010

06-DEC2009/Jan 2010
(04 Marls)
O6-DEC2011/Jan 2012 (04 Marks)

10-DEC2011/Jan 2012
(06 Marks)
(w, 10-Jan 2013
(05 Marks)
10-DEC 2013/Jan 2014
(10 Marks)
02 - June /July 2011
(08 Mady总
02 - June / July 2012
(08 Marks)
06- June /July 2009
(ifMEmbs)

010-Dec/Jan 2015
(10 Marks)
10 - June /July 2015
(12 Marks)

10 - June /July 2014
(68 Marks)
06 - June / July 2013
(06 Marks)
06 - Jan 2013
(04 Marks)
06 - May/June 2010

Short note on -10Mark
Poyming? fucorem.
Dept. of E\&CE., SVCE
state and caplain poynting theorem

Noter-

$$
\begin{align*}
& \bar{H} \cdot \frac{\partial H}{\partial t}=1 / 2 \frac{\partial H^{2}}{\partial t} \\
& E \cdot \frac{\partial E}{\partial t}=\frac{1}{2} \frac{\partial E^{2}}{\partial t} \tag{2}
\end{align*}
$$

My
proof:- Consider the oq" (1)

$$
\bar{H} \cdot \frac{\partial \bar{H}}{\partial t}=\frac{1}{2} \frac{\partial H^{2}}{\partial t}
$$

ent the vector $\bar{H}=H_{x} \overline{a_{x}}+H_{y} \bar{a}_{y}+H_{z} \bar{a}_{z}$ Alm.

$$
\begin{aligned}
& \bar{H} \cdot \bar{H}=H_{x}^{2}+H_{y}^{2}+H_{z}^{2}=H^{2} \\
& |\bar{H}|=\sqrt{H_{x}^{2}+H_{y}^{2}+H_{z}^{2}} A l_{m}
\end{aligned}
$$

i.e $\bar{H} \cdot \vec{H}=H^{2}$

$$
\begin{aligned}
& \text { e } \bar{H} \cdot \vec{H}=H^{2} \\
& \frac{\partial}{\partial t}[\vec{H} \cdot \bar{H}]=\bar{H} \cdot \frac{\partial H}{\partial t}+\bar{H} \cdot \frac{\partial H}{\partial t}=2 H \cdot \frac{\partial H}{\partial t} \\
& \Rightarrow \frac{\partial}{\partial t}\left(H^{2}\right)=2 H \cdot \frac{\partial H}{\partial t} \\
& \quad \Longrightarrow \quad \mathrm{H} \cdot \frac{\partial \bar{H}}{\partial t}=-\frac{1}{2} \frac{\partial H^{2}}{\partial t}
\end{aligned}
$$

(or) Lonsider L.H.S of cqu(1)

$$
\begin{aligned}
& \frac{H \cdot \frac{\partial H}{\partial t}}{\frac{\text { Dept. of EzCEE SVCE }}{}}=\left[H_{x} \overline{a_{x}}+H_{y} \bar{a}_{y}+H_{z} \bar{a}_{z}\right] \cdot \frac{\partial}{\partial t}\left[H_{x} \overline{a_{x}}+H_{y} \bar{a}_{y}+H_{z} \overline{a_{z}}\right] \\
& \bar{H} \cdot \frac{\partial H}{\partial t}=H_{x} \frac{\partial H_{x}}{\partial}+H_{y} \frac{\partial H_{y}}{\partial t}+H_{z} \frac{\partial H_{z}}{\partial t} .
\end{aligned}
$$

$\div f x^{k}$ by z^{2}

$$
\begin{aligned}
& =\frac{1}{2}\left[2 H_{x} \frac{\partial H_{x}}{\partial t}+2 H_{y} \frac{\partial H_{y}}{\partial t}+2 H_{z} \frac{\partial H_{3}}{\partial t}\right] \\
& =\frac{1}{2}\left[\frac{\partial H_{x}^{2}}{\partial t}+\frac{\hat{\partial H}_{y}^{2}}{\partial t}+\frac{\partial H_{z}^{2}}{\partial t}\right]=\frac{1}{2} \frac{\partial H^{2}}{\partial t}=R \cdot H \cdot S
\end{aligned}
$$

Poynting theorem:-
Statement: " it states that net power flowing out of a given volume v is equal to the time rate of decrease in the energy stored within volume v minus the otic Lames."
prot- using the Maxuull's quin for Tinc-vanying field b

$$
\begin{align*}
& \nabla \times E=-\mu \frac{\partial H}{\partial t} \tag{1}\\
& \nabla \times \vec{H}=\sigma \bar{E}+\epsilon \frac{\partial E}{\partial t} \tag{22}
\end{align*}
$$

take dot product on bottrside of eq (2) with \bar{E}.

$$
\begin{equation*}
\bar{E} \cdot(\nabla \times \bar{H})=\bar{\sigma} E^{2}+E E \cdot \frac{\partial E}{\partial E}- \tag{3}
\end{equation*}
$$

using vatoridentity
$i \cdot e$

$$
\begin{aligned}
& \overline{\text { Dept. of EXCEL. SVCE }} \\
& \nabla(\bar{A} \times \bar{B})=\bar{B} \cdot(\nabla \times \bar{A})-\bar{A} \cdot(\nabla \times \bar{B}) \\
& \therefore \nabla(\bar{E} \times \bar{H})=\bar{H} \cdot(\nabla \times \bar{E})-\bar{E} \cdot(\nabla \times \bar{H})
\end{aligned}
$$

$$
\Rightarrow \bar{E} \cdot(\nabla \times \bar{H})=\bar{H} \cdot(\nabla \times \bar{E})-\nabla \cdot(\bar{E} \times \bar{H})^{\text {Dept. of ECE, B.M.S.I.T \& } M}
$$

ENGINEERING ELECTROMAGNETICS (15EC36) MODULE-5B
DANKAN VGOWDA MTech., (Ph.D)
using q^{4} (3a) in $q^{u}\left(3\right.$ and use $\bar{E} \cdot \frac{\partial \vec{E}}{\partial t}=\frac{1}{2} \frac{\partial E^{2}}{\partial t}$

$$
\begin{equation*}
\bar{H} \cdot(\nabla \times \bar{E})-\nabla \cdot(\bar{E} \times \bar{H})=\sigma E^{2}+\frac{\epsilon}{2} \frac{\partial E^{2}}{\partial t} \tag{4}
\end{equation*}
$$

take dot on bothside of $c^{4}(1)$ with \bar{H}

$$
\begin{align*}
& \bar{H} \cdot(\nabla \times \bar{E})=\bar{H} \cdot\left(-\mu \frac{\partial \bar{H}}{\partial t}\right) \\
& \Rightarrow \bar{H} \cdot(\nabla \times \bar{E})=-\mu \bar{H} \cdot \frac{\partial \bar{H}}{\partial t} \\
& \bar{H} \cdot(\nabla \times \bar{E})=-\frac{\mu}{2} \frac{\partial H^{2}}{\partial t} \tag{5}
\end{align*}
$$

using equ (5) in (4).

$$
-\frac{\mu}{2} \frac{\partial H^{2}}{\partial t}-\nabla \cdot(E \times \bar{H})=\sigma E^{2}+\frac{\epsilon}{2} \frac{\partial E^{2}}{\partial t}
$$

Re-urrangit he temm and taking volume integral on both-side.

$$
\begin{aligned}
& \nabla \cdot(\bar{E} \times \vec{H})=-\sigma E^{2}-\frac{1}{2} \frac{\partial}{\partial t}\left[\mu H^{2}+\epsilon E^{2}\right] \\
\Rightarrow & B \cdot P=-\sigma E^{2}-\frac{1}{2} \frac{\partial}{\partial t}\left[\mu H^{2}+\epsilon E^{2}\right]
\end{aligned}
$$

poyating theorem:'t pointform.

$$
\begin{gathered}
\int_{\left\langle v_{01}\right\rangle} \nabla \cdot(\bar{E} \times F) d v=-\frac{\partial}{\partial t} \int_{\langle\text {voi }\rangle}^{\left[\frac{1}{2} E E^{2}+\frac{1}{2} \mu H^{2}\right] d v}-\int_{\langle v o 1\rangle} \sigma E^{2} d v ; \text { heaftin } \\
\hline
\end{gathered}
$$

using divergence theorem

Noter i>

2) the ohmic powerdimipated $P_{\text {ohmic }}=\int_{\left\langle u_{0}\right\rangle}\left(\sigma E^{2}\right) \cdot d v$ wattin.

$$
\begin{aligned}
& \omega \cdot k+\bar{J}= \sigma E A m^{2} \mid \\
& F \cdot \bar{T} \rightarrow W / m^{3}
\end{aligned}
$$

Dept. of E\&CE., SVCE
(19) $P_{\text {otmic }}=\int_{\left\langle v_{0} \mid\right\rangle}(E \cdot \bar{J}) d v \quad$ Watt'n

Alternative Statement of Poynting theorem::

- Poynting theorem state that vutor product of Elutric field Intensity \bar{E} and Magnetic field Intensity $\frac{\ddot{H}}{}$ at any point is a measure of the rate of energy Rlowper unit area of that point.
i.e $\quad \bar{P}=\bar{E} \times \vec{H}$ wat $/ m^{2}$

$$
C_{V / m} C_{A / m}=V-A / m^{2}=\omega / m^{2}
$$

$\therefore \vec{P}$ measured in W / N^{2}.
the direction of Energy flow is perpendicular to E and \bar{F} in the direction of the vector $E \times \bar{H}$.
\rightarrow Thus, the vector prodits $\bar{E} \times \vec{F}$ reproento the rate of energy Flow per unit area.
The product $E \times \bar{F}$ it self is another vector denoted by \bar{P}, directed pupendicular to the plane containing the E and \bar{H} viator's, in the sense of a right hand cork screw rule.
$\therefore \vec{P}$ is called poynting vector, named after the mathematician.
J. H poynting.
poynting vector $\bar{P}=\bar{E} \times \overline{F P} \mathrm{w} / \mathrm{m}^{2}$
power density $\left(P_{\text {ave }}\right):-$

$$
\bar{P}=\bar{E} \times H ; \mathrm{w} / \mathrm{m}^{2}
$$

- Pour r density

$$
\begin{aligned}
& \bar{P}=E_{m} H_{m} \sin ^{\prime} \theta \cdot \overline{a_{n}} \\
& \text { bey } \bar{E} 1^{r} \bar{H} \therefore \theta=90^{\circ} \text { and } \sin \left(90^{\circ}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
H_{m} & =\frac{E_{n}}{4} A l m \\
\bar{P} & =E_{m} \cdot \frac{E_{m}}{4} \overline{a_{n}}=\frac{E_{m}^{2}}{4} \frac{\sigma_{n}}{M}=\frac{E_{m}}{4} \text { wi }
\end{aligned}
$$

効
xi t.
Wave powersery Average power density pr the average power density of a $E M$ wave is given by

$$
\left.\vec{P}_{\text {arg }}=\frac{1}{2} \operatorname{Re}\left\{E \times H^{*}\right\}=1 / 2 \operatorname{Re}\left\{E^{*} \times \vec{H}\right\} \right\rvert\, w / m^{2}
$$

Qu (0) is valid if the fielder are complex valued. if field'n E and \bar{H} are real valued then

$$
\left[\frac{P_{\text {arg }}}{}=\frac{1}{2}[E \times H] \text { Whim }{ }^{2} \text { (21) } 1167\right.
$$

Expronion for avarage powerdensity: \rightarrow Lon LerMedium \rightarrow Lony midium .
Eane a Parg in LanLen Medium -
Eonsider LomLen Medium; anume $E \rightarrow \overline{a_{x}}$

$$
\begin{aligned}
& \bar{E}=F_{m} \operatorname{con}(\omega t-\beta z) \overline{a_{x}} \Rightarrow \therefore \bar{E}=E_{m} \overline{a_{x}} v / m . \\
& |\overline{\mathcal{E}}|=\left|E_{m} \cos (\omega t-\beta z)\right|=\left.E_{m} v\right|_{m} .
\end{aligned}
$$

des
$\bar{H}=H_{m} \operatorname{Cos}(\omega t-\beta z) \bar{a}_{y} A_{m} ; \quad \bar{H} \rightarrow \overline{a_{n}}$

$$
\begin{aligned}
& \perp \bar{H}=H_{m} \cos (\omega t-\beta z) a y \\
& |F|=\left|H_{m} \cos (\omega t-\beta z)\right|=H_{m} \Rightarrow \therefore \bar{H}=H_{m} a y \text { Alm. }
\end{aligned}
$$

the dirction of Wave propagation is along ' z ' diration.

$$
\overline{a_{x}} \times \overline{a_{y}}=+\overline{a_{z}}
$$

Deptoferce svce Where a_{n}-unitnormal vector mhich is -1

$$
\begin{aligned}
& =\frac{1}{2} E_{m} \cdot \frac{E_{m}}{y} \overrightarrow{a_{z}}=\frac{E_{m}^{2}}{2 y} \bar{a}_{z} \mathrm{w} / \mathrm{m}^{2} \\
& \left.\bar{P}_{\text {arg }}=\frac{E_{m}^{2}}{2 y} \bar{a}_{z}\right] w / m^{2} \Rightarrow \overline{P_{a r g}=\frac{E_{m}^{2}}{2 y} \bar{a}_{n} w / m^{2}} \\
& \text { (8) Ingentral } \\
& \overline{P_{a r g}}=\frac{E_{m}^{2}}{2 y} \overline{a_{n}} ; w / m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{P a r y}=\frac{1}{2} E \times \bar{H}=\frac{1}{2} E_{m} \overline{a_{x}} \times H_{m} \overline{a_{y}} \\
& \widehat{P_{\text {avg }}}=\frac{\operatorname{dan}^{2}}{}=H_{m} \bar{a}_{x} \times \overline{a_{y}}
\end{aligned}
$$

Xx. $\left|\bar{P}_{\text {avg }}\right|=P_{\text {arg }}=\frac{E_{m}^{2}}{2 y} \mathrm{w} / \mathrm{m}^{2}$

The average power paning through an area $A n^{2}$ in $x y$-plane

$$
\left[\text { Power }_{\text {avg }}=\frac{E_{m}^{2}}{2 y} \times\right. \text { Arca }
$$

$$
\text { Watio }=\frac{\operatorname{con}_{m}^{2} A}{m}
$$

i.e $P_{\text {owr }}=$ Pourdemity \times Areir

Easeb. Average pouerdensity in Lony medium/ In Condurting
In Lany Medium the fiudp, F and \bar{H} can be exproned as anume $E_{a} a_{n} \operatorname{dirc}^{4}$

$$
\therefore \bar{E}=\mathcal{F}_{n}^{m} c^{2 z} \operatorname{con}(\omega t-\beta z) \bar{a}_{x} v / m \text {. }
$$

Mf,$\frac{H}{H} \bar{a}_{y} \operatorname{dire}^{u}$

$$
\bar{H}=H_{m} e^{-\alpha z} \cos (\omega t-\beta z) \overline{a_{y}} \text { A/m }
$$

\Rightarrow the dirction of $E M$ wave propagation is in ' \mathcal{A} 'dirc'.

$$
\begin{align*}
& |\bar{E}|=\left|I_{m} e^{-\alpha z} \cos (\omega t-\beta z)\right|=I_{m} e^{-\alpha z} v / m \\
& \left|\frac{|H|}{}\right|=\left|H_{m} e^{-\alpha z} \cos (\omega t-\beta z)\right|=H_{m} e^{-\alpha z} \mathrm{~A} / m
\end{align*}
$$

$$
\begin{aligned}
& \bar{P}_{\text {avg }}=\frac{1}{2} \operatorname{Re}\left[E \times \bar{H}^{*}\right]=\frac{1}{2} \operatorname{Re}\left[E \times H^{*}\right] \mathrm{W} / \mathrm{m}^{2} \\
& \bar{P}_{\text {avg }}=\frac{1}{2} \times|E||H| \operatorname{Sif}^{\prime} \theta \overline{a_{n}} \\
& E \perp \bar{H} \\
& \theta=90^{\circ} \\
& \overline{\bar{P}}{ }_{\text {avg }}=\frac{1}{2} f_{m} e^{-\alpha z} H_{m} e^{-\alpha z} \overline{a_{z}} \\
& \vec{P}_{\text {avg }}=\frac{E_{m}}{2} \cdot \frac{E_{m}}{4} e^{-2 \alpha z} \bar{a}_{3} ; w / m^{2} \\
& \bar{P}_{\text {arg }}=\frac{\mathcal{L}_{m}^{2}}{2 y} e^{-2 \alpha z} \overline{a_{z}} ; \omega / m^{2}{ }^{2} \\
& \sqrt{4-14 \mid \theta_{n}} \Omega \\
& =141 e^{+j \theta_{n}} \Omega
\end{aligned}
$$

N.k. $y=141 \alpha^{\theta_{n}}=141 e^{\theta_{y}} \Omega$

$$
\begin{align*}
& \overline{P_{\text {arg }}}=\frac{E_{m}^{2}}{2|y| e^{j \theta_{n}}} e^{-2 \alpha z} \overline{a_{z}} ; w / m^{2} \\
& \bar{P}_{\text {arg }}=\frac{1}{2} \frac{E_{m}}{|y|} e^{-2 \alpha z} e^{-j \theta_{y}} \overline{a_{2}} \\
& \operatorname{Re}\left\{e^{\left.-j \theta_{\eta}\right\}}=\cos \left(\theta_{\eta}\right)\right. \\
& \therefore \overline{P_{\text {arg }}}=\frac{E_{m}^{2}}{2|y|} e^{-2 \alpha z} \cos \left(\theta_{\eta}\right) \overline{a_{z}} \quad w / m^{2} \tag{92}
\end{align*}
$$

$$
\left.\Rightarrow \quad P_{\text {arg }}=\frac{E_{m}^{2}}{2|\eta|} e^{-2 \alpha z} \cos \left(\theta_{\eta}\right) \cdot \overline{a_{2}}\right] \mathrm{Watf}_{\mathrm{m}}{ }^{2}
$$ medium.

Note:- The avercge powerparsing thengh an Ara A. Deptrigy ECE, B.M.S.IT \& M given by $[$ Parg $]=\frac{E_{m}^{2}}{2141} e^{-2 \alpha 3} \operatorname{Con}\left(\theta_{4}\right) \times$ Area (A) Wodt's

42.

- May/June 2010

 $012 n^{2}$
Solvi:- given $|E|=100 \mathrm{~V} / \mathrm{m} ; f=300 \mathrm{MH}_{3}$.

$$
E_{r}=9, \mu_{r}=1 \text { and } \sigma=10 \mathrm{v} / \mathrm{m} \text {. }
$$

Given medium in Lany \Rightarrow i.e Good condutorin (i) Conduting medum.

$$
P_{\text {avg }}=? \quad P_{\text {dimipated }}=? \quad A=2 m{ }^{2}
$$

distance $d=z=1 \mathrm{um}$ [anume $E M$ Wave propagating "along ' 3 ' diration.

Intrinsic Impedance of the mediem :-

$$
\begin{aligned}
& y=\sqrt{\frac{\omega \mu}{\sigma}} L 45^{\circ} \sim \\
& y=\sqrt{\frac{2 \pi f \mu_{0} \mu r}{\sigma}} 45^{\circ} \\
& y=\sqrt{\frac{2 \pi \times 300 \times 10^{6} \times 4 \pi \times 10^{-7}}{\ddots}} L 45^{\circ} \\
& y .490
\end{aligned}
$$

Propagation contant (γ) ?-

$$
\gamma=(\alpha+j \beta) n^{-1}
$$

for a Good Condutorn $\quad \alpha=\beta=\sqrt{\frac{\omega \mu \sigma}{2}}$

$$
\begin{aligned}
& \qquad=\sqrt{2} \alpha L 45^{\circ} \\
& \alpha=\sqrt{\frac{\omega \mu \sigma}{2}}=\sqrt{\frac{2 \pi f \mu_{0} \mu_{r} \sigma}{2}}=\sqrt{\frac{\pi \times 300 \times 10^{6} \times 4 \pi \times 10^{-7} \times 1 \times 10}{1}} \\
& \quad \alpha=108.827 \\
& \left.\mathrm{~Np}\right|_{\mathrm{m}} . \\
& \therefore \gamma=\sqrt{2} \alpha \angle 45^{\circ} \Rightarrow \alpha=153.905 \angle 45^{\circ}
\end{aligned} \mathrm{m}^{-1} . \alpha
$$

the power dimipated in the medium in the ditferenu bluthe powr entering the medium and paurleaving the mediun,

$$
\begin{aligned}
& {[\text { Powrs }]_{\text {dimiputed }}=\frac{E_{n}^{2}}{2|y|} \cos \left(\theta_{y}\right) A\left[1-e^{-2 \alpha\left(1 \times 10^{-6}\right)}\right]} \\
& =\frac{(100)^{2}}{2(15.39)} \cos \left(45^{\circ}\right) \times 2\left[1-e^{-2\left(108.827 \times 1 \times 10^{-6}\right)}\right] \\
& \left.\left[P_{\text {owin }}\right]_{\text {dimipated }}=99.992 \times 10^{3}\right] \text { Watt'n }=99.99 \mathrm{~m} \text { wath }
\end{aligned}
$$

43. 06-DEC2010
For a wave traveling in air, the electric field is given by $\bar{E}=6 \cos (\omega t-\beta t) \hat{a}_{2}$ at $f=10 \mathrm{MHz}$.
Calculate the average Poynting vector.
soly:-
(06 Marks)
Solv.
give $\bar{F}=6 \cos (\omega t-\beta x) \overline{a_{z}}$
$f=10 \mathrm{MH}_{2} ;$ given airmedium \Rightarrow LomLensmetium.
the average poynting vector

$$
\bar{P}_{\text {arg }}=\frac{1}{2} \operatorname{Re}\left\{E \times \bar{H}^{*}\right\}: w / n^{2}
$$

Parg $\#$ Lom Ler medium in given by

$$
E \rightarrow \overline{a_{3}}
$$

$$
\begin{aligned}
& \bar{H} \rightarrow \bar{a}_{y} \text { by we } \\
& \text { Comidered lavave }
\end{aligned}
$$

Comidered lavave propagation dire 4 to be

$$
\overline{a_{z}} \times \bar{a}_{y}=-\overline{a_{x}}
$$

$$
\begin{aligned}
& \bar{P}_{\text {avg }}=\frac{E_{m}^{2}}{2 y} \overline{a_{n}} ; w / n^{2} \\
& \sigma_{m}=\left.6 v\right|_{m}, y=120 \pi \Omega . \\
& P_{\text {arg }}=\frac{6^{2}}{2(12011)}\left(-\overline{a_{x}}\right) \text { w/n } . \\
& \text { Parg }=-0.04776 \overline{a_{x}}-w / n^{2} \\
& \left|P_{\text {arg }}\right|=0.04776 \mathrm{wi} / \mathrm{m}^{2} \\
& x^{\prime} \text {. }
\end{aligned}
$$ Solve:-

given $E_{m}=2.2 \mathrm{mV} / \mathrm{m}$; air medium r.
distance (6) Radius $r=10 \mathrm{~km}$.
\therefore Area of sphere ot h radius'

$$
\begin{aligned}
& A=4 \pi r^{2}+m^{2} \\
&=4 \pi(10 k)^{2} \\
& A=1.256637 \times 10^{9} \mathrm{~m}^{2}
\end{aligned}
$$

fig. spherical symmetry
with radius 10 km Area of sphere $=4 \pi r^{2} \mathrm{~m}^{2}$
i the powurdinsing $|\bar{P}|=|\bar{E} \times \bar{H}| w \mid m^{2}$

$$
\begin{aligned}
& =E_{m} \because H_{m} w / m^{2} \\
& =\frac{E_{m}^{2}}{Y} \mathrm{w} / \mathrm{m}^{2}
\end{aligned}
$$

and $y=120 \pi \sim$; in tree space

$$
\begin{aligned}
& \therefore \quad|\bar{P}|=\frac{\left(2.2 \times 10^{-3}\right)^{2}}{120 \pi} \quad \mathrm{~W} / \mathrm{m}^{2}=12.838 \times 10^{-9} \mathrm{~W} / \% \\
& P_{\text {owe }}^{\text {Dep of face. syce }}
\end{aligned}
$$

ii) total power radiated from the station

$$
\begin{aligned}
P_{\text {radiated }} & =P_{\text {ourrdensity }} \times \text { Area } \\
& =12.8384 \times 10^{-9} \times 4 \pi r^{2} \\
P_{\text {radiated }} & =12.8394 \times 10^{-9} \times 4 \pi\left(10 \times 10^{3}\right)^{2} \\
P_{\text {radiated }} & =16.133 \text { Wattin }
\end{aligned}
$$

Average powerdensityer

$$
\begin{aligned}
& \text { Average powordensityir } \\
& \text { iii) } P_{\text {arg }}=\frac{E_{m}^{2}}{24}=\frac{P_{0 u r d u s i t y}}{2}=\frac{12.838 u \times 10^{-9}}{2} \mathrm{k} / m \\
& \therefore P_{\text {arg }}=6.4 \times 10^{9} \\
& \therefore / \mathrm{m}^{2}
\end{aligned}
$$

iv) total average power radiated from the station

$$
\begin{aligned}
& \text { total average power } \\
& =P_{\text {arg }} \times \text { Area }=P_{\text {arg }} \times 4 \pi r^{2} \\
& =6.4 \times 10^{-9}(4 \pi)\left(10 \times 10^{3}\right)^{2} \\
& \times P_{\text {avg(radiated }} \times \\
& =8.0424 \text { Watson }
\end{aligned}
$$

Note: 1: Pour density $|P|=E_{m}^{2} / 4$; me /m ${ }^{2}$ Page 636 (19) 2. average Pourrdensity $\left|P_{\text {arg }}\right|=\frac{E_{m}^{2}}{24}: w / m^{2}$
45. In free Space $\mathrm{E}(\mathrm{z}, \mathrm{t})=50 \operatorname{Cos}(\mathrm{wt}-\beta z) a_{x}$ vim. Find the average Power crossing a circular area of radius 2.5 m in the plane $Z=$ constant.
Sulu:- given $E(z, t)=50 \cos (\omega t-\beta z) \bar{a}_{x} v / m$. EM wave \Rightarrow ' 3 ' direction and Medium is freespase.
Circular radius

$$
r=2.5 \mathrm{~m} ; \quad E_{m}=50 \mathrm{~V} / \mathrm{m} \text { and } y=3+7 \Omega
$$

Area of Circle $A=\pi r^{2} m^{2}$

$$
\begin{aligned}
& \text { Area of Circle } A=11 \\
& \therefore \overline{P a r g}^{2}=\frac{E_{m}}{2 y} \overline{a_{n}} w / m^{2}+\text { infrespace|tantem } \\
& \text { uredium. }
\end{aligned}
$$

Since $\bar{E} \rightarrow \overline{a_{x}}$ and IM wave $\Rightarrow \overline{a_{2}}$
$\therefore \bar{H}$ must $b c \rightarrow \overline{a_{y}}$

$$
\begin{aligned}
\overline{a_{n}} & =\overline{a_{x}} \times \widetilde{a_{y}} ; \\
& =\overline{a_{r}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{P}_{\text {arg }}=\frac{(50)^{2}}{2 \times 377} \bar{a}_{3} \mathrm{w} / \mathrm{m}^{2} \\
& \mid \overline{P_{a r g}}=3.3156 \bar{a}_{3} \\
& \left|\bar{P}_{\text {arg }}\right|=\text { average pow ur density }=3.3156 \mathrm{w} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\text { average pownderpity XAra } \\
& =\operatorname{Parg} \times \pi r^{2} \\
& =3.3156 \times \pi(2.5)^{2} \\
& P_{\text {arg-croming }}=65.10 \text { watt? }
\end{aligned}
$$

46.

Soly:- Method I:- wht from poynting; theorem

$$
\begin{aligned}
& \text { the ohmic power dimipation } \\
& P_{\text {ohmic }}=\int_{\langle\text {vol }\rangle}(\bar{E} \cdot \bar{J}) d v=\int_{\langle v o l\rangle} \sigma E^{2} d v \\
& \text { r' }{ }^{\sigma}{ }^{\prime}{ }^{\prime} R=\frac{\rho \mu}{A} \Omega . \\
& P_{\text {dinipation }}=\text { ? } \\
& \therefore A=\pi a^{2} \mathrm{~m}^{2}
\end{aligned}
$$

" L-Lingth of the Circular wire.
volume of cylinder $v=\pi r^{2} L m^{3}=\pi a^{2} L, m^{3}$.
and $\bar{L}=\frac{\text { potential }}{\text { dintance }}=\frac{v}{L} \quad v / m$.
hointivity $\rho=\frac{R A}{l} \Omega \cdot m$

$$
\frac{1}{\rho}=0 \quad, \quad v=\frac{1}{\rho}=\frac{l}{R A} \quad v / \mathrm{m} .
$$

Dept. of E\&CE., SVCE

$$
\text { (32) }|F|=\frac{I}{A} A_{100}
$$

$$
\underbrace{P_{0}=V \cdot I=I^{2} R}_{\begin{array}{l}
\text { opspnic } \\
\text { dimipated }
\end{array}} \text { wattin }
$$

$$
\frac{\text { Method- } \pi \rho \text {-using } P_{\text {ohmic }}}{\text { dimipated }}=\int_{\text {Luoi> }} \sigma E^{2} d u \text { wattio }
$$

$$
\begin{aligned}
& E=\frac{v}{L} v / m . \\
& P_{\text {ohmic }}=\sigma E^{2} \mid d v=\sigma E^{2} x \text { volume of the Circutorwire } \\
& P_{\text {ohmic }}=\sigma E^{2} \times \pi r^{2} L=\sigma\left(\frac{v}{L}\right)^{2} \times \pi r^{2} L \\
&
\end{aligned}
$$

using $\sigma=\frac{R}{R \cdot A} v / m$ and $A=\pi r^{2} ; m^{2}$

$$
\begin{aligned}
& \text { using } \\
&= \frac{K}{R(A)} \times \frac{V^{2}}{K^{2}} \times R^{2} K \\
& \Rightarrow \frac{V^{2}}{R} \text { watt's } \\
& P_{\text {otmic }}=\frac{V^{2}}{R}=\frac{(I R)^{2}}{R}=I^{2} R \text {; wattin } \\
& P_{\text {ohmic }}=V I=\frac{V^{2}}{R}=I^{2} R \quad \text { wattin. }
\end{aligned}
$$

Top: c 5.16 Polarization of Uniform Plane waves. 5.17 Brewster angle in Wave Propagation.
47. Discuss in brief the various polarizations of biform plane waves.

* Polarization of a wave refirin to the time-varying behaviour of the elutric fill. Strength valor at some fixed point in space.
* Consider a plane wave propagating in 2 direction the relative orientation blu the planar components F_{x} and E_{y} vectorio defines the polarization of the Wave.
* Types p a) Linear polarization.
b) Circular polarization.
c) Elliptical polarization.
* Linear polarization: -The planar components ane in-phaxe With cither equal (or) Unequal amplitudes.
* Circular polarization:-The planar Component are out of phase by 90° with equal amplitude.
* Elliptical polarization: - The planarcomponentr are out of phase by 90° with unequal amplitude.
Dept. of E\&CE, SVCE

Write a note on Brewster angle in wave propagation. if Light (wave) strikes an interface 80 that their is a 90° angle b/w the reflected and refracted ray's, the reflected Light will be Linearly polarized. The direction of polarization is parallel to the plane of the interface.
The special angle of incidence thetproduces a 90° angle blu the reflected and refracted ray is Called the Brewster angle $\left(\theta_{B}\right)$.
using Snell Lav'

$$
\tan \left(\theta_{B}\right)=\frac{u_{2}}{u_{1}}
$$

whore $4 ;, n_{2}$ are refractive index of. different medium.
a. List of symbols.

Is attenuation Constant $(\alpha) \rightarrow N p / m$.
2. phase constant $(\beta) \rightarrow$ rad.
3. propagation constant $(\gamma)=\alpha+\jmath \beta ; m^{-1} /$
4. wave length $(\lambda) \longrightarrow$ meters (m).
5. Intrinsic impedance (4) \longrightarrow ohm:
6. phase velocity $\left(u_{p}\right) \rightarrow p / \mathrm{sec}$.
7. Skin depth $(\delta)^{n} \rightarrow$ muteris (m).
8. poynting visor $\frac{P}{P}=\bar{E} \times H \longrightarrow \omega / \mathrm{m}^{2}$.
q. avior pours density (Pang) $\longrightarrow \mathrm{we} / \mathrm{m}^{2}$.
$t 0$ al power $\left(P_{\text {total }}\right) \rightarrow$ Watt:

$$
\frac{P_{\text {total }}=\operatorname{Parg} \times \text { Area. }}{\text { watt'? }} \text { whonk}=\text { watt. }
$$

b. Listof formular -

1. Wave equation (Gencral form)

E-fild

$$
\nabla^{2} E-\mu \epsilon \frac{\partial^{2} E}{\partial t^{2}}=\mu \frac{\partial \bar{J}}{\partial t}+\nabla\left(\delta_{u} \mid \epsilon\right)
$$

and

$$
\text { H-fird. } \quad \nabla^{2} \bar{H}-\mu \in \frac{\partial^{2} \bar{H}}{\partial t^{2}}=-(\nabla \times \bar{J})^{2}
$$

2. Wave equation in frespace $\left[\begin{array}{l}\quad=0, \rho_{u}=0, \bar{J}=0, \\ \mu=\mu_{0}\end{array}\right.$ $\left.\mu=\mu_{0}, G=G_{0}\right]$.

$$
\nabla^{2} E-\mu_{0} \epsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}=0
$$

and

$$
\begin{aligned}
& Q^{2} \bar{H}-\mu_{0} \theta_{0}^{\partial^{2} H} \frac{t^{2}}{\partial t^{2}}=0 \\
& V=\frac{Q_{0}}{\theta_{0}^{2} 60}=3 \times 10^{8} \mathrm{~m} / \mathrm{sce} .
\end{aligned}
$$

3. Solution of Wave eq.
anxime $\bar{E} \rightarrow x$ diren $^{\mu}, \bar{H} \rightarrow y^{\prime}$ dire $^{\mu}$ and
EM wave \rightarrow z'diren. $^{\prime}$.

$$
\begin{aligned}
& \bar{E}=E_{m}^{+} \cos (\omega t-\beta z)+E_{m}^{-} \cos (\omega t+\beta z) \\
& \sqrt{H}=H_{m}^{+} \cos (\omega t-\beta z)-H_{m}^{-} \cos (\omega t+\beta z)
\end{aligned} \mathrm{N} / \mathrm{m} .
$$

4. Wave Equation in phasorform.

$$
\nabla^{2} \bar{E}=8^{2} \bar{E} \text { and } \nabla^{2} \bar{H}=8^{2} \bar{H}
$$

where $\gamma^{2}=$ jus $(\sigma .+j \omega t)$
(大) $\gamma=\sqrt{j \omega \mu(\sigma+j \omega t)} \mathrm{m}^{-1}$
5. Wlave Equation in Cood conduting Medum.

$$
\begin{aligned}
& \nabla^{2} \bar{E}=\mu \sigma \frac{\partial \vec{E}}{\partial t}+\mu \epsilon \frac{\partial^{2} \vec{E}^{2}}{\partial t^{2}} \text { and } \\
& \nabla^{2} \bar{H}=\sigma \mu \frac{\partial H}{\partial t}+\mu E \frac{\partial^{2} \vec{H}}{\partial t^{2}}
\end{aligned}
$$

Solni- ariume Em wave propagating in ' z 'dirction with affersuation comtant à Nelm.

$$
\begin{aligned}
& F_{x}(z, t)=E_{i} e^{-\alpha z} \operatorname{con}(\omega t-\beta z)+E_{m}^{-} e^{+\alpha z} \cos (\omega t+\beta z) \\
& H_{y}(z, t)=H_{m}^{+} e^{-\alpha z} \cos \left(\omega t-\beta z-\theta_{n}\right)-H_{m}^{-} e^{+\alpha z} \cos \left(\omega t+\beta z-\theta_{n}\right)
\end{aligned}
$$

61 W lave equation in perfut Diclutric Medium.
In parfut dinutric Medium

$$
\begin{gathered}
\mu=\mu_{0} \vec{H}_{r} \mathrm{H} / \mathrm{m} \\
\epsilon=G_{0} E_{r} \mathrm{Hm} . \\
\Delta^{2} E=\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} \text { and } \nabla^{2} \vec{H}=\mu \epsilon \frac{\partial^{2} H}{\partial t^{2}}
\end{gathered}
$$

Som:- ancerre Emwave in propagating along z'dirction

$$
\bar{E}=E_{m}^{+} \cos (\omega t-\beta z)+E_{m}^{-} \cos \left(\omega t+(\beta z) v / m, ~\left(H_{m}+\cos (\omega t-\beta z)-H_{m} \cos (\omega t+\beta z) \mathrm{Alm} .\right.\right.
$$

7. Relationship blur E, H and Y.

$$
\frac{|E|}{|F|}=4
$$

... intrinsic impedance of: : the medium.
8. Unifomplane Wave (UPu)

In cone of Elutromagnatic wave propagating along x-axis, they are referred to as "Uniformplanewave" if the slutric and magnetic fills are independent of y and z but function: of ' x ' and ' t ' only. Further for such a wave, it is important to note that there will be no field component
along the direction of propagation this is called Transworsc nature of elutromagnetic hlave (TEM-wave).
9. Wave propagation in Cood condertors (Skin sffut)

Skin depth (θ) depth of penutration is a meanue of the dipth to which an EM wave cencentrate the medium.

$$
\delta=\sqrt{\frac{1}{\pi f \mu}}=\frac{1}{\alpha} m \text { meter. }
$$

$$
\begin{aligned}
& \text { i. } \delta=\frac{1}{\alpha}=\frac{1}{\beta}=\sqrt{\frac{1}{\pi f \mu \sigma}} \text {; miteris } \\
& i{ }^{c}+\quad=\frac{\omega}{\beta}=\omega \delta \quad \mathrm{m} / \mathrm{sec} \Rightarrow \text { vp=w } \mathrm{n} / \mathrm{sec} . \\
& \text { iio. } \gamma=\alpha+j \beta ; m^{-1}=\sqrt{2} \alpha \angle 45^{00}=\sqrt{2} \delta^{-1} L 45^{\circ} \\
& \theta=\sqrt{2} \delta^{-1} \mu 5^{\circ} \\
& \text { iv. } \quad y=\frac{\sqrt{2}}{8 \sigma} \angle 45^{\circ} \Omega \text {. }
\end{aligned}
$$

V. $\nu_{p}=\omega \delta$ mise and $\lambda=2 \pi \delta$ maters

Note:-

$$
\begin{aligned}
& {\overline{\sigma_{\text {silur }}}=6.17 \times 10^{7} \mathrm{~s} / \mathrm{m}}_{\sigma_{\text {copper }}}=5.80 \times 10^{7} \mathrm{~s} / \mathrm{m} \\
& \sigma_{\text {alumina }}=3.82 \times 10^{7} \mathrm{~s} / \mathrm{m} \\
& {\overline{\sigma_{\text {gold }}}}=4.10 \times 10^{7} \mathrm{~s} / \mathrm{m}
\end{aligned}
$$

10. poynting theorem and Wave power

Statement:- it states that nit pour r flowing out of a given volume (n) is equal to the fine rate of decrease it he Energy stored within volume v minus therotmic Lanes.

Note:-
11. Wlave pourr:-
\rightarrow Average pourr density in Len Lon Medium $(\alpha=0)$

$$
0
$$

\rightarrow the average pourr paning through on area A ' is

$$
\left|P_{\text {avg }}\right|=\frac{E_{m}^{2} C}{2^{2} 1} \omega \omega^{2} \text {. }
$$

